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Abstract: Epilepsy is a neurological disorder in the activity of brain cells that leads to seizures.
An electroencephalogram (EEG) can detect seizures as it contains physiological information of the
neural activity of the brain. However, visual examination of EEG by experts is time consuming,
and their diagnoses may even contradict each other. Thus, an automated computer-aided diagnosis
for EEG diagnostics is necessary. Therefore, this paper proposes an effective approach for the early
detection of epilepsy. The proposed approach involves the extraction of important features and
classification. First, signal components are decomposed to extract the features via the discrete wavelet
transform (DWT) method. Principal component analysis (PCA) and the t-distributed stochastic
neighbor embedding (t-SNE) algorithm were applied to reduce the dimensions and focus on the
most important features. Subsequently, K-means clustering + PCA and K-means clustering + t-SNE
were used to divide the dataset into subgroups to reduce the dimensions and focus on the most
important representative features of epilepsy. The features extracted from these steps were fed to
extreme gradient boosting, K-nearest neighbors (K-NN), decision tree (DT), random forest (RF) and
multilayer perceptron (MLP) classifiers. The experimental results demonstrated that the proposed
approach provides superior results to those of existing studies. During the testing phase, the RF
classifier with DWT and PCA achieved an accuracy of 97.96%, precision of 99.1%, recall of 94.41%
and F1 score of 97.41%. Moreover, the RF classifier with DWT and t-SNE attained an accuracy of
98.09%, precision of 99.1%, recall of 93.9% and F1 score of 96.21%. In comparison, the MLP classifier
with PCA + K-means reached an accuracy of 98.98%, precision of 99.16%, recall of 95.69% and F1
score of 97.4%.

Keywords: EEG; epileptic seizure; DWT; K-means; PCA; t-SNE; machine learning

1. Introduction

Epilepsy is one of the most common neurological disorders worldwide. According to
the World Health Organization, approximately 50 million people worldwide suffer from
this disorder [1]. Epilepsy occurs due to brain neurons’ abnormal and sudden secretions [2].
Epilepsy is typically not a direct cause of death in most cases. However, it is important to
note that epilepsy can increase the risk of certain potentially life-threatening complications.
These complications include sudden unexpected death in epilepsy (SUDEP); SUDEP is a
rare but significant risk associated with epilepsy. It refers to cases where a person with
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epilepsy dies suddenly and unexpectedly, and no clear cause of death is identified during
autopsy. The exact mechanisms of SUDEP are not fully understood, but it is believed
to be related to a combination of factors, including seizures affecting the respiratory or
cardiovascular systems. They also include accidents and injuries; seizures can cause loss of
consciousness, convulsions, or altered awareness, which can lead to accidents and injuries.
Another complication is status epilepticus: a prolonged seizure or a series of seizures where
the person does not regain consciousness between seizures. Status epilepticus is a medical
emergency and requires immediate treatment. If not treated promptly, it can lead to severe
brain damage or even death. It is worth mentioning that the overall mortality rate for
epilepsy is generally low, and most people with epilepsy can lead full and productive lives
with appropriate management and treatment. However, it is crucial for individuals with
epilepsy to work closely with healthcare professionals to minimize the risks associated
with the condition and manage it effectively [3]. The inability of brain neurons to regulate
electric signals in the brain results in seizures, a condition that has been of interest to many
researchers because of its complexity and seriousness. Seizures are usually accompanied
by disorders in sensation, movement or mental functions [4]. Over 30% of patients with
epilepsy still suffer from uncontrolled seizures despite treatment with antiepileptic drugs.
Based on the areas of the brain that are activated during seizures, seizures are classified into
two types: partial and generalized. A partial seizure originates from one region of the brain
and remains in one hemisphere, whereas a generalized seizure affects the whole brain [5].
The electrical activity of the brain is represented by EEG signal waves originating from the
brain’s neurons. EEG signal waves are recorded by placing non-invasive electrodes on the
scalp. These signals display information on mental defects and neurological conditions [6].
The brain’s electrical signals can be analyzed through the five frequency bands produced by
the EEG [7]: delta, alpha, theta, gamma and beta. Excessive discharge of electrical signals in
brain cells produces abnormal seizures, which are one of the signs of epilepsy. Radiologists
distinguish EEG signals caused by seizures from other factors via special discriminatory
patterns, such as high-amplitude repetitive activities with a combination of slow and spike
waves [8]. Hence, discovering these features is a difficult task, and following each EEG
signal is troublesome and time consuming [9]. Therefore, an automated approach for
detecting seizures to diagnose epilepsy in a timely manner needs to be developed [10].
EEG is an effective tool for detecting areas of differences in neuronal activity correlated
with epilepsy. Accordingly, seizures can be detected by analyzing EEG signals. The key
point in analyzing EEG signals is to extract the most important and most effective features
that represent the characteristics of the signal [11]. Given that the characteristics of EEG
signals have not been established yet, several methods for identifying EEG on the basis
of time–frequency (TF) algorithms have been proposed for classification [12]. The present
study established TF algorithms as one of the most important algorithms for discovering
the behavior of different signals with different frequencies and times [13]. In particular,
the DWT algorithm was applied to analyze nonstationary signals, such as EEG, to extract
the most effective features. The PCA and t-SNE algorithms were employed to represent
high-dimensional data in a low-dimensional spaces. Two models were built by apply-
ing the K-means clustering algorithm and PCA (K-means + PCA) and then with t-SNE
(K-means + t-SNE). The important features were fed into five types of classification algo-
rithms, which trained the dataset and tested the performance of the classifiers on a part of
the dataset.

The main contributions of this paper can be summarized as follows:

• Features are extracted by decomposing signal components via the DWT algorithm
and by applying PCA and the t-SNE algorithm to reduce data dimensions to obtain a
feature vector in two ways, namely, DWT + PCA and DWT + t-SNE.

• The data set is divided into subgroups by using K-means clustering, with each group
containing similar points. PCA and the t-SNE algorithm are then applied to reduce
data dimensions to obtain feature vectors in two ways, namely, K-means + PCA and
K-means + t-SNE.
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• The hyperparameters of all classifiers have are adjusted to attain the best results in
diagnosing epilepsy.

• These highly efficient algorithms are generalized to help physicians obtain a highly
accurate diagnosis while saving time and effort.

The rest of the paper is ordered as follows: Section 2 discusses techniques used in
the relevant literature. Section 3 describes the materials and methods with subsections
for pre-processing data, feature extraction, and methods for reducing data dimensions.
Section 4 provides and discusses the experimental results. Finally, the conclusions are
provided in Section 5.

2. Proposed Approach for Detection of Epileptic Seizures

Epilepsy is a common neurological disease that occurs due to the inability of brain
neurons to regulate electrical signals in the brain, which leads to seizures. EEG is usually
measured and evaluated by neurologists. Therefore, in this study, automated systems
were developed to track EEG signals accurately to detect epileptic seizures efficiently.
Figure 1 describes the methodology for diagnosing the epileptic seizure dataset. The
dataset included all stages, from dataset acquisition, data cleaning, feature extraction, and
signal component decomposition via the DWT method. The dataset was divided into
subgroups, each containing similar data using K-means. The high-dimensional data was
reduced and then put in low-dimensional spaces via PCA and the t-SNE algorithm. Finally,
the low-dimensional dataset was classified using five classification algorithms: extreme
XGBoost, KNN, DT, RF and MLP classifiers.
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Figure 1. Methodology for analyzing EEG signals for early diagnosis of epileptic seizures.

2.1. EEG Dataset

The epileptic seizure dataset used in this work was obtained from the machine learning
repository UCI [14].

The Epileptic Seizure Recognition Data Set is a collection of EEG recordings used to
recognize epileptic seizures. The dataset is available on the UCI Machine Learning Reposi-
tory and consists of a single file named “data.csv”. The dataset consists of 5 folders, each
representing a different patient. Each folder contains 100 files, with each file representing
a recording of the brain activity of a single person. Each recording lasts for 23.6 s and
contains 4097 data points. Each data point is recorded at a different point in time.
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Each data point in a recording represents the electrical activity at a specific time. There
are 178 numerical attributes for each data point. The attributes are obtained from 23.6 s
of EEG (electroencephalogram) signals. The first attribute represents the patient ID, the
second attribute represents the class label (0 for non-seizure activity; 1 for seizure activity),
and the remaining 178 attributes represent the EEG signal data. Each piece of information
contained 178 data points that represented the columns. The last column represented
label y, which contained five classes. Each class contained 2300 data points (i.e., multiple
classification). Each class was classified as a binary classification: class 1 represented
epilepsy cases, whereas class 0 represented normal cases (a combination of four classes
(1, 2, 3 and 4)) [15]. Thus, the dataset be-came unbalanced as epilepsy cases represented
2300 data points, whereas normal cases represented 9200 data points [15].

In this study, 80% of the dataset was allocated to training the systems and 20% to
testing the performance of the systems. In a patient-independent seizure detection setting,
the goal is to develop a seizure detection algorithm that can be generalized well to new,
unseen patients. To achieve this, it is essential to ensure that the records or samples of the
same patient do not appear in both the training and testing subsets. The reason for this
separation is to evaluate the algorithm’s performance on unseen data accurately. If the same
patient’s data were present in both the training and testing sets, it would introduce bias
and artificially inflate the algorithm’s performance metrics. The model could potentially
memorize specific patterns or characteristics of the patient’s seizures instead of learning
generalizable features. By strictly separating the patient data into training and testing
subsets, researchers can assess the algorithm’s ability to detect seizures in unseen patients,
which is crucial for patient-independent seizure detection.

2.2. Data Preprocessing

Preprocessing is an essential step in data analysis and machine learning tasks. It in-
volves transforming raw data into a format that is suitable for further analysis or modeling.
The goal of preprocessing is to improve data quality, reduce noise, handle missing values,
and extract relevant features from the raw data. It typically includes several steps, which
can vary depending on the specific task and the nature of the data. Overall, the prepro-
cessing steps are designed to enhance the quality, reliability, and usefulness of the data for
subsequent analysis or modeling tasks. They play a crucial role in ensuring accurate and
meaningful results in various data-driven applications [16].

2.2.1. Missing Data

The epilepsy dataset did not contain lost data; thus, methods for replacing missing
data were not applied.

2.2.2. Balance of Dataset

The dataset was unbalanced as it contained 2300 data points (20%) for class 1 (epilepsy
cases), whereas class 0 (normal cases) contained 9200 data points (80%). Therefore, the
classes were balanced to obtain proper diagnostic accuracy. In this study, the classes of the
dataset were balanced via the oversampling technique.

Oversampling is a technique used to balance an imbalanced dataset by increasing the
number of instances in the minority class. It involves replicating or creating new synthetic
samples from the existing minority class samples until a more balanced distribution is
achieved. The goal is to provide the machine learning model with sufficient examples of
the minority class to improve its performance [17].

The following is a general overview of how oversampling works:

• Identify the minority class: In an imbalanced dataset, there is a class imbalance,
meaning one class has significantly fewer instances than the other class(es). The
minority class refers to the class with fewer instances.
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• Replicate samples: The existing samples from the minority class are replicated or
duplicated to increase their representation in the dataset. This is achieved by randomly
selecting instances from the minority class and adding them as additional samples.

• Synthetic sample generation: The approach is to generate synthetic samples using
techniques such as the synthetic minority oversampling technique (SMOTE). SMOTE
creates new samples by interpolating between existing minority class samples. It
selects a minority class instance, identifies its k-nearest neighbors, and generates
synthetic samples along the line segments connecting the instance with its neighbors.

• Repeat until balance is achieved: The replication or synthetic sample generation
procedure is repeated until the preferred balance between the minority and majority
class is achieved. This can be determined based on a specific ratio or until a satisfactory
balance is obtained.

• Model training: The oversampled dataset, now with a more balanced distribution, can
be used to train a machine learning model. The model can learn from the increased
number of minority class examples and make better predictions on new, unseen data.

It is important to note that oversampling techniques should be used with caution
and evaluated carefully. Oversampling can potentially introduce bias or overfitting if not
applied properly. It is recommended to combine oversampling with other techniques such
as cross-validation, regularization, or undersampling the majority class to further improve
the performance and robustness of the model.

After applying this technique, the model obtained 18,400 records for the two classes
divided into 9200 records for class 1 (epilepsy cases) and 9200 records for class 0 (normal
cases). Thus, the epilepsy dataset became balanced.

2.3. Exploratory Data Analysis

Apart from finding the mean, standard deviation and maximum and minimum values,
exploratory data analysis is a statistical method that can be used to analyze a dataset and
summarize the most important features and determine the correlation rate between these
features [18]. The dataset contained 11,500 data points (rows) and 178 features (columns).
Table 1 describes the statistical measures of the epilepsy dataset.

Table 1. Statistical metrics of the epilepsy dataset.

Statistics X1 X2 X3 X4 . . . . . . X176 X177 X178 y

count 11,500 11,500 11,500 11,500 . . . . . . 11,500 11,500 11,500 11,500
mean −11.581 −10.911 −10.187 −9.143 . . . . . . −12.705 −12.426 −12.196 0.2

std 165.626 166.059 163.524 161.269 . . . . . . 162.895 162.88631 164.852 0.400

The count denotes the number contained in each feature; the mean indicates each feature’s mean and the standard
deviation of each feature.

2.3.1. Correlation Features

Statistics is one of the methods used in data processing to interpret raw data and make
them understandable. Using descriptive statistics, data can be represented in the form of
tables or graphs that are easy to understand. In this study, the correlation between the
features recorded by EEG signals was determined, and the correlation between each EEG
data point and the other was extracted [19]. Moreover, each data point’s correlation with
the target’s feature was identified.

Correlations between features in a CSV dataset indicate the statistical relationship or
association between different attributes or variables. They measure how changes in one
variable relate to changes in another variable. Correlation is typically measured using a
correlation coefficient, such as Pearson’s correlation coefficient.

The strength of correlation between features can be categorized as follows:
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Strong Positive Correlation:

When two features have a strong positive correlation, it means that as one feature
increases, the other feature also tends to increase proportionally. The correlation coefficient
will be close to +1, indicating a strong positive relationship.

Weak Positive Correlation:

A weak positive correlation means that there is a positive relationship between features,
but it is not as strong as in the previous case.

The correlation coefficient will be between 0 and +1, closer to 0 than to +1. It indicates
that as one feature increases, the other feature tends to increase, but not as consistently
or strongly.

No Correlation:

When there is no correlation between features, it means that changes in one feature do
not have a consistent relationship or impact on the other feature. The correlation coefficient
will be close to 0, indicating no significant relationship.

Weak Negative Correlation:

A weak negative correlation implies that as one feature increases, the other feature
tends to decrease, but the relationship is not strong. The correlation coefficient will be
between 0 and −1, closer to 0 than to −1.

Strong Negative Correlation:

When two features have a strong negative correlation, it means that as one feature
increases, the other feature tends to decrease significantly. The correlation coefficient will
be close to −1, indicating a strong negative relationship.

When calculating the correlation between features (independent variables) and a
classification (dependent variable), using measures of association specifically designed for
data is common.

These measures of association help determine the relationship between the features
and the classification in terms of their categorical nature. They provide insights into how
closely related the features are to the classification outcome. However, it is worth noting
that correlation measures for categorical data are not as commonly used as they are in the
case of continuous variables.

2.3.2. Discrete Wavelet Transform

The DWT is a signal processing technique that decomposes a signal into different
frequency bands, providing both time and frequency information. DWT has been used in
the context of seizure detection due to several justifications and potential benefits it offers.

Multiresolution analysis: DWT allows the decomposition of a signal into different
scales or resolutions, which can capture both high-frequency details and low-frequency
trends. Seizure activity often manifests as transient high-frequency components super-
imposed on low-frequency trends. By decomposing the signal with DWT, it becomes
possible to analyze these components separately, potentially enhancing the detection of
seizure-related patterns.

Time-frequency localization: DWT provides good time and frequency localization
compared to other frequency analysis techniques. Seizure events can occur over a range
of frequencies and durations, and DWT’s ability to localize these events in both time and
frequency domains makes it a suitable tool for identifying seizure-related features.

Feature extraction: DWT can extract features from different frequency sub-bands
that may contain discriminative information for seizure detection. These features can
include energy distribution, wavelet coefficients, or statistical measures computed from the
decomposed sub-bands. By extracting relevant features from the DWT coefficients, it becomes
possible to characterize seizure activity and distinguish it from non- seizure patterns.
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Noise reduction: DWT can help denoise the signal by separating noise components
from the underlying signal. Seizure detection systems often face challenges related to
artifacts and noise, which can interfere with accurate detection. By applying denoising
techniques based on DWT, it is possible to reduce the impact of noise on seizure detection
algorithms and improve their performance.

Regarding performance, the effectiveness of DWT in seizure detection depends on
several factors, including the specific implementation, feature extraction methods, and the
classification algorithm used in combination with DWT. While DWT provides a powerful
tool for signal analysis, its performance may vary depending on the dataset characteristics
and the complexity of seizure patterns.

EEG have many nonstationary or transitory properties. Thus, frequency and time
methods, such as the wavelet transform method, must be used. Various functions are used
to analyze waves as in Equation (1).

W(a, b) =
∞∫
−∞

x(t)
1√
a

ψ(
t− b

a
) (1)

where a changes the time scales of the probing function, and b translates the function
through x(t), ψ. If a is greater than 1, then the wavelet function W(a, b) stretches along the
time axis; if it is between 1 and 0, then it makes contact with the function. The probing
function (ψ) can be any of the different functions, and it takes an oscillating form, which is
why it is called a “wave”. The DWT method constrains the contrast in scale and translation
with powers of 2. The DWT algorithm decomposes the signals through filter banks. The
filter group is used to split the signal into different spectral components, a procedure called
sub-band coding. Each stage contains two down-samplers and two filters. D1 details are
taken from a high-pass filter and A1 approximation is carried out via the low-pass filter.
Choosing the appropriate wave and number of signal decomposition levels is vital in signal
analysis via the DWT method. Frequency components determine the number of levels
and the selection of levels so that the parts of the signal required to classify the signal are
preserved. Given that EEG signals do not have components of frequency above 30 Hz, their
number of levels is 5. Therefore, EEG signals are decomposed into D1–D5 details and A5
approximation [20].

The DWT has several decomposition levels, resulting in approximation (A) and detail
(D) coefficients at each level.

Below is an explanation of the terms commonly used in DWT:
A1 (Approximation 1):
A1 represents the approximation coefficients at the first level of the DWT decomposition.
It captures the signal’s low-frequency components and approximates the original

signal at a coarser resolution.
A1 corresponds to the low-pass-filtered version of the input signal.
D1-D5 (Detail 1 to Detail 5):
D1 to D5 represent the detail coefficients at different levels of the DWT decomposition.
Each level of decomposition captures higher frequency components or details of

the signal.
D1 represents the high-frequency details at the first level, D2 represents the high-

frequency details at the second level, and so on.
The number of detail coefficients (D1 to D5) depends on the number of decomposition

levels chosen during the DWT process.
These detail coefficients correspond to the high-pass-filtered versions of the input signal.
By decomposing a signal using DWT, the original signal can be represented by the

combination of the approximation coefficients (A1) and the detail coefficients (D1 to D5) at
different levels. The approximation coefficients capture the overall trend or low-frequency
components of the signal, while the detail coefficients provide information about the
high-frequency details or variations.
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The time and frequency division of EEG signals are represented by four statistical
features; namely, mean, the ratio of mean values, average power and standard deviation
in each sub-band. Mean and average power represent the frequency distribution of the
signals, whereas standard deviation and the ratio of mean values in each sub-band represent
changes in signal frequencies. In this study, these features were used to categorize EEG
signals, which contained the frequency bands A5 and D3–D5.

2.3.3. K-Means Clustering Algorithm

K-means clustering is an unsupervised machine learning algorithm commonly used
for clustering analysis. K-means can still offer justifications and potential benefits in terms
of performance improvement in certain aspects.

Unsupervised clustering: K-means clustering can group data points into clusters based
on their similarity, without relying on labeled data or prior knowledge. In the context of
seizure detection, K-means can help identify patterns or clusters within the EEG signal data
that might correspond to different states, such as seizure and non-seizure. This clustering
can aid in understanding the underlying structure of the data and potentially distinguish
seizure events from normal brain activity.

Identification of seizure-related patterns: K-means clustering can reveal patterns
within the data that might be indicative of seizure activity. By partitioning the data into
clusters, K-means can identify clusters that exhibit specific characteristics commonly associ-
ated with seizures, such as high-frequency oscillations or abnormal signal patterns. These
clusters can serve as a starting point for further analysis or feature extraction, providing
insights into seizure-related patterns.

Data exploration and preprocessing: K-means clustering can assist in data exploration
by revealing natural groupings or subgroups within the data. This exploration can help
researchers understand the diversity of seizure patterns, identify potential outliers or arti-
facts, and guide subsequent preprocessing steps. By understanding the inherent structure
of the data, it becomes possible to design more effective preprocessing techniques that
enhance seizure detection performance.

Performance evaluation: K-means clustering can also be utilized for evaluating the
performance of seizure detection algorithms. By clustering the data based on the algorithm’s
output, researchers can compare the obtained clusters with the true seizure and non-seizure
states. Evaluation metrics such as purity, entropy, or the adjusted Rand index can be
computed to assess the similarity between the clusters and ground truth labels, providing
insights into the algorithm’s performance.

Clustering is a technique used to analyze data to obtain information. The data must
be divided into subgroups, with each subgroup containing similar data. The K-means
method is one of the techniques used for this task. K-means is an unsupervised technique
employed to solve clustering problems. This technique involves dividing the dataset into
nonoverlapping subgroups so that each data point belongs to one group only and then
assigning a centroid to each cluster [21]. The algorithm makes the intra-clusters and clusters
of similar data points that have different data as far apart as possible. The algorithm assigns
data points to each cluster to achieve the minimum Euclidean distance of data points and
the cluster centroid. The algorithm works in sequence as follows:

• The number of clusters is selected; in this work, the clusters in our model were 5.
• Centroids are set by shuffling the dataset and randomly choosing k = 5 centroids.
• The centroids are changed in each iteration, and the iteration continues until the

centroids no longer change; that is, all data are assigned to a cluster and do not change.
• The sum of the squared distance is computed between each data point and centroid.
• Each point of data is included in the nearest centroid (cluster).
• The average of all cluster data points is taken to obtain cluster centroids.
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Equation (2) shows the working technique of the K-means algorithm:

K−Means =
c

∑
i

ci

∑
j

(∥∥∥xi − yj

∥∥∥)2
(2)

where xi represents the data points and yj centroids, and
∥∥∥xi − yj

∥∥∥ represents the Euclidean
distance between them; ci indicates the data points in the clusters; and c represents the
central cluster number, which is 5 in our model.

2.3.4. Dimensionality Reduction

The DWT algorithm obtains wavelet coefficients, and these coefficients are fed to
PCA and the t-SNE algorithm to reduce data dimensionality. The most important features
(coefficients) are selected for the training and evaluation of the classification algorithms [22].

Feature transformation algorithms such as PCA and t-SNE are typically trained only
on the training records. These algorithms are part of the data preprocessing or feature
engineering steps, which are performed on the training data to transform or reduce the
dimensionality of the features.

The reason for training these algorithms solely on the training records is to ensure that
the transformation is learned based on the distribution and characteristics of the training
data. This helps capture the most relevant and informative features specific to the training
set while avoiding any leakage of information from the testing set.

Once PCA or t-SNE is trained on the training data, the same transformation is
then applied to both the training and testing records separately. This ensures that the
same feature transformation is applied consistently to the data during both training and
testing phases.

In training these feature transformation algorithms only on the training records and
applying the learned transformation to both subsets, the goal is to maintain the integrity of
the testing set as unseen data. This approach allows for a fair evaluation of the model’s
performance on data that it has not been directly exposed to during training.

Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique commonly used in various fields, includ-
ing signal processing and machine learning. PCA offers several justifications and potential
benefits in the context of feature extraction and performance improvement.

Dimensionality reduction: PCA can reduce the dimensionality of high-dimensional
data while retaining most of the information. In seizure detection, where EEG signals can
have a large number of channels and time points, PCA can help overcome the curse of
dimensionality by transforming the data into a lower-dimensional space. This reduction in
dimensionality can simplify the subsequent analysis and improve computational efficiency.

Feature extraction: PCA can extract a set of orthogonal features, known as principal
components, that capture the most significant variability in the data. These principal
components are ranked based on their variance, with the first component capturing the
most variance. By selecting a subset of the top principal components, it is possible to
represent the data with a reduced set of informative features that can be used for seizure
detection. This feature extraction process can help uncover hidden patterns or discriminate
between seizure and non-seizure states.

Noise reduction: PCA can help reduce the impact of noise and artifacts in the data.
By retaining only the principal components that capture the significant variance in the
signal, PCA effectively filters out noise and undesirable variations that might interfere with
accurate seizure detection. This noise reduction property can enhance the performance of
subsequent classification algorithms by focusing on the most relevant signal components.

Regarding performance, the effectiveness of PCA in seizure detection depends on
various factors, including the specific implementation, the quality and representativeness
of the dataset, and the subsequent classification algorithm used in conjunction with PCA.
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PCA is typically used as a preprocessing step, where the principal components are
computed using the training data, and the same transformation is then applied to both the
training and testing data. The reduced-dimension feature representation obtained from
PCA is subsequently used as input to the classification algorithm.

PCA is an algorithm for feature extraction and dimension reduction. PCA seeks to
represent high-dimensional data in low-dimensional data spaces, thereby reducing time
and frequency complications. The goal is to represent data in spaces to solve sum-squared
error problems better. When receiving the signal from multiple sources, this method
is helpful for splitting the signals. The principal approach to principal components is
to first compute the mean vector, µ, and d × d covariance matrix, ∑, in a d-dimension.
Subsequently, both eigenvalues and eigenvectors are calculated and sorted in decreasing
order according to the eigenvalues. Calling eigenvector λ(1) with eigenvalues e1 and calling
λ(2) with eigenvalues e1, etc., from the eigenvector spectrum, k is selected with the largest
eigenvalue [23]. An inherent dimension that governs the signal and another dimension, the
noise, often exist. Suppose that N × N matrix A and its columns consist of N eigenvectors,
the pre-processing is applied according to Equation (3), which minimizes the criterion for
square error.

x̀ = At(x− µ) (3)

Table 2 describes the number of components that were used to obtain a good explana-
tion of the data.

Table 2. Number of components obtained via PCA algorithm.

N Model Var n Model Var

2 PCA(n_components = 2) 0.332313 16 PCA(n_components = 16) 0.715465
3 PCA(n_components = 3) 0.371588 17 PCA(n_components = 17) 0.732473
4 PCA(n_components = 4) 0.407797 18 PCA(n_components = 18) 0.747341
5 PCA(n_components = 5) 0.443204 19 PCA(n_components = 19) 0.762519
6 PCA(n_components = 6) 0.474868 20 PCA(n_components = 20) 0.77684
7 PCA(n_components = 7) 0.504209 21 PCA(n_components = 21) 0.790983
8 PCA(n_components = 8) 0.532821 22 PCA(n_components = 22) 0.804741
9 PCA(n_components = 9) 0.559175 23 PCA(n_components = 23) 0.817643
10 PCA(n_components = 10) 0.584251 24 PCA(n_components = 24) 0.83037
11 PCA(n_components = 11) 0.608924 25 PCA(n_components = 25) 0.842332
12 PCA(n_components = 12) 0.632315 26 PCA(n_components = 26) 0.853485
13 PCA(n_components = 13) 0.654874 27 PCA(n_components = 27) 0.86452
14 PCA(n_components = 14) 0.67607 28 PCA(n_components = 28) 0.875189
15 PCA(n_components = 15) 0.696916 29 PCA(n_components = 29) 0.885395

t-Distributed Stochastic Neighbor Embedding (t-SNE)

The t-SNE algorithm is a dimensionality reduction technique commonly used for
visualization and exploratory data analysis. While t-SNE is primarily utilized for data
visualization, it can also provide some justifications and potential benefits in terms of
performance improvement in certain scenarios.

Nonlinear feature relationships: t-SNE can capture nonlinear relationships between
features that may be difficult to detect. In seizure detection, where the underlying patterns
and relationships can be complex, t-SNE can reveal nonlinear structures and help uncover
clusters or subgroups within the data. This information can be valuable for identifying
distinct seizure patterns or differentiating seizure and non-seizure states.

Visualization of high-dimensional data: t-SNE is particularly useful for visualizing
high-dimensional data in a lower-dimensional space, typically one with two or three
dimensions. By projecting the data onto a lower-dimensional space, t-SNE enables the
visualization of complex datasets, facilitating the identification of patterns, clusters, and
outliers. This visualization can aid in understanding the structure of the data and guide
subsequent analysis or feature engineering steps.

Discovery of hidden patterns: t-SNE can help reveal hidden patterns or subgroups
within the data that may be indicative of seizure activity. By visualizing the data using
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t-SNE, it is possible to observe if there are distinct clusters or separations between seizure
and non-seizure instances. This information can guide the development of seizure detection
algorithms by identifying relevant features or capturing the discriminative structure in
the data.

The effectiveness of t-SNE at improving seizure detection performance depends on
factors such as the specific implementation, dataset characteristics, the quality and rep-
resentativeness of the data, and the subsequent analysis steps performed after t-SNE
visualization.

t-SNE is a statistical method for representing high-dimensional data in 2D or 3D
by representing each data point in 2D or 3D while preserving the most important data.
It is a nonlinear dimensionality-lowering method which seeks to reduce differences in
probability distribution P of pairwise similarity in high-dimensional data, as well as prob-
ability distribution Q of pairwise similarity of the identical low-dimensional space. The
similarity between two data points, xi and xj, is measured by the Euclidean distance
between them [24]. In Equation (4), P(i, j) describes the pairwise similarity between high-
dimensional data points through the conditional probability that x has many neighbors [25].
In comparison, Equation (5) describes the pairwise similarities between low-dimensional
data points through t-SNE. While finding the points, low-dimensional point yi is deter-
mined, thereby minimizing the Kulback–Leibler divergence (KL) in the joint probability
distributions between P and Q, as in Equation (6). Thus, the t-SNE method obtaining the
optimum dimension reduction by computing the min value of KL.

P
(

xi/xj

)
=

S
(
xi, xj

)
∑N

m 6=i S(xi, xm)
(4)

Q
(

yi/yj

)
=

S
(

yi, yj

)
∑N

m 6=i S(yi, ym)
(5)

KL = ∑
i

∑
j

P
(
xi, xj

)
log

P
(

xi/xj

)
Q
(

yi, yj

) (6)

2.4. Training Models
2.4.1. Extreme Gradient Boosting (XGBoost)

The strength of the XGBoost algorithm lies in its scalability. Moreover, it supports
parallel and distributed processing and allows efficient use of memory. In some diagnoses,
relying on the results of one classifier alone is insufficient. Thus, this algorithm is an
ensemble learning method that provides aggregated results from several models. The
models that comprise the ensemble are from the same machine learning algorithm or
different models called base learners [26]. Bagging reduces the variance of each partial
model during the model assembly process. Boosting also builds trees sequentially so that
each tree learns from the previous tree and reduces errors. Hence, each tree that grows
later is an updated version of the previous one with a lesser error rate [27]. Moreover,
base learners are weak, and thus their bias is high and their prediction is considerably
better than that of random guessing. These weak learners contribute some information to
prediction. Furthermore, these weak learners in the boosting technique helps build strong
learners. Bias and variance are decreased by the strong end learner.

Justification: XGBoost is an optimized gradient boosting algorithm known for its
speed, scalability, and performance. It combines the predictions of multiple weak learners
(typically decision trees) to create a strong ensemble model. XGBoost can handle large-scale
datasets, capture complex interactions, and provide feature importance rankings.
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Performance: XGBoost performance depends on factors such as the number of trees,
the maximum depth of the trees, learning rate, and regularization parameters. Overfitting
can occur if the model becomes too complex, and so can underfitting.

2.4.2. KNN Algorithm

KNN is a nonparametric method that does not create assumptions or changes in
the primary data. It is also called a lazy method because it is not learned from the data
during the training phase but stores the training dataset. When the algorithm obtains
new data (test data), the algorithm assigns the new data based on similarity with the
stored data [28]. The algorithm works by placing the new data into a class that is more
similar to the other existing classes. The algorithm first selects the value of K (which is
5 in our model), calculates the Euclidean distance of the number of K neighbors of the new
data point, and then takes the nearest neighbor according to the Euclidean distance. The
number of adjacent data points for each class is calculated, and finally, the new data point
is categorized into the class that contains the maximum adjacent data points [29].

Justification: k-NN is a simple and intuitive algorithm that classifies a sample based
on the majority vote of its k-nearest neighbors. It can be effective for seizure detection as it
can capture local patterns and similarities in the data. It is particularly useful when there
are clear boundaries between seizure and non-seizure instances in the feature space.

Performance: the performance of k-NN depends on factors such as the choice of
distance metric, the value of k, and the quality of the feature representation. Large values
of k may lead to smoothing of decision boundaries, while small values of k can result in
sensitivity to noise. The selection of an appropriate distance metric and optimal value of k
is crucial for achieving good performance.

2.4.3. Decision Tree Algorithm

The goal of this algorithm is to build a training model capable of predicting the class or
value of a variable through decision rules deduced from the training data. For the process
of label class prediction, the algorithm starts at the root node and compares the attributes’
value with the that of the attributes of the inner nodes. In the present study, the complete
epileptic seizure dataset was represented in the root node, and the dataset contained
179 features represented by the inner nodes [30]. Classification is carried out on the basis of
a set of rules followed in the algorithm, and the process of comparing the attributes of a
node with the next node continues until it reaches the last node called the leaf node, which
represents the decision.

Justification: DT is a simple yet powerful algorithm that creates a tree-like model
to make decisions based on feature values. DT can capture nonlinear relationships and
interactions between features, making it suitable for seizure detection, where complex
patterns may exist. DT also provides interpretability, as the resulting tree structure can be
easily understood.

Performance: DT performance depends on parameters such as the tree depth, the
splitting criterion, and pruning methods. Deep trees can lead to overfitting, while shallow
trees may result in underfitting. Pruning techniques can be used to find the right balance.
Proper parameter tuning and feature selection can improve the performance of DT in
seizure detection.

2.4.4. Random Forest Algorithm

The algorithm is trained by bagging, the idea of which is to obtain the overall result us-
ing combining the results of various models. As the trees grow by adding more randomness
to the models, random forest searches for the best features among the random sub-features
rather than for the important features during the division of the nodes. This mechanism
results in a better model [31]. In a random forest, nodes are divided by randomly taking
subsets of features. A random threshold can also be possibly chosen for each characteristic
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which enables it to make the trees more random [32]. The test samples are diagnosed by
taking the average of the prediction of all decision trees included in the random forest.

Justification: RF is an ensemble learning method that constructs multiple decision
trees and combines their predictions. It is known for its robustness against overfitting,
handling high-dimensional data, and capturing complex feature interactions. RF can be
beneficial in seizure detection as it can handle both numerical and categorical features and
provide feature importance rankings.

Performance: RF performance depends on parameters such as the number of decision
trees, the depth of the trees, and the number of features considered at each split. Over-
fitting can occur if the trees are too deep or if the number of trees is too high. Tuning
these parameters and performing feature selection can enhance the performance of RF in
seizure detection.

2.4.5. Multilayer Perceptron

MLP is a deep ANN consisting of an input layer to receive various inputs, such as
signals and images; and an output layer that makes a decision about the input data. Between
these layers are many hidden layers in which the input data are processed. Training is
carried out on a set of input–output pairs by adjusting weights and biases to reduce error.
The backpropagation method is used to measure the error between the predicted and the
actual output, and this error is then adjusted for weights and biases. Several methods
can be used to measure error, including the root mean squared error method [33]. In the
forward pass, the signal is moved from the input layer to the hidden layer and then to
the output layer [34]. The classification is performed in the output layer on the basis of
ground truth labels. In the backward pass via backpropagation, the signal is moved from
the output layer to the hidden layer, and then the error ratio is measured between the
predicted and the actual output. The signal is moved back from the output to the hidden
layers to adjust the weights and biases and thus reduce the error rate.

Justification: MLP is a type of artificial neural network that consists of multiple layers
of interconnected neurons. It can capture complex nonlinear relationships and has the
ability to learn and generalize from data. MLP can be beneficial in seizure detection
as it can extract high-level representations and learn discriminative features from the
input signals.

Performance: The performance of MLP depends on factors such as the architecture
(number of layers and number of neurons per layer), activation functions, regularization
techniques, and optimization algorithms. Proper tuning of these hyperparameters, along
with appropriate preprocessing and regularization, can improve the performance of MLP
in seizure detection.

3. Experimental Results

The epileptic seizure dataset consisting of 11,500 instances with 179 features were
classified by dividing the dataset into 9200 instances for training (80%) and 2300 instances
for testing (20%). Each patient’s instance data were represented in five sub-images. Table 3
and Figure 2 describe the gamma, beta, alpha, theta and delta sub-bands’ values for two
cases, one with epilepsy and one normal. The dataset was pre-processed to improve it
and thus increase the accuracy in the next stages. Features were extracted through the
DWT method, which decomposed the signal components into D1–D5 details and A5
approximation through high and low filters. Figure 3 describes the decomposition of the
EEG signal during feature extraction. The K-means algorithm was also applied to divide the
dataset into subgroups so that each group contained similar data points but different data
points from the other groups. The dimensions were reduced to obtain the most important
features of low dimensions via PCA and t-SNE. Finally, low-dimensional features were
fed to the five classifications, namely, XGBoost, KNN, DT, RF and MLP, to classify them as
either epileptic or normal cases.
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Table 3. Maximum frequencies of status epilepticus and normal.

Frequency Name Epilepsy Normal

Gamma 55 55
Beta 34 26

Alpha 16 18
Theta 6 8
Delta 2 2
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3.1. Evaluation Metrics

To evaluate this study’s epileptic seizure dataset through four scales resulting from
the applied classifiers. Equations (7)–(10) show how accuracy, precision, recall and F1 score,
respectively, are calculated [35]:

Accuracy =
TN + TP

TN + TP + FN + FP
∗ 100% (7)

Precision =
TP

TP + FP
∗ 100% (8)

Recall =
TP

TP + FN
∗ 100% (9)

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall

∗ 100 (10)

The equations contain correctly classified samples TP and TN; incorrectly classified
samples are FP and FN.

3.2. Results Classifiers with Features of DWT with PCA and t-SNE

Therefore, oversampling was applied to the epilepsy dataset through training to
balance the data. The DWT algorithm was applied for feature extraction by decomposing
the components of EEG signals with a bank of filters. Then, PCA and t-SNE methods
were applied to reduce high dimensionality. The classification algorithms were fed with
low-dimensional features. The hyperparameter was tuned to reduce the loss functions and
determine the behavior of the classification algorithms during the training. All classifiers
achieved promising results. Table 4 describes the results obtained after processing the
features using DWT and PCA methods, as well as the results achieved by the classifiers.
During the training phase, XGBoost, DT and RF achieved 100% for all metrics. Random
forest outperformed the rest of the classifiers during the testing phase. Random forest
achieved an accuracy of 97.96%, precision of 99.10%, recall of 94.41% and F1 score of 97.41%.
Figure 4 shows the results achieved by XGBoost, KNN, DT, RF and MLP during the testing
phase, achieving an accuracy of 97.43%, 92.48%, 94.3% and 93.39%, respectively; precision
of 98.56%, 99.66%, 97% and 97.26%, respectively; recall of 90.54%, 63.01%, 97% and 78.71%,
respectively; and an F1 score of 95.45%, 77.21%, 90% and 87.32%, respectively.

Table 4. Results of epilepsy diagnosis using classifiers with DWT and PCA.

Classifiers XGBoost KNN Decision Tree Random Forest MLP

Criteria Training
80%

Testing
20%

Training
80%

Testing
20%

Training
80%

Testing
20%

Training
80%

Testing
20%

Training
80%

Testing
20%

Accuracy % 100 97.43 94.05 92.48 100.00 94.30 100.00 97.96 98.67 93.39
Precision % 100 98.56 99.77 99.66 100.00 97.00 100.00 99.10 97.56 97.26
Recall % 100 90.54 70.35 63.01 100.00 97.00 100.00 94.41 95.75 78.71
F1 score % 100 95.45 82.52 77.21 100.00 90.00 100.00 97.41 96.64 87.32

Table 5 and Figure 5 present the results obtained after feature extraction and processing
using DWT and t-SNE methods and categorization via XGBoost, KNN, DT, RF and MLP.
During the training phase, XGBoost, DT and RF reached 100% for all metrics. Random forest
outperformed the rest of the classifiers during the testing phase, achieving an accuracy of
98.09%, precision of 99.10%, recall of 93.90% and F1 score of 96.21%. In comparison, during
the testing phase, XGBoost, KNN, decision tree, and MLP achieved an accuracy of 97.39%,
92.12%, 95.13% and 93.51%, respectively; precision of 98.78%, 100%, 97.82% and 98.11%,
respectively; recall of 89.83%, 61%, 85.17% and 77.03%, respectively; and F1 score of 94.23%,
75.54%, 91% and 86%, respectively.
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Table 5. Results of epilepsy diagnosis using classifiers with DWT with t-SNE.

Classifiers XGBoost KNN Decision Tree Random Forest MLP

Criteria Training
80%

Testing
20%

Training
80%

Testing
20%

Training
80%

Testing
20%

Training
80%

Testing
20%

Training
80%

Testing
20%

Accuracy % 100 97.39 94.13 92.12 100.00 95.13 100.00 98.09 99.06 93.51
Precision % 100 98.78 99.93 100.00 100.00 97.82 100.00 99.10 98.59 98.11
Recall % 100 89.83 70.71 61.00 100.00 85.17 100.00 93.90 96.68 77.03
F1 score 100 94.23 82.81 75.54 100.00 91.00 100.00 96.21 97.63 86.00
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3.3. Results Classifiers with Features of K-Means with PCA and t-SNE

The dataset was cleaned and balanced as in the previous steps. The contribution of
each feature to the diagnosis was determined. The K-means method was applied to split the
dataset into subgroups, with each group containing similar data. Then, PCA and the t-SNE
methods were applied to reduce high dimensionality. The low-dimensional features were
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fed into the classification algorithms tuned for optimal performance. The hyperparameter
was tuned to reduce loss function and obtain effective accuracy.

Table 6 and Figure 6 provide the results obtained after applying data processing using
t-SNE + K-means methods and PCA + K-means methods, as well as the results achieved
by XGBoost, KNN, DT, RF and MLP classifiers. All classifiers achieved promising results.
XGBoost achieved better results with t-SNE + K-means than with PCA + K-means. XGBoost
with t-SNE + K-means achieved an accuracy of 97.22%, precision of 98.52%, recall 89.04%
and F1 score of 93.86%. KNN achieved better results with t-SNE + K-means than with PCA
+ K-means. KNN with t-SNE + K-means attained an accuracy of 94.09%, precision of 99.86%,
recall of 70.56% and F1 score of 82.69%. Decision tree with t-SNE + K-means achieved a
higher accuracy and precision than decision tree with PCA + K-means. Moreover, decision
tree with PCA + K-means had a better recall and F1 score than did decision tree with
t-SNE + K-means. Random forest with t-SNE + K-means achieved better results than did
random forest with PCA + K-means. Random forest with t-SNE + K-means achieved an
accuracy of 98.17%, precision of 98.61%, recall of 93.42% and F1 score of 96.36%. MLP with
PCA + K-means achieved better results than did MLP with t-SNE + K-means. MLP with
PCA + K-means achieved an accuracy of 98.98%, precision of 99.16%, recall of 95.69% and
F1 score of 97.40%. Finally, the system proposed herein achieved the highest accuracy
of 98.98% through MLP with PCA + K-means. The maximum precision of 99.86% was
obtained by KNN with t-SNE + K-means. The best recall of 95.69% was attained by
MLP with PCA + K-means. The highest F1 score of 97.40% was obtained by MLP with
PCA + K-means. Therefore, the best diagnosis of the epileptic seizure dataset was obtained
by MLP with PCA + K-means.

Table 6. Results of epilepsy diagnosis using classifiers with K-means with PCA and K-means with
t-SNE for each phase.

Classifiers XGBoost KNN Decision Tree Random Forest MLP

Method PCA +
Kmeans

T-SNE +
Kmeans

PCA +
Kmeans

T-SNE +
Kmeans

PCA +
Kmeans

T-SNE +
Kmeans

PCA +
Kmeans

T-SNE +
Kmeans

PCA +
Kmeans

T-SNE +
Kmeans

Accuracy % 97.13 97.22 93.79 94.09 93.51 93.57 97.36 98.17 98.98 98.43
Precision % 95.73 98.52 99.82 99.86 95.68 97.41 98.32 98.61 99.16 98.77
Recall % 89.83 89.04 68.91 70.56 84.53 80.70 92.98 93.42 95.69 93.34
F1 score% 92.68 93.86 81.54 82.69 90.12 88.43 96.02 96.36 97.40 95.98
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4. Discussion and Comparison of Systems Performance

In this section, the techniques and tools applied to the diagnosis of epileptic seizures for
relevant studies will be discussed and their results will be compared with the
proposed systems.

The studies mentioned compare different methods for analyzing EEG signals and
diagnosing epilepsy. Tzallas et al. [36] used a Fourier transform algorithm to analyze EEG
signals and extracted important features associated with fractional energy. An artificial
neural network (ANN) was then applied to classify epileptics. They reported their method
to be effective at classifying epilepsy. Peker et al. [37] employed a dual-tree complex
wavelet transform to analyze EEG signals and derived five statistical features to distinguish
epileptic patients. Classification using complex-valued neural networks showed that their
wavelet transformation was effective at classifying epilepsy. Alcin et al. [38] combined the
GLCM texture descriptor algorithm with Fisher vector encoding to extract representative
features from time–frequency (TF) images. Their method achieved superior results in
diagnosing epilepsy. Islamet et al. [39] developed a stationary wavelet transform algorithm
for analyzing EEG signals and detecting seizures. Their algorithm achieved good results in
diagnosing epilepsy. Sharmila [40] presented a framework based on the analysis of EEG
signals using the DWT method with linear and nonlinear classifiers to detect seizures. They
reported the successful detection of EEG seizures from normal and epilepsy patients. Wang
et al. [41] conducted coherence analysis to extract features and determine the trend and
density of information flow from EEG signals. The information flow was used as input to a
classifier for seizure detection. Hassan et al. [42] presented a system for diagnosing epilepsy
using the tunable wavelet transform and bagging by EEG signals. Their system showed
promising results in epilepsy diagnosis. Yuan et al. [43] proposed a weighted extreme
learning machine (ELM) method for detecting seizures using weighted EEG signals. They
applied a wavelet packet analysis and determined the time series complexity of EEG
signals. Their method achieved accurate classification based on the weighted ELM. Jaiswal
et al. [44] proposed two methods for extracting features from EEG signals, namely, sub-
pattern of PCA and sub-pattern correlation of PCA. These features were then fed into a
support vector machine (SVM) classifier for seizure diagnosis. Li et al. [45] established
a multiscale radial basis function method for obtaining high-resolution time–frequency
(TF) images from EEG signals. Features were extracted using the GLCM algorithm with
FV encoding based on the TF images’ frequency sub-bands. Subasi et al. [46] developed
a hybrid method using a genetic algorithm and particle swarm optimization to tune and
determine the best parameters for an SVM classifier. Their system achieved promising
accuracy in diagnosing epilepsy. Raghu et al. [47] applied the DWT method and extracted
features from the wavelet coefficients of EEG segments. These features were then used with
a random forest classifier for epileptic classification. Chen et al. [48] used the autoregressive
average method to describe the dynamic behavior of EEG signals. Their approach focused
on the time series characteristics of the EEG data. Yavuz et al. [49] calculated mel frequency
cepstral coefficients (MFCC) by analyzing frequency according to frequency bandwidth.
The MFCCs were used as features for epilepsy diagnosis. Mursalin et al. [50] applied
improved correlation feature selection to extract crucial features from the time, frequency,
and entropy domains of EEG signals. These features were determined using a random
forest classifier for diagnosing epilepsy. Each study employed different techniques for
analyzing EEG signals and diagnosing epilepsy. The choice of methods varied, including
Fourier transform and wavelet transform.

From the literature, it is noted that there are deficiencies in the techniques and method-
ologies applied to diagnose epileptic seizures. Hence, this study focused on the extracted
features, purifying and improving them, selecting the most important representative fea-
tures that distinguish epileptic seizures, and classifying them using many algorithms to
achieve a better efficiency.

Patient-independent seizure detection refers to the ability to detect seizures in in-
dividuals without the need for prior knowledge or training specific to that individual.
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While there have been significant advancements in seizure detection technologies, patient-
independent seizure detection remains a challenging problem. Here, are some key concerns
associated with this setting:

• Heterogeneity of seizure patterns: Seizure activity can vary significantly between
individuals, making it difficult to develop a universal seizure detection algorithm that
works for everyone. Seizure types, duration, and associated physiological changes
can differ, making it challenging to establish a single approach that accurately detects
seizures across diverse populations.

• Lack of personalized data: Patient-independent seizure detection implies the absence
of any specific data from the individual being monitored. This lack of personalization
makes it harder to tailor detection algorithms to the unique characteristics of an
individual’s seizures. Without personalized data, it is challenging to account for
individual variations, including pre-seizure patterns, which could potentially improve
detection accuracy.

• Limited generalizability: Seizure detection models often require training data from
individual patients to capture their specific seizure patterns, which limits their gener-
alizability to new patients. Patient-independent seizure detection aims to overcome
this limitation but faces the challenge of developing models that can accurately detect
seizures in diverse populations without individual-specific training.

• Interpatient variability: The electrical activity of the brain during seizures can differ
significantly between patients. This interpatient variability in seizure manifestation
poses a challenge when developing patient-independent detection methods. Algo-
rithms trained on one population may not perform as effectively on another, leading
to reduced detection accuracy and reliability.

• Real-world complexity: Seizure detection in real-world scenarios involves dealing
with various factors such as artifacts, noise, and non-seizure events that can interfere
with accurate detection. Without personalization or patient-specific training, patient-
independent seizure detection algorithms must be robust enough to handle these
challenges across a wide range of scenarios.

Addressing the ignored problem of patient-independent seizure detection requires
extensive research and innovation in the field of machine learning, data analysis, and signal
processing. Advanced techniques such as transfer learning, ensemble models, and feature
engineering may play a crucial role in improving the performance of patient-independent
seizure detection algorithms. Additionally, collecting large-scale, diverse datasets that
encompass a wide range of seizure types and characteristics can help in developing more
robust and generalized models for patient-independent seizure detection.

The points mentioned about the challenges of patient-independent seizure detection
are reflected in the papers cited. The studies all reported that seizure activity can vary sig-
nificantly across individuals. This makes it difficult to develop a universal seizure detection
algorithm that works for everyone. The studies all noted that patient-independent seizure
detection implies the absence of any specific data from the individual being monitored.
This lack of personalization makes it harder to tailor detection algorithms to the unique
characteristics of an individual’s seizures. The studies all found that seizure detection
models often require training data from individual patients to capture their specific seizure
patterns. This limits their generalizability to new patients. The studies all reported that
the electrical activity of the brain during seizures can differ significantly between patients.
This interpatient variability in seizure manifestation poses a challenge when developing
patient-independent detection methods. The studies all noted that seizure detection in
real-world scenarios involves dealing with various factors such as artifacts, noise, and
non-seizure events that can interfere with accurate detection. Without personalization or
patient-specific training, patient-independent seizure detection algorithms must be robust
enough to handle these challenges across a wide range of scenarios. The studies cited
suggest that there is still much work to be conducted in the area of patient-independent
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seizure detection. However, the techniques that have been developed so far offer promise
for improving the accuracy and reliability of seizure detection in real-world scenarios.

The performances of the proposed systems were evaluated and compared with those
in relevant studies. Table 7 describes the accuracy and sensitivity of the proposed systems
compared to those reported by previous studies. Our system was proved to be superior to
that described by previous studies. The proposed system using DWT and PCA with the
RF classifier achieved an accuracy of 97.96%. The proposed system using DWT and t-SNE
with random forest attained an accuracy of 98.09%. Finally, the system using K-means with
PCA with MLP obtained an accuracy of 98.98%. In previous systems, the accuracy was
between 82% and 97.17%. With regard to sensitivity, the system using DWT and PCA with
random forest reached a sensitivity of 94.41%. The system using DWT and t-SNE with
random forest achieved an accuracy of 93.9%. Finally, the system using K-means with PCA
with MLP attained a sensitivity of 95.69%. In comparison, previous systems reached an
accuracy ranging from 68% to 93.11%. It is noted that the accuracy of the performance
of the previous systems ranged between 83.6% and 97.17%, while the performance of the
proposed system was 98.98%. While the previous systems resulted in a recall ranging
between 68% and 93.11%, while the proposed system resulted in a recall rate of 95.69%.
Thus, the performance of the proposed systems is superior to the performance of the
systems in the literature.

Table 7. Comparison of the results of our proposed system with the relevant literature.

Previous Studies Accuracy % Recall %

M. Zabihi, S. et al. [51] 94.69 89.1
P. T. Krishnan. et al. [52] 82 68

D. Chen. et al. [53] 83.07 83.05
Akyol, K et al. [54] 97.17 93.11
Zhou, M. et al. [55] 95.4 93.7
Aarabi. et al. [56] 93 91
Khan. et al. [57] 83.6 91.8

Proposed model: DWT and PCA using Random Forest 97.96 94.41
Proposed model: DWT and t-SNE using Random Forest 98.09 93.9

Proposed model: K-Means with PCA using MLP 98.98 95.69

This paper adds value to the reader by presenting a study focused on the early diag-
nosis of epileptic seizures using artificial intelligence systems and classification algorithms.
The following are some key points that highlight the value of the paper.

Importance of early diagnosis: The paper emphasizes the significance of early diagno-
sis for epileptic seizures, considering the high prevalence of this health problem worldwide.
Early diagnosis allows for the timely intervention and management of seizures, leading to
improved patient outcomes.

Integration of artificial intelligence: The paper highlights the role of artificial intelli-
gence systems in assisting doctors with accurate diagnosis. By leveraging machine learning
algorithms, the study aims to provide reliable and automated methods for seizure detection
and classification.

Feature extraction and dimensionality reduction: The paper proposes the use of the
DWT as a feature extraction algorithm. Additionally, dimensionality reduction techniques
such as principal component analysis (PCA) and t-SNE are applied to reduce the complexity
of the feature space and improve classification accuracy.

Evaluation of multiple classification algorithms: The study evaluates five classification
algorithms, namely XGBoost, K-nearest neighbors (KNN), decision tree (DT), random forest
(RF), and multilayer perceptron (MLP). This provides a comprehensive analysis of the
performance of different algorithms in diagnosing epileptics.

Comparative analysis of feature extraction methods: The paper compares the per-
formance of different feature extraction methods, including DWT + PCA, DWT + t-SNE,
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K-means + PCA, and K-means + t-SNE. This analysis provides insights into the effectiveness
of various feature extraction techniques in seizure diagnosis.

Promising results: The study reports high accuracy rates achieved by the proposed
algorithms. During the testing phase, the random forest classifier with DWT + PCA
achieved an accuracy of 97.96%, while with DWT + t-SNE, the accuracy reached 98.09%.
The MLP classifier with PCA + K-means achieved an accuracy of 98.98%. These results
indicate the potential of the proposed methods for accurate and reliable diagnosis of
epileptic seizures.

By presenting these findings, the paper contributes to the field of seizure detection
and diagnosis, offering insights into the effectiveness of specific algorithms and techniques.
The results and methodology described in the paper can guide further research and devel-
opment of AI-based systems for early detection of epileptic seizures.

5. Conclusions

Seizures are among the health problems nearly 50 million people worldwide suffer
from. They occur due to abnormal secretions of nerve cells, which increases their inability
to regulate the brain electrically. EEG signals are techniques that represent the brain’s
electrical activity by recording EEG signal waves. Manual tracing of all EEG signals is
difficult, is subject to differing opinions among physicians, and takes time. Thus, artificial
intelligence systems help doctors accurately diagnose epileptic seizures. In this study,
methods for the early diagnosis of epileptic were proposed by using five classification
algorithms, namely, XGBoost, KNN, DT, RF and MLP, which were based on the DWT
method (which is a feature extraction algorithm) and dimensionality reduction using PCA
and t-SNE algorithms. The classifiers were then fed with feature vectors, which contained
the most important representative features extracted via DWT + PCA, DWT + t-SNE,
K-means + PCA and K-means + t-SNE. Thus, oversampling was applied to balance the
dataset. All algorithms achieved promising results for diagnosing epileptics with high
accuracy. During the testing phase, the random forest with DWT + PCA methods achieved
an accuracy of 97.96%, whereas with DWT + t-SNE methods the random forest attained
an accuracy of 98.09%. During the testing phase, MLP with PCA + K-means achieved an
accuracy of 98.98%.
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