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Abstract: Multiple studies presented satisfactory performances for the treatment of various ocular
diseases. To date, there has been no study that describes a multiclass model, medically accurate,
and trained on large diverse dataset. No study has addressed a class imbalance problem in one
giant dataset originating from multiple large diverse eye fundus image collections. To ensure a
real-life clinical environment and mitigate the problem of biased medical image data, 22 publicly
available datasets were merged. To secure medical validity only Diabetic Retinopathy (DR), Age-
Related Macular Degeneration (AMD) and Glaucoma (GL) were included. The state-of-the-art models
ConvNext, RegNet and ResNet were utilized. In the resulting dataset, there were 86,415 normal,
3787 GL, 632 AMD and 34,379 DR fundus images. ConvNextTiny achieved the best results in terms
of recognizing most of the examined eye diseases with the most metrics. The overall accuracy was
80.46 ± 1.48. Specific accuracy values were: 80.01 ± 1.10 for normal eye fundus, 97.20 ± 0.66 for GL,
98.14 ± 0.31 for AMD, 80.66 ± 1.27 for DR. A suitable screening model for the most prevalent retinal
diseases in ageing societies was designed. The model was developed on a diverse, combined large
dataset which made the obtained results less biased and more generalizable.

Keywords: deep learning; medical image classification; convolutional neural networks

1. Introduction

According to the first World Report on Vision issued by the World Health Organization
(WHO) in 2019, approximately 2.2 billion people had vision impairment or blindness,
globally [1]. This number is expected to rise because of the growth of the global population
and the changes in its age structure [2]. The soaring work effort associated with the ageing
population is an overwhelming problem for the limited number of eye care providers [3,4].
Efficiency and effectiveness enhancements should be a fundamental response to a projected
undersupply of eye care providers [4].

Recent research has proved that deep learning systems could be useful in delivering
patient care in a real-world setting [5]. Multiple satisfactory performances of artificial intelli-
gence models for the automated detection of ocular diseases were reported [5–9]. Clinically
useful models should differentiate the most distressing diseases: diabetic retinopathy (DR),
glaucoma (GL) and age-related macular degeneration (AMD) [2,10] from a healthy fundus,
with high sensitivity and specificity. These diseases are prevalent in ageing populations,
which makes them suitable targets for a screening system [1,2,10]. Recently, there have been
several multiclass models published that at least partially meet these conditions [11–18].
However, all these models had multiple limitations.
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Most of the published multiclass models were developed on a single dataset [11,13,15–17],
mainly the Ocular Disease Intelligent Recognition (ODIR) database [13,15,17,19]. This could
lead to a potential bias in the development of machine learning models. A single database
is often a survey of a certain population, collected with a small number of cameras in
several medical centers by a limited number of investigators. Data gathered in similar
environments, or a single process, may not apply to other clinics due to different cameras,
ethnicity, or an image acquisition technique. These models are not generalizable to the
overall patient population. One of the most effective strategies to mitigate these biases
is to compile a large-scale, multiethnic dataset that would be representative and would
simulate a real-world environment for model training [20]. The collection of such a dataset
would contribute to better accuracy and fairness in the decision-making process. Such
an approach was partially adopted by previous works [12,14] although the clarity of data
selection and quantity of merged datasets could still be improved.

Class imbalanced datasets occur in many real-world applications where class dis-
tributions of data are highly imbalanced [21]. Many classification learning algorithms
have lower predictive accuracy for infrequent classes [21]. Models misclassify diseases
with lower prevalence in the retinal images database. Merging multiple different datasets
could even potentiate this issue. Due to this imbalance, the accuracy of detection or clas-
sification of disease is relatively low [15]. Most of the published studies [11,12,14,16,17]
did not address the problem, which could influence the results. Common techniques for
handling class imbalance problems involve reweighting, resampling and other algorithmic
solutions [22,23]. Applying them to a large dataset could help in the recognition of less
prevalent diseases.

Three out of the eight most recently published works [9,11,14] utilized private datasets.
These are often formally available upon correspondence with a reasonable request. Poten-
tially, these data could never be made available to the public. Research transparency could
be put under question, as these studies may not be reproducible due to data unavailability.

Almost all published models included cataracts as a retinal disease [11–15,17,18]. A
cataract is a cloudification of the natural intraocular lens and is not classified as a retinal
disorder by the medical literature [24] In a cataract, the fundus image is not visible or is
heavily distorted when photographed [24]. It seems reasonable to assume that the usage of
such images in multiclass model development aimed at retinal diseases has influenced the
results and has no utility in the screening and diagnostic process.

Although the assessment of the retinal fundus in both myopia and hypertensive
retinopathy may have some usefulness in routine patient screening, no medical guide-
lines recommend this in clinical practice. Inclusion of these diseases in multiclass models
developed by multiple previous investigators [11,13–15] could lead to unnecessary class
proliferation, influence results and lead to lower screening utility. Similarly, the inclusion
of relatively rare diseases like retinitis pigmentosa had a limited purpose in model develop-
ment. We assumed that the perfect screening multiclass model should be focused on the
most common retinal diseases that distress whole nations.

The primary aim of this study was to create an image recognition model for retinal
disease screening in ageing, developed countries. The model was developed on one cumu-
lative dataset and differentiated DR, AMD and GL from a normal eye fundus for the best
clinical utility. The created database utilized multiple types of fundus cameras, evaluated
by various retinal experts, and represents multiple nationalities, which approximates to
the true real-world environment. This results in mitigation of the data bias problem. The
utilized data had clear selection criteria and usage of only publicly available datasets
made our experiment reproducible. The secondary aim was to address the problem of
class imbalance which is a result of merging multiple different large datasets. To achieve
that we proposed to combine transfer learning, loss function weighting and two-stage
learning techniques.
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2. Materials and Methods

To ensure our database minimizes the problem of biased medical image data, we
collected and merged 22 publicly available fundus datasets containing images of any
of the diseases classified in our paper. We selected only the data strictly related to the
diagnostic process of the pathologies considered. Such a dataset consists of fundus images
obtained from multiple hospitals and clinical centers all around the world, providing data
from various ethnic and demographic groups. Such data contain noise, overexposure,
underexposure and other visual artifacts, as well as perfectly prepared fundus images.
Similar artifacts may be commonly encountered in hospitals due to human or hardware
errors. The images were taken with various cameras, mydriatic and non-mydriatic. Such a
wide range of images provides the least biased and most real-world adjusted clinical usage
database that has been collected in the studies up to the present, consisting only of public
data, which has been properly filtered for selected pathologies and their diagnostic process.
Therefore, unlike studies using single public or private datasets, which are possibly biased,
we provide the most reliable results for the task of classification of fundus diseases.

In our experiments, we had to tackle important problems related to medical image
classification in general. We used state-of-the-art models (ConvNext [25] RegNet [26]
ResNet [27]) employed in computer vision and verified their accuracy on biomedical
data. Further, we present data augmentation methods used to avoid overfitting which is a
common problem in the domain [28–30]. To address the problem of class imbalance we
split the dataset into two parts: pre-training and fine-tuning. Splitting the data into train,
validation and test sets is described in the section Fine-Tuning. Our study workflow is
presented in Figures 1–3.
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We resized all images to 224 × 224 and normalized them by applying mean and std values derived
from ImageNet-1K. Further, we split the data into two subgroups—the one used in pre-training and
the other used in fine-tuning. During the training process, we dynamically augmented the images
with fixed probabilities.
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validation set and one-fold for a test set at each cross-validation step. We fine-tuned each model
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2.1. Models

We chose Convolutional Neural Networks (CNNs) for fundus image classification as
widely used and well-performing models in image recognition tasks. CNNs consist of two
main parts:

• A feature extractor built mostly with convolutional layers, used to capture increasingly
abstract image features, which are then compressed into a vector, called feature-
embedding, during the process.

• A classifier containing mainly dense, fully connected layers, responsible for the classi-
fication of a feature-embedding vector.

In our experiments we decided to use recently published state-of-the-art models of
CNNs: ConvNext [25] and RegNet [26] and compare their performance to the most-used
architecture in image classification tasks—ResNet [13,27,31,32]. ConvNext architecture
was inspired by Hierarchical Transformers [33]. It modernizes ResNet by employing
various macro and micro design choices from Transformers and other popular CNNs
like ResNext [34] or MobileNetV2 [35]. RegNet architectures are a family of CNNs that
come from the progressively designed RegNet design space. They have proved to be
effective in many computational regimes [26,36]. Current state-of-the-art architectures are
understudied in the biomedical domain, although recent studies prove their potential in
diverse applications [36–40]. Therefore, we found it valuable to verify their superiority
over commonly used architectures in medical image classification. The most widely used
architecture of ResNet is ResNet50, which we found suitable for the data we collected. To
match its size, we chose ConvNextTiny and RegNetY3_2gf. All architectures were imported
from the torchvision package [41].
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2.2. Data Augmentation

Lack of data is a common problem for applications of deep learning techniques in the
biomedical domain [42–45]. Therefore, we decided to use data augmentation, with a library
provided by Buslaev et al. [46], to cover a larger space of possible inputs to our networks to
increase robustness. Fundus images in real-world cases are transformed affinely—images
are often rotated or inverted. Moreover, a natural characteristic of medical images is
underexposure or overexposure due to hardware or human mistakes [47]. Images from
different databases come with a range of resolutions, so there was a need to standardize
their size. Taking such features into consideration, we decided to use the transformations
described in Table 1. We have additionally used cutouts for regularization [48]. No data
augmentation was used during the validation or testing phase.

Table 1. Image augmentations used during model training with the probability of their application.

Name Probability Values

Rotate 0.8 [−90◦, 90◦]

Horizontal flip 0.5 -

Vertical flip 0.5 -

Random brightness contrast 0.5
Brightness limit: 0.1
Contrast limit: 0.15

Cutout 0.5
Number of holes: 20
Maximum height of hole: 11 px
Maximum width of hole: 11 px

2.3. Model Training

Data imbalance is a common problem in medical image classification. Naturally, some
diseases are rare and difficult to classify, or data are collected from limited sources due
to data collection costs or law-related issues. In such cases, data imbalance occurs. The
problem is potentiated when compiling a large and diverse dataset from many smaller
datasets. We proposed to use transfer learning and two-stage learning to better adjust our
models to fundus images classification task. A two-stage learning procedure consists of
pre-training a model on excess domain data and fine-tuning on thresholded data. The
procedure described is similar to the two-phase learning reported by Johnson et al. [23].
Although it differs in the way it defines both stages, two-phase learning first pre-trains
a model with thresholded data and then fine-tunes it using all data. For the pre-training
part, we selected an excessive amount of normal and diabetic retinopathy images over
the threshold of the cardinality of glaucoma images. The fine-tuning part consisted of the
remaining normal, diabetic retinopathy, AMD, and glaucoma images. The summary of
the data split is presented in Table 2. Such data division allows us to adjust a model to the
domain problem with excess data from the major classes, reducing general overfitting to
them during fine-tuning, by matching their cardinality with minor classes. The pre-training
dataset was used in the pre-training phase and the fine-tuning dataset was used in the fine-
tuning phase. We used Weights & Biases [49] for experiment tracking and visualizations to
develop insights for this paper.

Table 2. Summary of datasets used for pre-training, fine-tuning and ROS/RUS experiments.

Split # of Normal # of Glaucoma # of AMD # of Diabetic Retinopathy Total # of Samples

Pre-training 82,626 0 0 30,592 113,218
Fine-tuning 3787 3787 632 3787 11,993
ROS/RUS 86,415 3787 632 34,379 125,211
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2.4. Pre-Training

In the pre-training phase, we used ImageNet-1K pre-trained models. We removed
the fully-connected layer and replaced it with a new, randomly initialized one which had
only two outputs—for diabetic retinopathy and normal image predictions. We froze half of
the CNN layers to use the pre-trained feature-extraction abilities. Next, we trained each
model with early stopping with patients of 5 epochs, monitoring validation-set loss. For
the optimizer we chose Radam [50] with a learning rate 3−4, batch size 32 and weight decay
of 1−5. To further tackle the problem of class imbalance we decided to use weighted cross
entropy loss with weights 1 and 2 for Normal and Diabetic Retinopathy classes, respectively.
We used a cosine-annealing learning rate scheduler [51], with Tmax = 20, ηmin = 10−5 and
ηmax = 3 × 10−4.

2.5. Fine Tuning

From the model obtained in the fine-tuning phase, we removed the fully connected
layer and replaced it with a new, randomly initialized one which had four outputs, unlike
in pre-training. Similarly, we froze half of the convolutional layers of the model. To perform
an unbiased evaluation, we trained our models in a 10-fold cross-validation process. We
trained each model 10 times, every time choosing a different part of the dataset for the
test set, another for the validation set and the rest for the train set. The experiments were
performed with the same hyperparameters as in the pre-training phase, except for the
weights used in cross-entropy—here they are equal to 1, 0.9, 1.5, 1.2 for normal, glaucoma,
AMD, and diabetic retinopathy classes, respectively. We report the average results of all
runs for each model.

2.6. Verification of Other Resampling Methods

Resampling methods are widely used in the literature on class imbalance [23,52,53].
To present a fair comparison and verify the results provided on data with mitigated bias
we performed experiments using other resampling methods, namely: random minority
oversampling (ROS) and random majority undersampling (RUS). Similarly to the procedure
described in the Fine Tuning section, we trained models in a 10-fold cross-validation process.
To maintain comparability with the outcomes of two-stage learning and align the class
ratios for validation and test sets with our Fine Tuning phase, we applied a threshold during
each cross-validation iteration for validation and test folds. This threshold ensured that the
number of normal and diabetic retinopathy images matched the cardinality of glaucoma
images. We used the same hyperparameters as in our Fine Tuning phase. All experiments
were performed using the ConvNextTiny architecture pretrained on ImageNet-1K.

3. Results
3.1. Dataset

In the resulting dataset, there are 86,415 normal, 3787 glaucoma, 632 AMD and
34,379 diabetic retinopathy fundus images. The summary and medical characteristics
of the datasets are presented in Table 3.

Table 3. Summary and characteristics of the datasets.

Dataset N GL AMD DR Camera Models Annotators

ACRIMA [54] 309 396 0 0 Topcon→ TRC→
non-mydriatic

Two glaucoma experts with
8 years of experience

APTOS 2019 Blindness
Detection Dataset [55] 3733 0 0 1857 Variety of cameras Not available

Cataract [56] 300 101 0 100 Not available Not available
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Table 3. Cont.

Dataset N GL AMD DR Camera Models Annotators

DR HAGIS [57] 0 10 10 10

Topcon TRC-NW6s
non-mydriatic, Topcon
TRC-NW8 non-mydriatic or
Canon CR DGi non-mydriatic

Expert grader

DR1, DR2 [58] 895 0 0 1118 Topcon→ TRC-50X mydriatic Respectively, three and two
medical specialists

DRIVE [59] 33 0 0 5 Canon→ CR5→
non-mydriatic 3CCD Ophthalmology expert

Machine learn for
glaucoma [60] 788 756 0 0 Not available Not available

e-optha [47] 116 0 0 121 Not available Ophthalmology experts

Kaggle: EyePACS [61] 65,343 0 0 23,359 Variety of cameras A panel of medical
specialists

BAIDU:
iChallenge-AMD [62] 311 0 89 0 Not available Not available

REFUGE [63] 360 40 0 0 Zeiss Visucam
500 non-mydriatic Seven glaucoma specialists

Davis Grading of One and
Concatenated Figures [64] 6561 0 0 3378 Nidek AFC-230 non-mydriatic Specialist grader

Longitudinal diabetic
retinopathy screening
data [65]

0 0 0 1120 Topcon→ TRC-NW65
non-mydriatic Two graders

Messidor-2 [66] 1017 0 0 731 Topcon TRC NW6 Medical expert

ODIR-5K [19] 3098 312 280 1697 Various cameras such as
Canon, Zeiss, Kowa

Trained human readers with
Quality control management

LAG [67] 3147 1711 0 0 Not available Glaucoma specialists

RIGA [62] 0 289 0 0 Topcon→ TRC→ 50DX
mydriatic

Six experienced
ophthalmologists

RIM-ONE DL [68] 313 172 0 0

Kowa WX 3D stereo
non-mydriatic or Nidek
AFzC-210 non-mydriatic with
a Canon EOS 5D Mark II body

Three experts

ROC [69] 0 0 0 100 Topcon NW 100, NW 200, or
Canon CR5-45NM Retinal experts

STARE [70] 36 0 61 92 TOPCON TRV-50 Ophthalmology experts
ARIA [71] 61 0 23 59 Zeiss FF450+ mydriatic Retinal expert

RFMID [72] 669 0 169 632

TOPCON 3D OCT-2000, Kowa
VX-10alfa mydriatic and
non-mydriatic two in one, and
TOPCON TRC-NW300
non-mydriatic

Two ophthalmologists

TOTAL 86,415 3787 632 34,379

N: Normal fundus image; GL: Glaucoma; AMD: Age-related macular degeneration; DR: Diabetic Retinopathy.

Most datasets were annotated by experts, except four for which the data acquisition
process was not described: APTOS 2019 Blindness Detection Dataset [55], Cataract [56],
Machine learning for glaucoma [60] and BAIDU: iChallenge-AMD [62].

3.2. Evaluation Criteria

In our experiments, to leverage the advantage of a diverse real-world dataset we report
mean and standard deviation over 10 runs in a 10-fold cross-validation process, therefore
ensuring that every part of the dataset was used for evaluation. We used 5 metrics for every
class: Accuracy, F1-Score, Sensitivity, Specificity, and AUC, and then we also averaged
them across classes and reported the overall accuracy. For class-specific metrics, we used
the one-versus-rest technique. Such a wide set of metrics allows a thorough examination of
the models’ performance with respect to every disease [73,74].
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3.3. Performance

In Table 4 we present the results of our experiments. ConvNextTiny achieved the best
results in terms of recognizing most of the eye diseases examined with the most metrics.

Table 4. Performance metrics for each model with standard deviation computed over the ten cross
validation folds. Values in bold are the best results obtained.

Class Metric ResNet50 RegNetY3_2gf ConvNextTiny

Normal

F1-Score 72.61 ± 1.86 72.15 ± 2.32 72.97 ± 2.60
Sensitivity 73.75 ± 3.49 73.75 ± 6.64 74.57 ± 3.94
Specificity 86.46 ± 1.64 85.99 ± 2.90 86.27 ± 1.76
AUC 90.53 ± 0.76 90.19 ± 0.77 90.64 ± 0.56
Accuracy 82.50 ± 1.27 82.17 ± 0.88 80.01 ± 1.10

Glaucoma

F1-Score 95.22 ± 0.80 94.42 ± 0.83 94.83 ± 0.96
Sensitivity 95.64 ± 1.02 95.11 ± 1.09 95.54 ± 1.22
Specificity 97.57 ± 0.64 97.06 ± 0.51 97.25 ± 0.81
AUC 99.44 ± 0.18 99.30 ± 0.23 99.32 ± 0.17
Accuracy 92.78 ± 0.41 96.92 ± 0.66 97.20 ± 0.66

AMD

F1-Score 81.78 ± 4.35 79.25 ± 4.21 82.98 ± 3.50
Sensitivity 84.01 ± 8.13 83.23 ± 6.86 84.02 ± 6.37
Specificity 98.82 ± 0.43 98.51 ± 0.47 98.97 ± 0.49
AUC 99.25 ± 0.34 98.99 ± 0.51 98.79 ± 0.83
Accuracy 97.91 ± 0.29 98.13 ± 0.31 98.14 ± 0.31

Diabetic
Retinopathy

F1-Score 72.32 ± 1.28 71.60 ± 2.21 72.96 ± 1.78
Sensitivity 70.56 ± 2.23 69.11 ± 6.67 70.69 ± 3.33
Specificity 88.65 ± 1.65 89.09 ± 3.30 89.36 ± 1.91
AUC 91.15 ± 0.65 90.97 ± 0.64 91.65 ± 0.87
Accuracy 82.63 ± 1.09 83.04 ± 0.94 80.66 ± 1.27

Average

Accuracy 89.88 ± 7.53 90.15 ± 7.43 88.99 ± 8.74
F1-Score 80.48 ± 1.51 79.36 ± 1.60 80.93 ± 1.61
Sensitivity 80.99 ± 2.13 80.30 ± 2.03 81.20 ± 2.26
Specificity 92.88 ± 0.40 92.66 ± 0.39 92.96 ± 0.55
AUC 95.09 ± 0.39 94.87 ± 0.41 95.10 ± 0.36

Overall Accuracy 79.76 ± 1.39 79.53 ± 1.07 80.46 ± 1.48

It specifically excels over ResNet50 in the F1-Score for AMD with a difference of
1.2 pp. This proves the purposefulness of choosing modern state-of-the-art architectures
for medical experiments. The ResNet50 model achieved the best results at recognizing
glaucoma. RegNetY3_2gf scored the worst results at recognizing every disease with respect
to the most metrics. Figure 4 summarizes the performance of each model with ROC curves
for all diseases with their respective standard deviation. These curves show similar trends
for all diseases across all models. ConvNextTiny achieved higher results than ResNet50
with an AUC of 90.64 and 91.65 for normal and diabetic retinopathy images, respectively.

3.4. Comparison of Resampling Methods

The results of experiments with other resampling methods are presented in Table 5.
As in the previous experiments, we report mean and std over the cross-validation process.
ROS performed the best with respect to most metrics. Most notably it achieved a difference
of 0.7 pp. for the average F1-Score over two-stage learning and of 7.81 pp. over RUS. RUS
achieved the worst results. Worth noting also is the difference in the average AUC between
the tested methods. Two-stage learning achieved the same results as ROS and a 2.89 pp.
higher score than RUS. Random minority oversampling is a technique that requires a lot
of computer power due to the increased size of the training set. Therefore, it may not
be feasible in all scenarios, especially for a hyperparameter search procedure. Two-stage
learning, while still performing well, requires the model to be pre-trained on excess data
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only once and then a hyperparameter search can be performed using the thresholded
dataset. Random majority undersampling requires less computer power, although because
of voluntarily discarding data it achieves worse results in comparison.
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Table 5. Performance metrics for each resampling method with standard deviation computed over
the ten cross validation folds. All experiments were performed using the ConvNextTiny architecture.
Values in bold are the best results obtained.

Class Metric Two-Stage
Learning (Our) RUS ROS

Normal

F1-Score 72.97 ± 2.60 63.52 ± 3.50 73.84 ± 1.36
Sensitivity 74.57 ± 3.94 63.27 ± 8.69 80.34 ± 5.50
Specificity 86.27 ± 1.76 83.75 ± 3.76 82.83 ± 3.79
AUC 90.64 ± 0.56 85.59 ± 0.67 90.23 ± 0.87

Glaucoma

F1-Score 94.83 ± 0.96 92.36 ± 1.00 95.34 ± 1.28
Sensitivity 95.54 ± 1.22 91.08 ± 3.03 92.45 ± 3.07
Specificity 97.25 ± 0.81 97.17 ± 0.91 99.33 ± 0.45
AUC 99.32 ± 0.17 98.69 ± 0.18 99.46 ± 0.12

AMD

F1-Score 82.98 ± 3.50 76.16 ± 3.84 84.44 ± 2.55
Sensitivity 84.02 ± 6.37 93.01 ± 3.90 75.40 ± 4.18
Specificity 98.97 ± 0.49 97.13 ± 0.72 99.82 ± 0.28
AUC 98.79 ± 0.83 99.05 ± 0.39 99.28 ± 0.27

Diabetic
Retinopathy

F1-Score 72.96 ± 1.78 63.23 ± 2.87 72.89 ± 1.59
Sensitivity 70.69 ± 3.33 62.43 ± 7.74 70.05 ± 4.84
Specificity 89.36 ± 1.91 84.09 ± 4.37 89.82 ± 2.74
AUC 91.65 ± 0.87 85.52 ± 0.84 91.41 ± 0.71

Average

F1-Score 80.93 ± 1.61 73.82 ± 1.43 81.63 ± 1.31
Sensitivity 81.20 ± 2.26 77.45 ± 1.29 79.56 ± 1.38
Specificity 92.96 ± 0.55 90.54 ± 0.43 92.95 ± 0.46
AUC 95.10 ± 0.36 92.21 ± 0.41 95.10 ± 0.40

Overall Accuracy 80.46 ± 1.48 73.35 ± 1.26 80.65 ± 1.30

Technical Runtime [s] 1196.4 370 37,194.9

3.5. Comparison to Other Recent Models

In Table 6 we compare the results of our experiments to other works. Goals and test
sets used across the works make the results not directly comparable. Previous studies
reported the results with different metrics, which made them difficult to compare with each
other and our study.
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Table 6. Summary of the results obtained by our model and in related works. The results are difficult
to compare, because each study had different aims, questions to answer and used different test sets.
Because we used the most diverse dataset our metrics were the most reliable in terms of developing a
model applicable in clinical screening.

Paper Class F1-Score Sensitivity Specificity AUC Accuracy

Ours (ConvNextTiny)

Normal 72.97 74.57 86.27 90.64 80.01
Glaucoma 94.83 95.54 97.25 99.32 97.20
AMD 82.98 84.02 98.97 98.79 98.14
Diabetic Retinopathy 72.96 70.69 89.36 91.65 80.66

Han et al. [14]

Normal - - - - -
Glaucoma - 83.70 84.00 91.60 83.89
AMD - 77.61 78.75 86.70 78.37
Diabetic Retinopathy - 80.36 80.50 89.10 80.39

Bulut et al. [11]

Normal - - - - -
Glaucoma - - - 81.10 -
AMD - - - 96.30 -
Diabetic Retinopathy - - - 87.10 -

Gour et al. [13]

Normal - 77.00 21.00 - 40.00
Glaucoma - 40.00 60.00 - 54.00
AMD - 06.00 93.00 - 88.00
Diabetic Retinopathy - 05.00 94.00 - 89.00

Chellaswamy et al. [12]

Normal 96.39 95.99 91.27 - 95.00
Glaucoma 96.43 94.95 96.32 - 96.00
AMD 93.96 99.01 94.98 - 96.38
Diabetic Retinopathy - - - - -

Muthukannan et al. [17]

Normal 94.09 95.65 98.56 - 99.20
Glaucoma 97.04 97.77 99.28 - 97.80
AMD 95.49 94.98 99.01 - 98.40
Diabetic Retinopathy 94.98 94.31 98.92 - 97.90

Khan et al. [15]

Normal - - - - -
Glaucoma 92.00 97.00 - - -
AMD 88.00 92.00 - - -
Diabetic Retinopathy 89.00 92.00 - - -

Li et al. [16]

Normal - 94.50 95.70 98.90 -
Glaucoma - 80.40 93.40 95.30 -
AMD - 85.80 93.90 97.60 -
Diabetic Retinopathy - 80.40 89.70 95.00 -

4. Discussion

The authors presented a model trained for retinal disease screening in the ageing
societies of developed countries. The best utilized architecture (ConvNextTiny) reached
80.46 ± 1.48 overall accuracy, with average 81.20 ± 2.26 sensitivity and 92.96 ± 0.55 speci-
ficity. It was reported that ophthalmic consultants detect retinal diseases with 89% sensitiv-
ity and 86% specificity when relying on eye fundus photographs [75]. The presented model
had a lower sensitivity and higher specificity than ophthalmologists, however these bench-
marks proved its potential clinical utility. An average AUC of 95.10 ± 0.36 classified our
model as an acceptable screening method with excellent classification performance [76]. The
utilized dataset potentially contributed little to the result. Most of the database consisted
of poor-quality retinal images, often blurred or distorted, annotated by different experts
according to various guidelines. This could lead to ambiguous interpretation for each class
in the dataset. However, this diversity gave a better approximation of a real clinical setting.
The results were more reliable and generalizable to the true screening process.

Despite a lack of certain comparability, the authors attempted to compare the AUC
between the presented model and the most recent studies. Although AUC remains the
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most reliable measure of the learning algorithm’s performance [77], only three studies
reported this benchmark [11,14,16]. The model outperformed all three models in GL and
AMD classification. The AUC for DR was higher than presented by Han et al. [14] and
Bulut et al. [11], but Li et al. [16] obtained a better result.

Our model not only presented an acceptable performance, but also was the first that
truly approximates to the real-world environment. Based on one of the largest datasets, it
made the received results less biased and more generalizable than in previously published
papers. The authors merged multiple datasets from around the world into one cumulative
dataset. This minimized bias from the single-image acquisition process, ethnicity, or limited
cameras models. The created model could be used in multiple clinics, located in distant
places and which could be using different equipment, without a need for additional fine-
tuning or calibration. This approach was partially adopted by Chellaswamy et al. [12] and
Han et al. [14]. Chellaswamy et al. [12] merged 5 publicly available datasets and extracted
with an undescribed method a limited number of fundus images for each of the analyzed
diseases. As a result, the final dataset was relatively small and potentially biased due to the
unknown method of image selection. Han et al. [14] combined 6 publicly available with
2 private datasets and achieved a large and diverse ophthalmic image collection. However,
there was the potential for an even more diverse large-scale database, as 94 public, open-
access, fully downloadable ocular image collections were available at the time when Han
Y et al. [14] conducted their research [15]. Han et al. [14] utilized 2 proprietary image
collections, thus full transparency of the model’s development could not be guaranteed.
Neither the composition nor the collection process of the datasets was described in this
paper. Moreover, these 2 private databases were collected from the Chinese population,
which did not increase the overall ethnical diversity.

The presented study is the first study that only utilizes multiple public data sets. This
made the presented findings fully reproductible by the scientific community. Previous
models trained on multiple datasets have always encompassed at least one proprietary im-
age collection. While Han Y et al. [14] mixed public and private collections, Bulut et al. [11]
and Li et al. [16] developed their models exclusively with private datasets.

To date, this has been first study to address the problem of class imbalance in a
large-scale database of retinal fundus images. The ODIR dataset, the most frequently
utilized retinal image collection in published multiclass models [12,13,15,17] has severe
class imbalance problems [13]. It seems reasonable to assume that merging multiple
different datasets into one large one could even potentiate this issue. Our model exhibited
an AUC > 90 in all included classes, despite large discrepancies in the number of images.
The highest sensitivity and specificity were received for AMD and GL. Significantly lower
benchmarks were reported for normal eye fundus and DR. Normal and DR had the
highest shares in the final dataset, significantly greater than AMD and GL. The potential
explanation of these findings is that the vast majority of normal eye fundus and DR
images come from the EyePACS dataset, which describes its images as real-world data that
may include noise in both the images and labels, artifacts, under- and overexposure [61].
Therefore, robust classification for this data may have proven the most challenging. Yet
these conditions and the extensive cross-validation process in the fine-tuning stage of
the model’s development made the received results the most reliable among recently
published models. Gour et al. [13] partially approached the difficulty of class imbalance in
the ODIR dataset. Although Gour et al. [13] supported their research with an analysis of
class-wise performance, the developed model still showed higher sensitivity and accuracy
for diseases with the highest prevalence in the dataset [13]. The model correctly classified
fundus images of healthy retinas and glaucoma but failed to recognize other classes such
as diabetic retinopathy or AMD [13]. Only one study aimed to address the problem of
class imbalance in a dataset of retinal images [15]. Khan et al. [15] with unknown selection
criteria created a balanced training set for the VGG-19 architecture model and utilized
only the ODIR database. It cannot be excluded that the extraction process was biased, e.g.,
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by selecting images with the highest quality and aimed to achieve the highest possible
model performance.

Aside from advances in computer science, the presented model brought some novelty
into the medical field. This was the first model targeted at the most distressing retinal
diseases in ageing societies. Excellent AUC values for GL, AMD and DR proved its
potential screening utility. The overall accuracy of 80.46 ± 1.48 meets the performance
requirements for routine screening tests in medicine [72]. This model has been the first to
be trained on medically relevant diseases. Apart from cataracts, which are not a retinal
disease [24], the authors did not include rare diseases or ones irrelevant to screening such
as retinitis pigmentosa. The inclusion of multiple less prevalent diseases in previous
research [11,13–15] potentially decreased the screening utility of those models. Creating
a model with multiple various diseases may be a curious academic problem. However,
due to limited data availability and the tedious process of its collection, the creation of a
real-world deep learning model with real clinical application should be restricted only to
the most prevalent and distressing diseases, such as GL, AMD, and DR.

The present study has multiple limitations. Firstly, the developed model lacks a class
that would signify “other” conditions—elderly people could suffer multiple other retinal
diseases than GL, AMD, DR, and diseases could overlap with each other. However, public
datasets include a limited number of classes of retinal disorders. Due to the almost infinite
possibilities of “other” diseases, the model was simplified to these three most distressing
diseases. Furthermore, the model’s performance was not validated by ophthalmologists. It
is still uncertain whether the presented performance is comparable to that from a healthcare
professional. The authors could not assume that retinal images from different datasets had
consistent image classification. Retinal classification guidelines vary between countries,
and even partial assessment of the final dataset by an experienced physician could be
beneficial. Finally, authors did not have access to some datasets, which limited the number
of images utilized. This could influence the final performance of the developed model.

5. Conclusions

This work presents classification results for the most distressing and screening-relevant
retinal diseases: diabetic retinopathy, glaucoma and age-related macular degeneration,
on the basis of multiple publicly available datasets, without performing an evaluation of
private datasets gathered in controlled environments. Availability of the data and clear
selection criteria ensured reproducibility of the results. The achieved results classified the
developed model as a useful screening method and the data utilized made it more reliable.
Merging multiple datasets mitigated the data bias problem. A class imbalance problem,
potentiated because of dataset merging, was addressed via transfer learning, loss function
weighting and two-stage learning procedures. Such a model can enhance the efficiency and
effectiveness of eye care providers. This research fills the gap in the literature on multiclass
models and contributes to improving the diagnosis and treatment of retinal diseases.
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