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Abstract: Heart failure is a devastating disease that has high mortality rates and a negative impact on
quality of life. Heart failure patients often experience emergency readmission after an initial episode,
often due to inadequate management. A timely diagnosis and treatment of underlying issues can
significantly reduce the risk of emergency readmissions. The purpose of this project was to predict
emergency readmissions of discharged heart failure patients using classical machine learning (ML)
models based on Electronic Health Record (EHR) data. The dataset used for this study consisted of
166 clinical biomarkers from 2008 patient records. Three feature selection techniques were studied
along with 13 classical ML models using five-fold cross-validation. A stacking ML model was trained
using the predictions of the three best-performing models for final classification. The stacking ML
model provided an accuracy, precision, recall, specificity, F1-score, and area under the curve (AUC)
of 89.41%, 90.10%, 89.41%, 87.83%, 89.28%, and 0.881, respectively. This indicates the effectiveness of
the proposed model in predicting emergency readmissions. The healthcare providers can intervene
pro-actively to reduce emergency hospital readmission risk and improve patient outcomes and
decrease healthcare costs using the proposed model.

Keywords: heart failure; emergency readmission; machine learning; electronic health data; stacking
classification

1. Introduction

A significant proportion of hospitalizations and deaths among elderly individuals is
associated with heart failure (HF). A physiological condition of HF is either not enough
blood flow from the heart to meet the body’s metabolic demands or a compensatory
neurohormonal response resulting in increased pressure in the left ventricle [1]. HF has
been further divided into three subtypes based on ejection fraction, natriuretic peptide
levels, structural heart disease, and diastolic dysfunction in recent years. The three subtypes
of heart failure are heart failure with a reduced ejection fraction (HFrEF), heart failure with
a preserved ejection fraction (HFpEF), and heart failure with a mid-range ejection fraction
(HFmrEF) [2].

1.1. Background

In the United States, more than a million patients are hospitalized each year because
of HF. Patients with HF often require hospital readmissions, which cost on average USD
23,000 per hospitalization. There is an estimated increase of USD 70 billion in costs for these
admissions by 2030 [3–6]. The number of people suffering from heart failure in the US is
currently over 6.2 million [7]. The prevalence of this disease is predicted to increase by
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46% by 2030, reaching over 8 million [8]. Despite advances in medical treatment, hospital
readmission rates remain high, with over half of patients readmitted within six months
of discharge [9–11]. It is imperative to understand why some hospitals perform well
while others struggle in order to deal with this issue. Previous studies have examined the
first readmission, but not all the patients experience re-hospitalizations after the initial
hospitalization for HF. Several interventions for patients with HF have been shown to
reduce the risk of readmission by providing higher-quality care [12,13].

Predicting hospital readmission of heart failure patients is crucial for several reasons,
including improving the quality of care, reducing healthcare costs, optimizing resource
allocation, and enhancing patient outcomes [14]. High rates of readmission may indicate in-
adequate care during the initial hospitalization and discharge planning, leading to negative
impacts on patient health and well-being. Predictive models can help healthcare providers
identify patients at the highest risk of readmission and allocate resources effectively to
improve outcomes. Additionally, predicting readmission risk can help healthcare organiza-
tions meet performance metrics and identify areas for improvement in care delivery. It has
been observed that the elderly population with a previous HF diagnosis and a history of
cardiac revascularization have a higher chance of unplanned readmission [15].

1.2. Related Works

A review by Ouwerker et al. of 117 models found that blood urea nitrogen and sodium
were the strongest predictors for HF hospitalization [16]. Four subgroups of models
were identified, with prospective registry-type studies using a large number of clinical
predictor variables being the most accurate in predicting mortality. Blood sugar levels
are also found to be crucial for HF patients [17]. The Center for Medicare and Medicaid
Services (CMS) has emphasized reducing readmission rates to reduce costs and improve
care quality [18]. When examining claims data from 2003–2004, it was discovered that a
significant number of Medicare beneficiaries were readmitted to the hospital within 30 days
(19.6%) and 90 days (34.0%) after being discharged. Both medical and surgical patients
were affected, but medical patients had a higher readmission rate, accounting for 77.1% of
the rehospitalizations. The top conditions associated with high 30-day readmission rates
were heart failure (26.9%), psychoses (24.6%), recent vascular surgery (23.9%), chronic
obstructive pulmonary disease (22.6%), and pneumonia (20.1%) [19]. Despite efforts to
reduce readmissions, risk-adjusted 30-day readmission rates among Medicare beneficiaries
have remained fairly stable over the past decade. According to a study conducted by
Artetxe et al., it has been found that machine learning methods can enhance the accuracy of
predictions as compared to conventional statistical techniques [20]. The researchers noted
that logistic regression (LR) and survivability analysis are the frequently utilized techniques
for developing models to anticipate readmission rates. A machine learning approach to
HF treatment, including diagnosis, classification, readmissions, and medication, has the
potential to improve treatment quality and cut costs [21].

Data extracted from routinely collected electronic healthcare records (EHRs) have
been used in a few studies. Based on clinical and physiological data available in EHR
systems, Beecy et al. developed a comprehensive approach to predicting 30-day unplanned
readmissions and all-cause mortality (ACM) [22]. They designed three different predictive
models, using an extreme gradient boosting (XGBoost) classifier, which were based on index
admission, index discharge, and feature-aggregation. Due to the lack of previous data on
heart failure rates in China, Zhang Z. et al. studied the symptoms of HF patients admitted
to Zigong Fourth People’s Hospital between December 2016 and June 2019. Based on their
work, baseline clinical characteristics (including body temperature, pulse, respiration rate,
body mass index (BMI), etc.) and primary drug categories were recorded on admission.
The majority of other studies focus only on 30-day emergency readmission rates, which
may not represent the majority of patients. This study used follow-up periods of 28 days,
3 months, and 6 months for better statistical analysis and interpretation [23]. Data mining
techniques and significant features have been found to boost the accuracy of cardiovascular
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survivor prediction by Ishaq et al. By using synthetic minority oversampling technique
(SMOTE) to offset the imbalance in the dataset, they achieved a remarkable accuracy of
0.926 using the ExtraTree (ET) classifier algorithm [24]. A deep-learning-based approach
was performed by Golas et al., as they developed a risk prediction model for hospital
readmission including structured and un-structured data, constructed using deep unified
networks (DUNs) to avoid over-fitting [25]. The DUNs model had the best performance
after 10-fold cross-validation, reaching an AUC of 0.705 ± 0.015 and 76.4% accuracy.
Another deep-learning-based study by Liu et al. proposed a CNN model with an F1 score
of 0.756 and 0.733 in general readmission prediction and 30-day readmission prediction,
respectively [26].

1.3. Research Objectives and Contribution

Our aim was to determine whether patients with heart failure who had previously
undergone treatment and been discharged would be likely to return to the hospital in the
event of an emergency. In order to accomplish this goal, an EHR dataset of HF patients
was used. The dataset included comprehensive information about the patient’s physical
and medical conditions, including symptoms and signs of HF, and their discharge status.
We used 13 variants of classical machine learning (ML) models and a stacking machine
learning (or meta-learner)-based model. In this study, the following novel contributions
are made:

• This study examines a large dataset to predict emergency readmissions for heart
failure patients.

• Thirteen variants of classical machine learning models were examined using different
feature selection techniques along with a stacking machine learning model.

• Based on nine biomarkers, this study produced very good predictions for emergency
department readmission for heart failure patients.

• LACE-related feature incorporation to the feature set provided a significant perfor-
mance boost in the study to predict hospital readmission due to heart failure emergency.

The rest of the paper is organized as follows: Section 2 discusses the methodol-
ogy of the study by describing the datasets used in this paper and the details of data
pre-processing stages for machine learning classifiers and the stacking machine learning
algorithm. Section 3 discusses the result of the classification models and the stacking
machine learning model. Finally, the article is concluded in Section 4.

2. Methodology

This study attempts to predict the emergency readmission of HF patients after dis-
charge from a medical facility using a dataset that is made publicly available in Phys-
ionet [27]. The dataset has three different forms of data: the electronic health record,
medication, and dictionary. An extensive analysis of the data led to the selection of the
most important features for the model. Data from electronic health records and drug
databases were combined, and feature engineering was performed. An important pa-
rameter, a LACE score, was added to the feature list for identifying readmissions cases
reliably. Thirteen variants of classical ML models were trained with a reduced feature set
selected by a feature-ranking technique. A stacking ML model was trained using the top
three classical ML models, which improved the overall performance. A solid and reliable
model for forecasting HF patients’ emergency readmissions was developed as a result
of the approach. The flowchart in Figure 1 provides a general picture of how the study
was handled.
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Figure 1. General overview of the methodology.

2.1. Dataset Description

We collected this EHR dataset from a public source available from Physionet [27].
The EHR dataset was collected by Zhang Z. et al. to study the symptoms of HF patients
admitted to Zigong Fourth People’s Hospital between December 2016 and June 2019. The
study was approved by the ethics committee of Zigong Fourth People’s Hospital (Approval
Number: 2020-010). As there was a scarcity of datasets available on HF, the researchers
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targeted Zigong Fourth People’s Hospital in Sichuan, China. They extracted data from a
routinely collected EHR. In addition, follow-up data were collected on hospital admissions,
mortality rates, and required follow-up visits at 28 days, 3 months, and 6 months after
discharge. In the event that a patient had a medical emergency and was unable to travel
to the clinical facility, their information was collected by phone. Participants’ data were
collected between December 2016 and June 2019, providing researchers with an in-depth
look at their health conditions and outcomes over time. Researchers were able to create
more effective medications and interventions after understanding HF and the variables
that affect patient outcomes.

The clinical data were collected on the day of the subject patients’ hospital admission.
Clinical data included information from a variety of medical tests, including body tem-
perature, pulse, respiration rate, systolic and diastolic blood pressure, mean arterial blood
pressure, weight, height, body mass index (BMI), type of HF, New York Heart Association
(NYHA) cardiac function, and Killip Grade (Class 1: no rales, no third heart sound; Class 2:
rales in 0.5 lung fields or the presence of a third heart sound). This sub-dataset contained
2008 records and 166 features excluding a redundant index column. Information related to
admission, discharge, and medical test reports was included in these features.

A separate dataset included information on the medications consumed by the sub-
ject individuals while in the hospital. There was no mention of the time that the drugs
were taken; only the medications were mentioned. In the dataset, there were multiple
instances of the same medicine because values were inputted every time a medication
was taken, indicating more than one dose was administered. This sub-dataset contains
15,362 records and 2 feature columns, including inpatient number and medication name.
We were able to combine the two datasets into one by combining the inpatient number in
each of the sub-datasets.

2.2. Statistical Analysis

The variables of this study were statistically analyzed using Python 3.8. Ages were
classified according to decades. There were eight age categories from 19 to 110. Three
categories were available for the readmission period: 28 days, three months, and six months.
By applying Pearson correlation coefficient (PCC) for each feature with other features, we
were able to exclude highly correlated features with a score greater than 0.80 that were
highly similar to the label data and could lead to overfitting our model. PCC formula is
given as below [28]:

r =
∑n
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¯
x
)(
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¯
y
)
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i=1

(
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¯
x
)2
√
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(
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)2

(1)

where r, xi,
¯
x , yi,

¯
y indicate the Pearson correlation coefficient, feature value, mean feature

value, other feature value, other mean feature value. Here, features x and y have a length
of n.

Table 1 shows the characteristics of the patients’ return to the Emergency Department
within six months, the NYHA cardiac function classification, the use of Digoxin tablets, the
presence of a magnesium serum, and the presence of potassium ions. The 1951 patients
had a return home rate of 67.5% at 1318, a hospitalization rate of 22.5% at 436, an unknown
rate of 9.8% at 192, and a mortality rate of 0.2% at 5. Due to the small number of patients
who passed away in hospitals, they were excluded from the dataset to avoid low-quality
features. The number of male patients was 845 (42.09%) and the number of female patients
was 1163 (57.91%). Approximately 7.657 medications were consumed by each patient,
on average, with a standard deviation of 2.4204. Among 2008 patients, 92.8% (1865) had
myocardial infarction and 93.2% (1872) had congestive HF. The most common disease was
connective tissue disease (99.7%).
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Table 1. All types of diseases including HF that are present in the dataset [23].

Disease Name Yes No

Myocardial Infarction 1865 143
Congestive Heart Failure 1872 136

Peripheral Vascular Disease 1907 101
Cerebrovascular Disease 1858 150

Dementia 1893 115
Chronic Obstructive Pulmonary Disease (COPD) 1775 233

Connective Tissue Disease 2004 4
Peptic Ulcer Disease 1961 45

Chronic Kidney Disease 1532 474
Hemiplegia 1996 12
Solid Tumor 1969 39
Liver Disease 1923 84

2.3. Preprocessing

A physical examination was conducted on each patient to verify the accuracy and
authenticity of the dataset. This included height, weight, body mass index (BMI), type of
heart failure, and heart condition. However, certain anomalies were discovered when the
data were examined. The height, weight, and BMI measurements of some patients were
atypical, and some of these measurements were recorded as 0. The anomalous values were
not consistent with the known range of human measurements. As an example, the shortest
individual ever listed in the Guinness Book of Records, who was about 0.54 m tall, did
not fit with certain height numbers that were especially unusual, such as 0.35 m [29]. The
ages of the patients were reviewed to confirm the accuracy of these data. Analysis revealed
that 0.697% of discharged patients died in the hospital after they were discharged. These
records were excluded from the dataset.

Height and weight outliers were missing data that were filled in with 0 and NaNs
(Not a Number) were substituted with 0. Additionally, the ages of the patients were listed
in decade form instead of as exact numbers. As a result, the age range was converted
from an object type to an integer by replacing it with the average of the range. A total of
15 columns with NaN values exceeding 65% were removed from the dataset in order to
avoid overfitting and skewed results. We removed columns for blood temperature, blood
gas, and leukemia because they would not be relevant to the model’s training and would
interfere with standardizing and normalizing the dataset.

The objective of this project was to develop a model for discharged patients to be
readmitted in the event of an emergency. Therefore, we needed to select the right predicting
label file. A total of two columns matched the target. In one column, patients were listed
who got readmitted after days of prior admission; in the other, the number of days after
the initial admission that the patients had to be in the emergency department within
6 months was listed. The correlation between these two columns was calculated using
Equation (1), and we found that it was 0.99. Therefore, any patient who needed to be
admitted again would have to go through the emergency department. In this regard,
the ‘re.admission.time.days.from.admission.’ column is set as the label file. All values
greater than 0 in that column were transformed into 1, indicating the patient had been
readmitted, and NaN values were transformed into 0, meaning the patient had not been
readmitted. We dropped the ‘time.to.emergency.department.within.6.months’ variable to
prevent overfitting.

2.3.1. Encoding

Despite having a plethora of categorical columns, the EHR dataset would be difficult
to use in its current form without encoding. An encoding process was carried out on the
entire dataset in order to prepare it in a way that can be easily fed into the classification
models in order to have greater accuracy. Each distinct categorical item was represented
by an ordinal number. Drug datasets used an additional encoding method, where a new



Diagnostics 2023, 13, 1948 7 of 20

vector was integrated for each distinct categorical value. It is now possible to concatenate
the EHR datasets. The medication dataset’s form was altered due to encoding, which also
created 25 new columns with the parent ID column.

2.3.2. Dataset Mapping

After encoding the dataset in two different encoding methods, it was necessary to
merge the datasets into a single dataset, which was achieved through dataset mapping.
Each EHR dataset and medication dataset had the same Patient ID to identify each patient
individually. There were multiple entries under the same Patient ID in the medication
dataset. Each patient taking the same medicine multiple times was summed under a single
patient in a column, so the recurrence of Patient ID was eliminated. The data had been
merged between two datasets based on Patient ID. Therefore, all drug name columns were
concatenated with the EHR dataset, and the shape of the dataset was the same as that of
the EHR dataset.

2.3.3. Missing Data Imputation

Due to the practical difficulty of collecting all information from a subject, missing data
were likely in the dataset. The missing values were represented by NaN. Due to the fact that
machine learning models are mathematical in nature, they are not capable of processing
data of any other kind. It is therefore imperative to adopt essential safeguards. The removal
of NaN values is one way to deal with the missing values, but this approach would result
in substantial data loss and rather poor ML performance. Alternatively, NaN values can be
replaced with appropriate values based on the records’ pattern. By using the entire feature
data, the data imputation approach fills in the missing values [30]. The inclusion of missing
indicator variables is preferred in some studies [31,32], while it is also controversial [33] in
medical research. Several other studies totally excluded missing data in order to prevent
high bias [34–36].

In our study, we carefully examined the EHR dataset and found that many key
predictors had missing parameters. In order to prevent data loss, an important data
imputation method was used. In this study, MICE, or Multivariate Imputation by Chained
Equations, was employed as the imputation technique [37,38]. As part of this method,
both mean and regression methods are applied successively within a feature column to
make the missing records comparable to other records that have similar values. Using
this imputation method, the analyzed data were clinical data, which made the imputation
method successful.

2.3.4. LACE Feature Extraction

The LACE index, also known as Length of stay, Acuity of admission, Comorbidi-
ties, and Emergency department use, is widely used in the medical field in the US and
Canada [39–41]. This mathematical model was developed by van Walraven et al. [42] to
predict the risk of unplanned readmission or death within 30 days after discharge from
the hospital for medical and surgical patients. Four main factors can help healthcare
providers make informed decisions about patient care [43]. They can identify patients who
may require extra support after discharge, prevent unplanned readmissions, and improve
patient outcomes.

After connecting the one-hot encoded data with the EHR information, we identified
the medications taken by the subject patients. Because HF groups are usually associated
with a high number of prescription drugs, we introduced the total number of medications
patients take to represent their risk factors. More medications taken by a patient increases
the risk of their health deteriorating [44]. A pharmaceutical column was removed after
the previous feature had been extracted. Using the LACE score, we were able to identify
patients with high hospitalization risks. As shown in Table 2, the LACE score [42] was
designed according to its fully developed phrase using the relevant elements.
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Table 2. LACE scoring scheme.

LACE Score Components Score
L: Length of stay (days)

Associated features in the dataset:
‘dischargeDay’

1 1
2 2
3 3

4–6 4
7–14 5
≥14 7

A: Acuity of admission
Associated feature in the dataset:

‘admission.way’
Non-emergency 0

Emergency 3
C: Charlson comorbidity score

Associated feature in the dataset: ‘CCI.score’
0 0
1 1
2 2
3 3
≥4 4

E: Emergency department visits in the preceding 6 months
Associated feature in the dataset:

‘return.to.emergency.department.within.6.months’
0 0
1 1
2 2
3
≥4

3
4

Six hundred and seventy-five patients, or nearly 33.87% of all records, had LACE
scores indicating that they were at high risk. In total, 63.67% of the study’s participants
were in the moderate-risk zone, while 2.46% were in the low-risk zone. LACE alone can
be a good predictor of hospital readmission for HF patients and in this study, we have
incorporated this LACE feature with other features, which made our model robust.

2.3.5. Feature Scaling

Occasionally, varying ranges and different scaling of data cause the model to run
slowly and increase the cost function. Furthermore, all forms of variations and scaling
are unlikely to fit the label data effectively [45]. It is also possible that some observations
may yield false predictions due to differences in scaling. An ML model should yield a
favorable outcome if the quality of the data is guaranteed. The training feature data need
to be scaled properly in order to achieve quality data in comparison to the target data. Our
study assessed the effectiveness of two normalization methods, min-max normalization,
and Z-score normalization to normalize the data [46].

As a result of the min-max normalization method, each feature is scaled with its
minimum and maximum value, allowing the data to remain in the 0–1 range. The following
formula is used to scale the data (Equation (2)). If X is considered to be a feature value of a
certain feature, Xscaled, Xmax, and Xmin are scaled output, maximum feature value, and the
minimum feature value of that certain feature.

Xscaled =
X−Xmin

Xmax−Xmin
(2)
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Using Z-score normalization, the dataset is transformed into a gaussian distribution.
Therefore, it is possible to comprehend the probability of an event occurring within the
boundary of a gaussian distribution. This phrase is used in this way (Equation (3)).

Z =
X−µ

σ
(3)

Here, Z, X, µ, and σ are, respectively, the output, feature value, mean, and standard
deviation of the variable values.

This approach dramatically improved computation speed by scaling feature values to
have a mean of 0 and a standard deviation of 1. Despite this, this strategy may produce
outlier values since some observations showed negative instances. In our particular case,
min-max scaling performed better than Z-score scaling method while training the model
because our dataset contained some outlier values.

2.3.6. Feature Selection

Three different feature selection models were used in this work: XGBoost, Random
Forest, and ExtraTrees. Additionally, the feature importance values for each of these
selection models have been computed. XGBoost method provides feature importance
based on average gain or reduction in the objective function, which provides insights of
how a specific feature can contribute in reducing the loss of the model [47]. For Random
Forest and ExtraTrees, feature importance is extracted based on mean decrease accuracy,
which reduces the impurity in the decision tree when a particular feature is split [48]. In
order to achieve the highest accuracy, these feature models were listed in descending order
and trained using the logistic regression method’s single feature incrementation, which
draws out an optimum number of features needed for the model to score a best result. We
can formulate logistic regression as follows:

P =
e(a+bX)

1+e(a+bX)
(4)

where P is the logistic regression output, a denotes the expected value of log odds, b stands
for change in log odds, and X is the input feature.

In order to draw out the number of features necessary to generate the highest accuracy
from the model, the model was trained on the features in increments of 1 feature at time.
This method provides valuable insights of how the model performance changes based on
the features it is trained on. The outcome of such a method can be observed in Figure 2,
which dictates training on 9 features that would present us the best possible performance.
Supplementary Table S1 shows the list of features obtained in Figure 2.

XGBoost

We conducted a univariate logistic regression analysis to identify the independent
variables associated with death. We identified the top 1, top 2, and top 9 features. Gradient-
based ensemble tree methods such as XGBoost and GB (Gradient Boosting) are both
gradient-descent-based methods that utilize weak learners [47,49,50]. A predictive model
was developed by Xu et al. [51] based on XGBoost for ischemic stroke patients readmitted
within 90 days of hospital discharge. As a result, they were able to achieve an AUC
score of 0.782. XGBoost classifier is trained with a 0.001 learning rate and Logloss as the
loss function.

Random Forest (RF)

RF is a powerful machine learning algorithm that excels at handling non-linear datasets
and outperforms other tree-based algorithms. It utilizes multiple trees with randomized
inputs and splits and effectively addresses the problem of overfitting found in decision trees.
The RF algorithm solves this issue by averaging the output of each tree and comparing it
with the original output. According to Yeshvendra et al. [52], they developed an RF model
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that achieved 85.81% accuracy in predicting heart disease. This classifier is trained with
the following hyperparameters: (bootstrap = True, class_weight = None, criterion = ‘gini’,
max_depth = 10, max_features = ‘auto’, max_leaf_nodes = None, min_impurity_decrease
= 0.0, min_samples_leaf = 1, min_samples_split = 2, min_weight_fraction_leaf = 0.0,
n_estimators = 100, oob_score = False).
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ExtraTrees Classifier (ET)

An ExtraTrees classifier uses the traditional top-down method to create an unpruned
decision tree [53]. It involves strong randomization both in attribute selection and in cut-
point selection when splitting a node. It differs from other tree-based ensemble methods in
that it splits nodes fully randomly and grows trees using the whole training sample instead
of bootstrap replicas. The final prediction is made by a majority vote among all three
predictions. ExtraTrees reduce variance and bias and are computationally efficient [54].
According to Shafique et al. [55], ExtraTrees were found to be the most accurate models for
predicting cardiovascular disease, with an accuracy rate of 96%. ET was trained with the
following hyperparameters: (max_depth = 8, min_samples_split =10).

2.3.7. Stacking Machine Learning Model

We have investigated 13 variants of classical ML models for initial prediction perfor-
mance for hospital readmission of HF patients. Then, we proposed using a stacking ML
model that uses 3 classical best-performing ML models. Multiple learners are integrated
into stacking-based models, which improve prediction capabilities. This was motivated by
a three-layer stacking model demonstrated by Zhang et al. to predict hospital readmission
risk [56], where they achieved an AUC of 0.720 outperforming other individual models.

We converted the data using fivefold cross-validation and divided it into training,
testing, and validation sets with 80% train and 20% test splits, where 20% of training data
used for validation. The training and stacking procedure is graphically shown in Figure 3.
The training set had a shape of p × q, where p represents the number of observations and q
represents the top features selected using the top feature approach. A stacking classification
model was created based on the predictions of the three best-performing models, allowing
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for greater precision in categories where the model had previously been unclear. To
construct the stacking classification model, we used the best classifier predictions as input
to the new meta classifier. A significant improvement in accuracy and performance was
achieved with this approach.
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2.4. Evaluation Metrics

There were a number of performance evaluation metrics considered for this work,
as accuracy alone is not good metric [57–59]. As the scores were acknowledged to be
the weighted average of all classes, accuracy as the sole metric for evaluation could have
skewed the model towards the best-performing class [60]. Furthermore, there are other
metrics necessary to explain the AUROC curve in addition to accuracy.

The test set was used to measure the performance metrics of the ML model with the
largest area under the receiver operating characteristic curve (AUROC). There were several
measures included to compute the performance metrics, including positive likelihood ratios,
true positives (TP) and false positives (FP), true negatives (TN) and false negatives (FN),
as well as positive predictive value (PPV) [61]. According to AUROC curves, c-statistics
are a measure of model discrimination performance for binary classification studies. By
comparing patients who actually had the outcome with those who did not, we are able to
determine whether a model predicts a higher probability of the outcome. These metrics
can be represented mathematically as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall (Sensitivity) =
TP

TP + FN
(7)

F1 score = 2
Precision Recall

Precision + Recall
(8)

Specificity (True Negative Rate) =
TN

TN + FP
(9)

3. Results and Discussions
3.1. Statistical Analysis

The analysis of this dataset provided significant insights into the characteristics and
data that should be focused on when admitting patients at risk. An emergency room



Diagnostics 2023, 13, 1948 12 of 20

admission decision for an HF patient should be made with greater care based on prior
diagnostic factors and patient information. It is important to consider the patient’s pre-
vious hospitalization data and parameters when prompting them to contact a hospital to
prevent exacerbation of the illness. Table 3 summarizes the important feature statistics for
the dataset.

Table 3. Statistics of the different important features for readmitted and not readmitted cases.

Features Unit Missing Rate (%)
Not

Readmitted (0) Readmitted (1) Overall
p-Value

[Mean ± std] [Mean ± std] [Mean ± std]

Neutrophil Ratio N/A 1 0.756 ± 0.107 0.744 ± 0.10 0.751 ± 0.104 <0.05

Discharge Day Days 0 9 ± 7.06 10 ± 9.01 9 ± 8.03 0.10

Cholesterol mmol/L 10 3.77 ± 1.07 3.66 ± 1.11 3.72 ± 1.09 0.06

Sodium mmol/L <1 138.5 ± 4.91 137.9 ± 4.87 138.2 ± 4.90 <0.05

Partial Pressure of CO2 mmHg 51 36 ± 10.4 35.1 ± 8.13 36 ± 9.56 0.10

Direct Bilirubin µmol/L 5 9 ± 9.76 9 ± 9.28 9 ± 9.55 <0.05

Albumin g/L 5 36.3 ± 5.05 36.9 ± 4.87 36.5 ± 4.98 <0.05

Globulin g/L 5 28.7 ± 6.33 28.4 ± 5.70 28.6 ± 6.06 <0.05

FiO2 (%) 0 33.0 ± 5.18 32.33 ± 4.15 32.7 ± 4.76 0.07

Systolic Blood Pressure mmHg 0 133 ± 25.0 129 ± 24.2 131 ± 24.7 0.07

Cystatin mg/L 2 1.8 ± 0.971 1.89 ± 0.925 1.8 ± 0.951 0.05

Potassium Ion mmol/L 51 3.84 ± 0.652 3.98 ± 0.685 3.89 ± 0.669 0.07

White Globulin Ratio N/A 5 1.32 ± 0.316 1.35 ± 0.30 1.33 ± 0.309 <0.05

D-dimer mg/L 8 3 ± 6.34 2.0 ± 3.64 2 ± 5.33 0.08

Indirect Bilirubin µmol/L 5 13 ± 9.57 14.0 ± 8.83 14 ± 9.25 <0.05

Fucosidase U/L 26 19.3 ± 6.31 19.5 ± 5.78 19.4 ± 6.08 <0.05

Sodium Ion mmol/L 51 136.4 ± 5.14 135.9 ± 4.71 136.2 ± 4.97 0.09

Left Ventricular End Diastolic
Diameter, LV cm 35 52.4 ± 10.6 54.2 ± 11.3 53.1 ± 10.9 0.12

Eosinophil Ratio N/A 1 0.017 ± 0.031 0.02 ± 0.031 0.019 ± 0.031 0.05

High Sensitivity Protein mg/L 53 26 ± 35.5 24 ± 33.5 25 ± 34.7 <0.05

Measured Residual Base mmol/L 51 −1.8 ± 4.90 −2.1 ± 4.44 −1.9 ± 4.72 <0.05

Glomerular Filtration Rate mL/min/1.73 m2 3 71 ± 36.5 66 ± 36.5 69 ± 36.6 0.05

Mean Hemoglobin Volume pg 1 29.9 ± 3.28 30.0 ± 3.59 29.9 ± 3.42 <0.05

Mitral Valve EMS m/s 51 6 ± 42.9 3 ± 29.9 5 ± 38.6 <0.05

Diastolic Blood Pressure mmHg 0 77 ± 14.6 76 ± 14.2 77 ± 14.5 <0.05

Weight kg 0 52 ± 10.7 52.5 ± 11.1 52 ± 10.9 <0.05

Basophil Count ×109/L 1 0.030 ± 0.031 0.033 ± 0.028 0.031 ± 0.029 <0.05

Platelet Hematocrit (%) 5 0.176 ± 0.068 0.17 ± 0.067 0.174 ± 0.068 <0.05

Prothrombin Activity (%) 2 67 ± 18.3 65 ± 18.6 66 ± 18.4 0.05

Reduced Hemoglobin (%) 51 4.3 ± 6.22 4.1 ± 6.0 4.2 ± 6.13 0.05

Urea mmol/L 1 9.4 ± 5.84 9.8 ± 5.16 9.6 ± 5.55 <0.05

In the dataset, there were 900 (45.16%) cases that needed emergency readmission,
and 1093 (54.84%) cases were not readmitted. Average discharge day for the subject for
readmitted and not readmitted were 10 ± 9.01 (days) and 9 ± 7.06 (days). The choles-
terol level for not readmitted cases was 3.77 ± 1.07 (mmol/L) and for the readmitted case
3.66 ± 1.11 (mmol/L). Not readmitted patients had a mean weight of 52 ± 10.7 (kg) and
for the other class, the mean was counted as 52.5 ± 11.1 (kg). Additionally, this study
indicates the mean reduced Hemoglobin of 4.3 ± 6.22 (%) for the not readmitted class and
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4.1 ± 6.0 (%) for the readmitted cases. For both non-readmitted and readmitted cases, both
Systolic and Diastolic Blood pressure had a statistically observed level: 133 ± 25.0 (mmHg)
and 129 ± 24.2 (mmHg), 77 ± 14.6 (mmHg), and 76 ± 14.2 (mmHg), respectively. Readmit-
ted patients were having 2 ± 3.64 (mg/L) D-dimer in their blood and not readmitted pa-
tients were showing 3 ± 6.34 (mg/L), which clearly acted as an indicator by drawing a sub-
stantial difference in statistical metrics for both cases. Mitral Valve EMS also proved to be a
proper indicator for both the classes, as it showed 6 ± 42.9 (m/s) for not readmitted patients
and 3 ± 29.9 for the readmitted patients, although it showed a considerably low correlation
value. Readmitted patients were observed to have comparably smaller statistical value
range regarding High-Sensitivity Protein having 24 ± 33.5 (mg/L), whereas the patients
who were not accounted for emergency readmission showed a value of 26 ± 35.5 (mg/L).
We also observed a Glomerular Filtration Rate of 71 ± 36.5 (mL/min/1.73 m2) for the pa-
tients who did not necessarily need an emergency readmission, where readmitted patients
had a filtration rate of 66 ± 36.5 (mL/min/1.73 m2). p-value < 0.05 was used to check the
significance of the features for the classes.

3.2. Feature Ranking

According to the XGBoost ranking algorithm, the top features to identify patients
who will require readmission were admission.way, LACE.score, reduced.hemoglobin,
type.of.heart.failure, occupation, mitral valve EMS, CCI.score, and white.globulin.ratio.
After initial investigation, it was observed that the features identified by XGBoost model
outperformed other feature selection-based features. The feature rankings by XGBoost
model is shown in ascending order in Figure 4. Therefore, these features were used for
the classification investigations. Feature ranking using Random Forest and ExtraTree
algorithms are reported in Supplementary Figures S1 and S2.

Figure 4. Feature ranking using XGBoost model.

3.3. Classification Performance

Individual Model Performance: We implemented 13 variants of classical machine learn-
ing models including multilayer perceptron (MLP), Linear Discriminant Analysis (LDA),
XGBoost, Random Forest, logistic regression (LR), Support Vector Machine (SVM), Extra-
Trees (ET), AdaBoost, K-nearest neighbor (KNN), CatBoost, Gradient Boosting, Light GB
(LGB), and ElasticNet. Table 4 summarizes the accuracy, precision, recall, specificity, and
F1-score for all the models. Catboost, Adaboost, and Gradient Boosting algorithms are the
three top-performing algorithms, which were used to develop the stacking ML model.
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Table 4. Different evaluation metrics result from 5 folded cross-validated data for different classical
machine learning models. Best performances marked in bold.

Model Name Accuracy Precision Recall Specificity F1-Score
MLP Classifier 82.19 82.2 82.19 81.27 82.12

Linear Discriminant Analysis 78.02 78.13 78.03 77.94 78.06
XGBClassifier 75.51 75.46 75.51 74.44 75.41

Random Forest Classifier 76.12 76.06 76.11 75.27 76.05
Logistic Regression 78.98 79.01 78.98 78.73 78.99

Support Vector Machine 47.17 58.32 47.16 55.83 34.84
ExtraTree Classifier 70.7 70.66 70.7 69.99 70.67
AdaBoost Classifier 87 87.11 87.01 86.04 86.94

K-nearest neighbor Classifier 70.55 70.47 70.55 69.62 70.48
Gradient Boosting Classifier 84.9 84.92 84.9 84.07 84.84

CatBoost 88.36 88.89 88.36 86.86 88.23
LGB Classifier 80.73 80.78 80.73 79.58 80.62

ElasticNet 78.98 79.02 78.98 78.74 78.99

Stacking Model Performance: The top three performing models were used to create a
meta-classifier, and the stacking model was trained based on those results. This last stage of
classification provided us with the best results. The stacking ML model provides an overall
accuracy, and weighted average of precision, recall, specificity, and F1-score of 89.41%,
90.10%, 89.41%, 87.83%, and 89.28%, respectively. Table 5 summarizes the performance of
the stacking ML model, where it is seen that the XGB model as a meta-learner performs
the best.

Table 5. Performance of the stacking model with different evaluation metrics.

Model Accuracy Precision Recall Specificity F1-Score
MLP Classifier 89.11 90.1 89.11 87.27 88.94

Linear Discriminant Analysis 88.21 88.69 88.21 86.76 88.09
XGBClassifier 89.41 90.1 89.41 87.83 89.28

Random Forest Classifier 89.16 90.07 89.16 87.39 89.01
Logistic Regression 87.36 87.61 87.36 86.16 87.27

Support Vector Machine (SVM) 29.4 29.89 29.41 30.33 29.25
ExtraTrees Classifier 89.06 90.01 89.06 87.25 88.9
AdaBoost Classifier 89.06 89.86 89.06 87.36 88.91

K-nearest Neighbours Classifier 86.4 86.63 86.4 85.2 86.31
Gradient Boosting Classifier 85.85 86.02 85.85 84.72 85.76

CatBoost 89.11 89.92 89.11 87.4 88.96
LGB classifier 88.91 89.74 88.91 87.18 88.75

ElasticNet 87.31 87.56 87.31 86.09 87.21

To assess the quality of our model’s predictive performance, we showed the confu-
sion matrix [62], which summarizes the overall performance of the model based on the
performance evaluation metrics introduced earlier. Figure 5 shows the confusion matrix,
which shows the correct and incorrect predictions. It can be seen that the model can predict
very well the patients who do not need readmission. However, the model suffers for
patients who need readmission compared to the other class. The reason of slightly less
accurate prediction for admission class might be due to the LACE feature. The LACE
scoring method requires the number of emergency department visits in the last 6 months,
which is not provided in our dataset. Therefore, we utilized the scoring table to use only
the first two scores and leave the rest. There was also a small information gap between the
number of days between readmissions and the time to the emergency department in the
last six months.
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Figure 5. Confusion matrix for the best-performing XGBoost stacking ML classifier.

The ROC curve represents the degree of separability between binary classes. The larger
the area covered by the ROC curve, the more effectively the model utilizes the training
dataset. Figure 6 shows the ROC curves for the three best-performing models and the stack-
ing ML model. It can be observed that the AUC scores are very close. XGBoost achieved
an excellent AUC score of 0.881, which shows a very good discrimination capability of
the model.
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3.4. Discussion and Comparison with Similar Works

As per the XGBoost ranking algorithm, the foremost attributes for identifying patients
who may require readmission comprise admission.way, LACE.score, reduced.hemoglobin,
type.of.heart.failure, occupation, mitral valve EMS, CCI.score, and white.globulin.ratio.
Upon preliminary examination, it was noted that the features identified by the XGBoost
model exhibited greater efficacy than other feature selection-based attributes. Thirteen
machine learning models were tested to predict heart failure readmission, and Catboost,
Adaboost, and Gradient Boosting were found to be the top-performing models. These three
models were used to create a stacking model, which achieved an overall accuracy of 89.41%



Diagnostics 2023, 13, 1948 16 of 20

and weighted average precision, recall, specificity, and F1-score of 90.10%, 89.41%, 87.83%,
and 89.28%, respectively. The model performed well in predicting patients who did not
require readmission but moderately performed with those who did. XGBoost had the best
AUC score of 0.881, indicating excellent discrimination capabilities.

Assessing different models using the same criteria presents a considerable challenge
due to the variance in methodologies and variables used to build them. Moreover, the
majority of machine-learning-based heart failure readmission prediction models have yet
to be verified through an independent prospective cohort of heart failure patients. For our
stacking model, it can be seen that the XGB model as a meta-learner performs the best.

The study conducted an in-depth analysis of the experimental results and found
that the proposed stacking ensemble model can effectively make use of the predictive
abilities of various models to understand the data space and structure. By leveraging this
understanding, different models are able to learn from one another, leading to a mutual
enhancement in their accuracy of predictions. This suggests that the stacking ensemble
model can be beneficial for improving the performance of prediction models, especially
when dealing with complex data structures. This claim is further proved by a similar study
by Chiu et al. that predicts a model by stacking six classifiers, namely: RF, SVC, KNN,
LGBM, Bagging, and Adaboost [63]. According to the stacking model results provided by
them, it has achieved an accuracy level of 95.25% alongside an AUROC score of 82.55%.
This is consistent with the results of this study. Jing suggested an ML model aimed at
precise predictions of one-year, all-cause mortality for a significant number of HF patients.
The best prediction performance was achieved by the nonlinear XGBoost model with an
AUC score of 0.77 [64]. Chen et al. achieved an accuracy of 0.652 and AUC of 0.634 (95%CI:
0.599–0.646) using LR [65]. Overall, our study highlights the importance of considering
the interplay between multiple prediction models in the development of effective machine
learning algorithms. It also provides a novel study on predicting emergency readmission
of HF patients using only nine biomarkers.

3.5. Limitations of Our Work

In terms of dataset, the limitation is that it is obtained from only one center; therefore,
the generalizability of the model cannot be guaranteed. The data in the dataset have
been merged into a solitary row per hospitalization. Therefore, only superficial portrayals
of patient stays are accessible, and time series data for the entire hospitalization are not
present. Thus, critical information like medication distribution timings is not provided in
the dataset [27]. The study relies on retrospective data where the researchers typically have
less control of the dataset variables compared to prospectively collected data.

One of the main limitations of this study is that the features selected by our pipeline did
not include any of the important biomarkers of HF: for example, B-type natriuretic peptide
(BNP), N-terminal pro-B-type natriuretic peptide (NT-proBNP), Troponin, etc. This requires
further investigation and opens up a new area for our future research goal. The reliability
of our model is limited to the nine features it currently incorporates, and the absence of
any of these features may compromise the accuracy of its predictions. Furthermore, the
dataset under scrutiny is geographically confined to a single region, which raises concerns
regarding the applicability of our findings to other regions around the world. Given the
modest size of our dataset, which comprises approximately two thousand patient records,
it is not very suitable to train deep learning models. Consequently, we intend to augment
our dataset by aggregating additional datasets pertaining to heart failure, thereby enabling
us to develop a comprehensive, one-for-all machine learning pipeline.

4. Conclusions

This study aimed to use classical machine learning models based on EHR data to
predict emergency readmissions for discharged heart failure patients. Early identification
of heart failure patients is crucial to prevent complications and mortality. The proposed
method uses the LACE score as a key component to predict subsequent readmissions,
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enabling healthcare providers to proactively intervene and decrease emergency hospital
readmissions while simultaneously improving patient outcomes and reducing healthcare
costs. The proposed design accurately predicts emergency readmissions for discharged
HF patients with an AUC score of 0.883 using stacking ML model. While the dataset
used in this study is limited to one center, our proposed model could still help healthcare
providers improve the standard of care for HF patients by fine-tuning the model on a
specific population data. Further research is needed to investigate important biomarkers of
heart failure not included in the selected features, and augmenting the dataset could enable
the development of a more comprehensive framework. The study can be expanded by
accumulating multiple datasets from different regions to increase the generalizability of the
model. This will also help construct a one-for-all model regardless of race and geographical
position. The research demonstrates that using a stacking model can enhance the accuracy
of prediction models, particularly when dealing with intricate data structures. Overall,
this study is expected to contribute to filling a knowledge gap in multi-feature-based ML
models and advance the field of emergency readmission prediction for HF patients, thereby
enhancing the quality of heart failure care.

Supplementary Materials: The following supporting information can be downloaded at: https:
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dom Forest; Figure S2: Feature ranking using Random Forest; Table S1: Ranked 15 features using
XGB model.
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