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Abstract: Knee osteoarthritis (OA) detection is an important area of research in health informatics that
aims to improve the accuracy of diagnosing this debilitating condition. In this paper, we investigate
the ability of DenseNet169, a deep convolutional neural network architecture, for knee osteoarthritis
detection using X-ray images. We focus on the use of the DenseNet169 architecture and propose an
adaptive early stopping technique that utilizes gradual cross-entropy loss estimation. The proposed
approach allows for the efficient selection of the optimal number of training epochs, thus preventing
overfitting. To achieve the goal of this study, the adaptive early stopping mechanism that observes
the validation accuracy as a threshold was designed. Then, the gradual cross-entropy (GCE) loss
estimation technique was developed and integrated to the epoch training mechanism. Both adaptive
early stopping and GCE were incorporated into the DenseNet169 for the OA detection model. The
performance of the model was measured using several metrics including accuracy, precision, and
recall. The obtained results were compared with those obtained from the existing works. The
comparison shows that the proposed model outperformed the existing solutions in terms of accuracy,
precision, recall, and loss performance, which indicates that the adaptive early stopping coupled with
GCE improved the ability of DenseNet169 to accurately detect knee OA.

Keywords: knee OA detection; DenseNet169; early stopping; self-adaptive; GCE

1. Introduction

Osteoarthritis is a degenerative joint disorder that affects millions of people worldwide,
leading to pain and loss of mobility in the affected joints [1,2]. Early detection and diagnosis
of osteoarthritis are crucial for effective treatment, but traditional diagnostic methods can be
time-consuming and invasive. In recent years, deep learning-based techniques have shown
great potential in the early detection of knee osteoarthritis using medical imaging [2,3]. This
type of approach can automate the analysis of radiographic images, reducing the dependence
on subjective interpretations, and increasing the accuracy and consistency of diagnosis [4,5].

Deep learning is a powerful tool used for image analysis, pattern recognition, and
decision making. It is based on the use of artificial neural networks, which are modelled
after the human brain, and can learn from data [6]. In the context of knee osteoarthritis
detection, deep learning algorithms can be trained to recognize patterns and features that
are indicative of the disease in radiographic images [7,8]. The ability to automatically
extract and analyze these features can provide a more objective and accurate diagnosis than
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traditional methods [8,9]. Recent studies have shown that deep learning-based techniques
can achieve high accuracy in the detection of knee osteoarthritis using X-ray and MRI
images [9,10]. These results demonstrate the potential of deep learning-based techniques
for the early detection of knee osteoarthritis and pave the way for the development of more
accurate and efficient diagnostic tools.

However, it is worth noting that knee osteoarthritis detection using deep learning is
still in the development phase, and more research is required to validate and improve these
solutions before they become widely adopted in clinical practice [11]. One of the main
challenges in deep learning-based solutions for osteoarthritis detection is overfitting, which
occurs when a model is trained on a limited dataset and performs well on the training data
but performs poorly on new, unseen data [12,13]. According to [14], the limited size and
diversity of available datasets can lead to poor generalization and overfitting of the models.
This can result in a high accuracy on the training set but a low accuracy on the test set and
real-world data [15].

Increasing the number of epochs in a deep learning model can also lead to overfitting
and affect the accuracy of the model in various ways [16]. Generally speaking, as the
number of training epochs increases, the model will continue to learn from the training
data, and the accuracy of the training set will typically increase [17]. However, as the model
continues to learn, it may start to overfit the training data, resulting in a decrease in the
accuracy on the test set or real-world data [18].

In the case of a DenseNet169 model, which is a type of convolutional neural network,
increasing the number of epochs can lead to an improvement in the accuracy on the training
set. The model will be able to learn more from the training data, and the weights and biases
of the network will be adjusted to better fit the data. However, after a certain number of
epochs, the accuracy on the validation set may start to decrease, indicating that the model
has started to overfit [19].

It is worth noting that the optimal number of epochs will depend on the specific
data, the architecture of the model, and the task at hand [20]. One way to determine the
optimal number of epochs is to use techniques such as early stopping, which involves
monitoring the performance of the model on a validation set and stopping the training
when the performance starts to degrade [21]. By stopping the training before the model
starts to overfit, early stopping can help to prevent overfitting and improve the accuracy of
the model on new, unseen data.

Recent research has proposed various early stopping methods to improve the accu-
racy of DenseNet169-based models. For example, Ref. [21] proposed an early stopping
strategy that monitors the performance of the model on the validation set and stops the
training when the performance starts to degrade. In addition, Refs. [22,23] employed the
early stopping regularization that monitors the performance of the model on the valida-
tion set and stops the training when the performance starts to degrade. In their study,
Ref. [13] investigated knee OA early detection, and OA grading identification using deep
learning. The researchers developed a new approach to classify data in deep learning
models using the Laplace distribution-based strategy (LD-S) and created an aggregated
multiscale dilated convolution network (AMD-CNN) to extract features from multivariate
data of knee osteoarthritis (KOA) patients. They combined the AMD-CNN and LD-S to
create a new KOA-CAD method that achieves three objectives in computer-aided diagnosis.
Similarly, Ref. [24] introduced a new method for identifying knee osteoarthritis (KOA) in its
early stages, which involves using deep learning to extract features from data and classify
it. The algorithm being suggested utilizes X-ray images to both train and test the results.
It uses hybrid feature descriptors, which extract features through combinations of CNN
with HOG and CNN with LBP. The system employs three multi-classifiers to categorize
diseases based on the KL grading system using KNN, RF, and SVM. However, there are
several current research issues related to early stopping methods in deep learning models
including the DenseNet169. One issue is determining the optimal stopping point [23]. The
optimal stopping point will depend on the specific data, the architecture of the model, and
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the task at hand, and it is not clear yet how to determine it in an automated and general way
that works well across different datasets and tasks [25,26]. Another issue is related to the
trade-off between the accuracy and the generalization of the model. While early stopping
can prevent overfitting, it can also result in underfitting if the model is stopped too early;
this can lead to decreased accuracy on the test set or real-world data [27]. Therefore, there is
a need to strike a balance between preventing overfitting and ensuring that the model has
enough capacity to generalize well to new data. Additionally, the definition of performance
degradation can vary depending on the dataset and the task, which makes it difficult to
generalize early stopping methods across different datasets and tasks [28].

To this end, this study is devoted to investigating the applicability and efficacy of
a novel adaptive early stopping technique in DenseNet169 in the context of knee OA
detection. Our early stopping mechanism sets a patience threshold for early stopping by
calculating the running average of the validation loss. In such a way, our technique can
avoid arbitrary termination of the training. The proposed technique also embeds a novel
gradual cross-entropy coefficient for accurate loss estimation during the early stopping of
model training. The contribution of this paper is three-fold, as follows:

1. An adaptive early stopping technique was proposed for DenseNet169 that dynami-
cally adjusts the number of epochs and the batch size during the training, based on
the contribution of each batch to the accuracy of the model.

2. A gradual loss estimation method based on cross-entropy was proposed for measuring
the dissimilarity between the predicted class probabilities and the true class labels.

3. An improved DenseNet169-based knee OA detection model which incorporates the
techniques in (1) and (2) was developed and experimentally evaluated using the Knee
Osteoarthritis Severity Grading dataset.

The rest of this paper is structured as follows. Section 2 provides the details on the
methodology design and techniques proposed in this study. Section 3 describes the dataset
and experimental environment used to carry out the model evaluation. It also explains the
results and analytically discusses the findings from the experimental evaluation. Section 4
concludes the paper with suggestions for further research suggestions.

Related Works

The evolution in detecting and assessing the severity level of knee OA has seen a
transition from traditional methods to the utilization of advanced machine learning and deep
learning techniques. These include the use of complex network theory [11], circular Fourier
filters [2], and deep learning algorithms to analyze radiographic knee X-ray images and aid
in the early detection and diagnosis of the disease. A pivotal development in this research
is the usage of a deep learning-based algorithm to automatically assess and grade the OA
severity, often achieving comparable accuracy with expert radiologists [7,8]. In some instances,
utilizing deep learning techniques on properly preprocessed images, such as through image
sharpening, has resulted in improved accuracy rates [24]. Similarly, a semi-automatic model
based on deep Siamese convolutional neural networks has been used to detect OA lesions
according to the KL scale [29]. Furthermore, transfer learning has been deployed to aid the
classification performance of models trained on imbalanced datasets.

With the advancement in deep learning architectures, new methodologies for OA sever-
ity assessment are introduced. A variety of deep-learning models have been proposed in the
literature for diagnosing the severity of knee OA. For example, Ref. [30] leveraged a fully
convolutional network (FCN) to locate knee joints and a deep convolutional neural network
(CNN) to differentiate various stages of knee OA severity. Likewise, Ref. [31] introduced a
technique using deep Siamese CNNs for automatic grading of knee OA severity following
the KL grading scale, treating knee OA as a multi-class problem based on KL grades.
Moreover, Ref. [32] presented a Discriminative Regularized Auto-Encoder (DRAE) for the
early detection of knee OA, specifically differentiating between non-OA and minimal OA.
The DRAE combines a discriminative loss function with the standard auto-encoder training
criterion to improve the identification of knee OA.
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Pre-trained deep learning models such as DenseNet and ResNet were also used in several
studies for the knee OA severity level assessment. In particular, DenseNet201 was employed
in [33] to develop knee OA grading. The model trains the DenseNet201 architecture on knee
radiographic images from the OAI dataset. Using the Kellgren and Lawrence (KL) grading
system, the model classifies the severity from grade 0 through grade 4. Similarly, the knee OA
model proposed in [34] utilized DenseNet169. The model involves training the DenseNet169
using a balanced combination of two loss functions, categorical cross-entropy and mean
squared error. This model inherently enables the prediction of knee OA severity on both an
ordinal scale (0, 1, 2, 3, 4) and a continuous scale (0–4).

The study [35] proposed two novel learning structures, Deep Hybrid Learning-I
(DHL-I) and Deep Hybrid Learning-II (DHL-II), both devised for efficient knee osteoarthri-
tis (OA) severity classification based on Kellgren-Lawrence (KL) grades. DHL-I, based on
a convolutional neural network (CNN), introduces a five-class prediction structure. This
model is trained on knee X-ray images, then extracts features, applies principal component
analysis (PCA) for dimensionality reduction, and then uses support vector machines (SVMs)
for classification. DHL-II follows the same process, but the pre-trained CNN developed for
DHL-I is fine-tuned using the concept of transfer learning to classify knee OA into four,
three, and two classes.

When training a deep neural network model for assessing knee OA severity level,
setting the appropriate number of training epochs and batch size per epoch often poses
a challenge [36]. Overfitting might occur if too many epochs are used, while underfitting
may result from too few epochs [37]. Training a neural network involves finding the right
balance to avoid overfitting the training data. While adjusting the number of training
epochs can help, it is computationally intensive and is not guaranteed to find an optimal
value. Early stopping offers a more efficient solution [36]. This strategy involves training
the model for many epochs, then halting the training when the model’s performance on
a validation dataset starts to decline, ensuring optimal generalization performance [37].
This can be achieved by setting a potentially large number of training epochs initially, and
then halting the training process when there is no further improvement in the model’s
performance on the validation dataset.

Several studies have adopted early stopping for knee OA severity level assessment. A
convolutional neural network with ResU-Net architecture (ResU-Net-18) was used in [38]
to develop a Multiple-JSW for knee OA severity and progression. The model segments
the knee X-ray images, and the minimum and multiple joint space widths (JSW) were
estimated from this segmentation and verified against radiologist measurements. During
ResU-Net-18 training, the early stopping mechanism was implemented. This technique
ends the training if there is no reduction in the loss for 10 consecutive epochs, serving as a
preventive measure against overfitting.

The study conducted by [39] developed a fully automated deep-learning model for
assessing the severity of knee osteoarthritis (OA) using the Kellgren–Lawrence (KL) grading
system. The algorithm was developed to use posterior–anterior (PA) and lateral (LAT)
views of knee radiographs for this assessment. Early stopping was employed to halt
the training before the model overfitted. The early stopping parameter was set to 20,
which stops the training after 20 epochs. Nonetheless, identifying the ideal number of
epochs poses a significant challenge. Similar to methods not employing early stopping,
this approach could lead to overfitting if the early stopping criteria are set too high, and to
underfitting if the criteria are set too low.

A pre-trained CNN model was also used in [29], which developed a semi-automatic
computer-aided diagnosis (CAD) for detecting knee OA based on ResNet-34. The model
used deep Siamese convolutional neural networks and a fine-tuned ResNet-34 to detect OA
lesions in both knees based on the Kellgren and Lawrence (KL) scale. In order to balance
the prevention of overfitting with maintaining model accuracy, an early stopping criterion
was implemented. This stopped training when there was not any improvement in the
validation accuracy observed after 50 epochs.
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Although some of the existing knee OA grading models employ early stopping, they
rely on statically set patience parameter values based on the number of epochs and the
batch size. Such a static approach makes the model rigid and unable to adapt to the varying
characteristics of the OA in X-ray images. If the patience value is set statically, it may not be
optimal, as a value that is too high may lead to overfitting. This is because the model could
continue training beyond the point of optimal generalization, learning the noise in the
training data. On the other hand, a value that is too low may stop the training prematurely,
leading to an underfit model that does not capture the underlying patterns in the data.
Hence, it is crucial to find a balance and possibly employ dynamic strategies in setting the
patience parameter for early stopping.

2. Materials and Methods

The methodology section of this paper describes the methods and procedures used to
develop and evaluate the deep learning-based knee osteoarthritis (OA) detection method
using X-ray images. We first present the dataset used in this study and the pre-processing
steps applied to the images. Next, we describe the DenseNet169 architecture, and the fine-
tuning process used to adapt the model to the knee OA detection task. We also describe
the implementation details of the early stopping methods used to prevent overfitting and
improve the accuracy of the model. Finally, we present the evaluation metrics and statistical
analysis used to assess the performance of the proposed method. This section provides a
detailed description of the steps taken to achieve the results and conclusions of this study,
allowing for replication and further research on the topic.

2.1. X-ray Images Pre-Processing

The model development was carried out in three phases, i.e., pre-processing, training,
and fine-tuning. At pre-processing phase, X-ray images underwent several procedures,
namely, embedding, data augmentation, transposition, and flipping. Furthermore, vi-
sion transformer (ViT) was used to divide the input images into fixed-size patches and
then positionally embed them into the transformer’s encoder (TE). This step reduces the
overhead on the model as it replaces the convolutions while maintaining a high level of
accuracy. Concretely, the ViT takes an image, x ∈ R(H ×W × C), as input and turns it
into a sequence of patches , xp ∈ R(N × P× P× C), where (H, W) denotes the hight and
width of the original image, C denotes the number of channels, (P, P) denotes the patch
resolution, and N is the number of patches, which is calculated as follows.

N =
WH
P2 (1)

Then, the generated patches are embedded linearly into the TE. The TE uses a multi-
head self-attention layer to control the embedding and generates a richer representation of
image data. In particular, the self-attention layer consolidates the ability of TE to relate the
sequence of inputs with each other.

2.2. An Adaptive Early Stopping for DenseNet169-Based Knee OA Detection Model

The model adopts the DenseNet169 architecture in which each layer is connected to
every other layer [40,41]. The rationale behind this choice is that DenseNet169 architecture
has far fewer trainable parameters compared to other architectures. Therefore, DenseNet169
helps to increase the depth of deep CNNs while avoiding information vanishing, which
happens when the path between input and output layers becomes too big. By reducing the
number of parameters, DenseNet169 gets rid of redundant feature maps, which, in turn,
reduces the number of filters as well [42]. Figure 1 shows the architecture of DenseNet169.
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The DenseNet169 architecture is composed of several types of layers including con-
volutional, maxpool, dense, and transition layers [41]. Moreover, the architecture uses
two activation functions, namely, Relu and SoftMax. The former is used throughout the
architecture, except for the final layer, in which SoftMax is used instead. The purpose of
convolutional layers is to apply multiple filters to the X-ray image and generate a feature
map that describes the intensity of the extracted features. Concretely, if we take an image
input with L × N size followed by a convolutional layer and apply an m × m filter, the
output of the convolution will be an (l −m + 1) × (l − n + 1).

The maxpool layer in DenseNet169 is then used to decrease the feature map size.
To achieve that, a pooling filter is applied over the feature map, which aggregates the
features in the area covered by the filter region. Concretely, a feature map with (nh, nw, nc)
dimensions can be reduced by applying the MaxPool technique as described in Equation 1
as follows:

MaxPool =
nc × (nh − f + 1)× (nw − f + 1)

s2 (2)

where h denotes the height, w denotes the width, c denotes the channel of the feature map,
and f denotes the size of the filter.

The dense layer in DenseNet169 architecture consists of nodes (neurons) that receive
inputs from all nodes in the preceding layer. Those inputs undergo matrix–vector mul-
tiplication. Concretely, it is assumed that M is an x × y matrix, p is a (1 × y) vector, and
the matrix λ of parameters of the preceding layer was learned using the backpropagation.
Therefore, the weights (ϕly ) and biases (ηly ) associated with layer ly can be calculated
as follows:

ϕly = ϕly − α× dϕly (3)

ηly = ηly − α× dηly (4)

The dϕly and dηly are the partial derivatives of the loss function of ϕ and η. Finally,
the transition layer decreases the model complexity by reducing the number of channels
using 1 × 1 convolution. Table 1 shows the layered architecture of DenseNet169. It details
the information for each layer, including the kernel size, tensor size, and used parameters.
From the table, we can observe that Relu and SoftMax are used as activation functions.
Moreover, the stride value (which determines the number of pixels that shift over the input
matrix) was set to 2 in all convolutions, pooling, and transition layers. In addition, the
dropout that helps in preventing overfitting and reduces the variance is set to 0.2 for all
dense layers. We can also observe that the tensor size decreases by half when moving
toward the output layer.

Table 1. DenseNet169 layered architecture.

Layer Kernel Size Parameters Tensor Size

Convolution Conv = 7× 7 Stride = 2, Relu 112× 112
Pooling MaxPool = 3× 3 Stride = 2 56× 56

Dense1 Conv = 1× 1× 6
Conv = 3× 3× 6 Dropout = 0.2 56× 56
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Table 1. Cont.

Layer Kernel Size Parameters Tensor Size

Transition 1 Conv = 1× 1
AvgPool = 2× 2 Stride = 2 56× 56

28× 28

Dense 2 Conv = 1× 1× 12
Conv = 3× 3× 12 Dropout = 0.2 28× 28

Transition 2 Conv = 1× 1
AvgPool = 2× 2 Stride = 2 28× 28

14× 14

Dense 3 Conv = 1× 1× 32
Conv = 3× 3× 32 Dropout = 0.2 14× 14

Transition 2 Conv = 1× 1
AvgPool = 2× 2 Stride = 2 14× 14

7× 7

Dense 4 Conv = 1× 1× 32
Conv = 3× 3× 32 Dropout = 0.2 7× 7

Classification AvgPool = 1× 1
1000D (fully connected SoftMax) 1× 1

2.3. An Adaptive Early Stopping Technique

Unlike classical sequential models, our model dynamically adjusts the number of
epochs as well as the number of steps per epoch (batch size) during the training, based on
the contribution of each batch to the accuracy of the model. An early stopping mechanism
was incorporated into the feedforward and backpropagation during the model training.
This mechanism solves the issue of identifying an appropriate number of training epochs
as well as batch size per epoch. The early stopping allows the model to start with arbitrary
values for both parameters and stops the training when no further improvement happens
at both levels. During the model’s training, the early stopping mechanism monitors one
or more performance measures based on which the training can be aborted. In our study,
we monitor the loss on the validation set. The model stops the training when no further
decrement is achieved in the validation loss. To avoid immature early stopping, we set
a patience threshold as a baseline value calculated using the running average of the loss
difference (ε). Equation (5) was used to calculate the value of the patience parameter. The
equations show that the value is updated at every step within the epoch based on the
average of previous values, which avoids arbitrary stopping.

Patience =
avg

(
εti−1

)
+ εti

i + 1
(5)

ε = ti − ti−1 (6)

where ti denotes the ith value of the observed measure.
The model waits until the threshold’s value is satisfied, then triggers the early stop-

ping. Such a controlling mechanism relies on two parameters, a global parameter (macro
controller), and a local parameter (micro controller). On the one hand, the macro con-
trolling parameter aborts the training when a set of preceding and current epochs make
no improvement to the accuracy. On the other hand, the micro-controlling parameter
aborts the running epoch at the time when it detects that no further improvement to the
accuracy is made during that epoch. Therefore, model training takes less time and uses
fewer resources.

However, dropping part of the data on the macro and micro level could deprive the
model of valuable data located that would have been used in later epochs. To mitigate
such drawback of early stopping, an improved loss function technique with the ability to
compensate for potentially lost data was developed.
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2.4. A Gradual Cross-Entropy Loss Estimation Technique

As pointed out above, the existing loss function techniques rely on the entire data
allocated for the epoch to calculate the loss. However, the early stopping aborts the
epoch execution and drops a portion of training data. Consequently, the loss estimation
is negatively affected. To address the effect of early stopping on the accuracy of the loss
estimation, our study proposes a gradual cross-sntropy (GCE) technique which improves
the loss estimation at the micro (epoch) level. Unlike the existing loss calculation techniques
that consider all epoch data, the GCE calculates the loss based on only the portion of the
data that was consumed in the epoch until the moment of abortion. Intuitively, the early
stopping at the micro level discards the remaining data in the batch allocated for the current
epoch. Therefore, it is necessary to exclude the discarded data from the loss calculation.
Concretely, Equation (7) shows that the entropy value is divided by the total number of
examples (N) in the epoch.

J(w) = − 1
N

N

∑
i=1

C

∑
c=1

1yiεCc logpmodel
[yiεCc] (7)

where C denotes the category (class) and 1yiεCc denotes the ith observation that belongs to
the cth category. Such a calculation overlooks the effect of early stopping. To rectify such a
drawback, our study introduces a gradual weighting coefficient δ into the loss function as
shown in Equation (8). The calculation of δ value is shown in Equation (9).

J(w) = − δ

N

N

∑
i=1

C

∑
c=1

1yiεCc logpmodel
[yiεCc] (8)

δ =
N
l

(9)

where l denotes the number of examples that were consumed so far during the current
epoch. The coefficient δ reduces the weight of N according to the actual number of training
examples that were used during the epoch. If an epoch stops early, the loss calculation is
carried out based on the consumed data only. Therefore, the accuracy of loss estimation is
improved, which consequently improves the accuracy of the model. The GCE is integrated
into the detection model and used during the training phase to support the feed-forward
and backpropagation.

2.5. Dataset Description

In this study, the Knee Osteoarthritis Severity Grading dataset is used to train and
evaluate the performance of the proposed model. It contains knee X-ray images for OA
detection and KL grading. Five gradings constitute the dataset labels as follows: healthy
knee image (grade 0), doubtful joint space narrowing (JSN) with possible OA (grade 1 or
healthy), confirmed OA and possible joint space narrowing (grade 2 or minimal), multiple
moderate OA with confirmed JSN and mild sclerosis (grade 3 or moderate), and large OA
with significant JSN and severe sclerosis (grade 4 or severe). The data are distributed based
on the grades, such that there are 604 images for grade 0, 275 images for grade 1, 403 files
for grade 2, 200 images for grade 3, and 44 images for grade 4. Figure 2 shows samples of
images with various labels.
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Figure 2. Samples of images in the dataset.

From the data distribution illustrated above, it can be seen that the dataset has a class
imbalance, which might lead to classification bias toward the majority label. To mitigate
this drawback, data augmentation was used to balance the training set so that each class
contains 500 samples. Several techniques were employed to conduct the augmentation,
including flipping, rotation, shifting, and zooming. Table 2 shows the augmentation
parameter customization used in this study, which was determined experimentally.

Table 2. Augmentation optimization parameters.

Parameter Value

horizontal_flip True
rotation_range 25

width_shift_range 0.22
height_shift_range 0.23

zoom_range 0.25

The augmented samples were then added to the dataset and used for training the
detection model. The dataset was divided into three subsets, training, validation, and
testing, using the cross-validation method by which the data were sampled randomly, and
the five labels were represented in all subsets. Table 3 shows the data distribution among
the three subsets after conducting the K-fold cross-validation split.

Table 3. Data distribution among the training, validation, and testing subsets.

Subset Name Number of Samples

Training set 2500
Validation set 826

Testing set 1656
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2.6. Development and Evaluation Environment

This experiment was carried out in an MS Windows 10 machine with 16 GB RAM, 12th
Gen Intel Core i 7, 4.7 GHz, and NVIDIA 1050 Ti GPU. Python with several libraries such
as Tensor flow, Keras, Pandas, Numpy, Matplotlib, and Sci-kit learn was used to develop
the DenseNet169 DL model.

2.7. Evaluation Metrics

This study makes use of the confusion matrix to evaluate the performance of the
proposed model. On one side, the matrix shows the actual values, and on another side, it
shows the predicted values. Then, the ratio of true positive, true negative, false positive,
and false negative can be deduced. Several metrics were used to measure the performance
of the model including accuracy, F1 score, loss rate, precision, and recall. The following
equations are used to calculate these metrics for multi-class classification:

Accuracy =
∑ TP + ∑ TN

∑ TP + ∑ TN + ∑ FP + ∑ FN
(10)

Recall = ∑ TP
∑ TP + ∑ FN

(11)

Precision =
∑ TP

∑ TP + ∑ FP
(12)

F1 Score =
2× Pr× Re

Pr + Re
(13)

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and
false negative, respectively.

3. Results and Discussion

In this section, the experimental results are detailed. The experiments were conducted
on the training dataset in three rounds. During the first round, we built a multi-class
classifier using the five labels in the dataset. In the second round, another multi-class
classifier was built using only three class labels. To achieve this, the class labels in the
dataset were categorized into three classes, including healthy, moderate, and severe. Lastly,
we built a binary classifier where the labels were put under two categories, healthy and
unhealthy. The purpose of such multi-round training is to investigate the effect of multi-
classes on the accuracy of the model. This helps to determine whether increasing the classes
affects the ability of DenseNet169 to detect the stage of OA.

Table 4 summarizes the performance of the proposed model with respect to accuracy,
F1 score, precision, and recall. The model applies the adaptive early stopping when
the training process does not make any further improvements, which helps to prevent
overfitting. The results show that the five-class classification achieved 0.62 accuracies,
0.65 F score, 0.58 precision, and 0.61 recall. For the three-class classification, the results
show an increase in the accuracy to 0.93, F1 score to 0.90, precision to 0.91, and recall to
0.91. When we used the binary class classification, the results were increased to 0.94 for
accuracy, F1 score, precision, and recall. The confusion matrix for the three classification
tasks was used to calculate the performance metrics (accuracy, recall, precision and F1
score). The horizontal side of those matrices represents the actual labels, while the vertical
side represents the predicted labels. The intersection between the actual and predicted
labels determines the performance of the model as to whether it generates true positives
(TP), true negatives (TN), false positives (FP), or false negatives (FN). Based on such a
prediction, the accuracy of the model was calculated.
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Table 4. The performance of the proposed model with respect to the accuracy, F1 score, precision,
and recall.

Precision Recall F1 Score Accuracy

2-class 0.9456 0.9469 0.9449 0.9408
3-class 0.9315 0.9058 0.9132 0.9179
5-class 0.5995 0.6220 0.6059 0.6274

Figure 3 shows the training and validation performance of the model for the three-class
tasks (5-class (a), 3-class (b), and 2-class (c)) over the training epochs. It also shows the
best fit where the training and validation curves intersect. It can be observed that the loss
decreases in both the training and validation sets when the number of epochs increases.
In the three classification tasks (i.e., five-class, three-class, and two-class classification),
it can be noticed that the training loss was higher than the validation loss at the early
epochs. While the training loss continues to decrease at the late epochs during the five-class
training (3:a), the validation loss curve tends to flatten, which indicates that the loss does
not improve by increasing the epochs. However, during the three-class and two-class
classifications, both the training and validation losses overlap most of the time. The loss
curves also show the effect of the adaptive early stopping technique as the training stops at
12 epochs (five-class), 13 epochs (three-class), and 14 epochs (two-class) when the model
detects no more improvement on the validation set.
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Figure 3. Training and validation performance of the model for the 5-class (a), 3-class (b), and
2-class (c) tasks over the training epochs.

Figure 4 shows the comparison between five-class classification, three-class classifi-
cation, and the binary classification that we conducted using our proposed model. The
results were taken after each epoch using the validation set. It can be observed that the
binary classification achieved the highest accuracy, while the accuracy of the five-class clas-
sification was the lowest. Moreover, it can be observed that the training accuracy increases
when the number of epochs increases, until the number of epochs reaches 25, where we
can see that the increase becomes less gradual. Furthermore, the comparison shows that
the validation accuracy was not stable and oscillated around 0.6. This indicates that the
data with five-class labels negatively affect the accuracy when new data are introduced to
the model. The reason behind this drop in the model’s accuracy could be the overlapping
between the class boundaries, which makes it difficult for the model to distinguish between
the characteristics of those classes. The high training accuracy confirms such claim as the
model overfits the training examples. In contrast, the validation accuracy for three-class
classification and binary classification increased to around 0.9. This means that the model
performed well when the target label was less granular but dropped when the labeling
became more specific. This could be due to the inability of the model to explore discrimi-
native features that represent the fine granular labels (the five-class case). One potential
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solution is to embed an attention layer as a feature selection mechanism into the model
structure so that it can focus on a set of features relevant to the target classes.

Diagnostics 2023, 13, x FOR PEER REVIEW 12 of 17 
 

 

the models developed by existing works were trained using the same number of epochs. 

In our model, the adaptive early stopping was applied at a batch level, in which the model 

aborts the training of the respective epoch if new instances have little or no contributions 

to improving the validation accuracy. 

 

Figure 4. Adaptive DenseNet169 accuracy trending based on the number of epochs for 2-class, 3-

class, and 5-class classification. 

Table 5. Comparison between the performance of the proposed model with the related models for 

the 2-class classification. 

 Standard DenseNet169 [13] [24] DHL II [35] ResNet [29] Adaptive DenseNet169 

Precision 0.936 0.9298 0.9043 0.9 0.896 0.9456 

Recall 0.9354 0.9155 0.8753 0.904 0.902 0.9469 

F1 score 0.9371 0.9197 0.8889 0.92 0.907 0.9449 

Accuracy 0.9354 0.9155 0.9358 0.917 0.9 0.9408 

Table 6. Comparison between the performance of the proposed model with the related models for 

3-class classification. 

 Standard DenseNet169 [13] [24] DHL II [35] ResNet [29] Adaptive DenseNet169 

Precision 0.9241 0.9107 0.9132 0.867 0.86 0.9315 

Recall 0.8954 0.884 0.892 0.88 0.875 0.9058 

F1 score 0.9075 0.9021 0.9027 0.898 0.884 0.9132 

Accuracy 0.9054 0.8979 0.8979 0.893 0.881 0.9179 

Table 7. Comparison between the performance of the proposed model with the related models for 

the 5-class classification. 

 Standard DenseNet169 [13] [24] DHL II [35] ResNet [29] Adaptive DenseNet169 

Precision 0.5822 0.5716 0.5873 0.581 0.583 0.5995 

Recall 0.6059 0.5921 0.6174 0.604 0.61 0.622 

F1 score 0.587 0.5735 0.5951 0.596 0.602 0.6059 

Accuracy 0.6059 0.5921 0.6074 0.617 0.607 0.6274 

Figure 4. Adaptive DenseNet169 accuracy trending based on the number of epochs for 2-class, 3-class,
and 5-class classification.

Tables 5–7 show a comparison between the proposed adaptive DenseNet169 model
with the results of existing works. The comparison is also visualized in Figures 5–7.
The comparison was conducted between the proposed adaptive DenseNet169 and the
standard DenseNet169. We also compared the performance of the proposed model with the
existing studies related to pre-trained models for knee OA detection with early stopping
capabilities, namely, AMD-CNN [13], deep CNN [24], DHL-II [35], and ResNet-34 [29]. In
this comparison, we used several metrics, namely, precision, recall, F1 score, and accuracy.
By comparing the results obtained from our model with those obtained by related works,
it can be observed that the proposed model outperformed the previous models in terms
of accuracy, recall, and precision. In the comparison, the proposed model as well as the
models developed by existing works were trained using the same number of epochs. In
our model, the adaptive early stopping was applied at a batch level, in which the model
aborts the training of the respective epoch if new instances have little or no contributions
to improving the validation accuracy.

Table 5. Comparison between the performance of the proposed model with the related models for
the 2-class classification.

Standard DenseNet169 [13] [24] DHL II [35] ResNet [29] Adaptive DenseNet169

Precision 0.936 0.9298 0.9043 0.9 0.896 0.9456
Recall 0.9354 0.9155 0.8753 0.904 0.902 0.9469

F1 score 0.9371 0.9197 0.8889 0.92 0.907 0.9449
Accuracy 0.9354 0.9155 0.9358 0.917 0.9 0.9408

Table 6. Comparison between the performance of the proposed model with the related models for
3-class classification.

Standard DenseNet169 [13] [24] DHL II [35] ResNet [29] Adaptive DenseNet169

Precision 0.9241 0.9107 0.9132 0.867 0.86 0.9315
Recall 0.8954 0.884 0.892 0.88 0.875 0.9058

F1 score 0.9075 0.9021 0.9027 0.898 0.884 0.9132
Accuracy 0.9054 0.8979 0.8979 0.893 0.881 0.9179
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Table 7. Comparison between the performance of the proposed model with the related models for
the 5-class classification.

Standard DenseNet169 [13] [24] DHL II [35] ResNet [29] Adaptive DenseNet169

Precision 0.5822 0.5716 0.5873 0.581 0.583 0.5995
Recall 0.6059 0.5921 0.6174 0.604 0.61 0.622

F1 score 0.587 0.5735 0.5951 0.596 0.602 0.6059
Accuracy 0.6059 0.5921 0.6074 0.617 0.607 0.6274Diagnostics 2023, 13, x FOR PEER REVIEW 13 of 17 
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Figure 6. Comparison between the performance of the proposed model with the related models (Standard
Densenet169, AMD-CNN [13], Deep-CNN [24], DHL-II [35], ResNet [29]) for the 3-class classification.
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Densenet169, AMD-CNN [13], Deep-CNN [24], DHL-II [35], ResNet [29]) for the 5-class classification.

The improved performance (in terms of precision, recall, F1 score, and accuracy) that
our proposed adaptive DenseNet169 model shows over existing models in the two-class,
three-class, and five-class classifications can be primarily credited to the incorporation of
adaptive early stopping and the use of the gradual cross-entropy (GCE) loss estimation
technique. Early stopping allows our model to run an adequate number of epochs with
an appropriate batch size for each classification, preventing overfitting and avoiding
premature termination of training when the epochs and batch sizes are underestimated.
This adaptability allows for the dynamic readjustment of the patience parameter, which
ensures optimal data utilization, consequently leading to maximized accuracy.

This improved performance is attributed to the efficacy of the GCE technique, which
adaptively tunes the patience parameter based on the validation loss at the epoch level.
Unlike conventional methods that solely depend on the number of epochs for setting the
patience parameter, our model incorporates GCE to base the loss estimate on the data
processed at the epoch level before early stopping. This technique negates the influence of
discarded data on the loss calculation, ensuring more precise loss estimation. Hence, these
combined strategies allow our model to adapt and learn more effectively and accurately,
resulting in its improved performance over the existing models.

It can also be observed that the five-class classification achieved the lowest performance
by all models across all metrics (precision, recall, F1 score, and accuracy). This can stem from
the class imbalance, as the class “Healthy” has the highest number of images (2286), and the
class “Severe” has the least number of images (173). This creates a significant discrepancy
between the classes, and, as a result, the model might become biased toward the “Healthy”
class, simply because it encounters more examples of this class during training, making it less
capable of accurately detecting and differentiating between the less represented “Doubtful”,
“Minimal”, “Moderate”, and “Severe” classes. To address this issue, multimodal deep
learning can be an effective solution, as it leverages multiple types of data input, such
as combining image data with structured clinical data. For example, the model could be
trained on both X-ray images and corresponding clinical data such as patient age, weight,
gender, pain levels, and other relevant health metrics. By integrating these additional data
sources, the model could learn more complex representations and dependencies, leading
to more accurate OA severity predictions. However, collecting and integrating diverse
types of knee OA-related data (such as images, text, structured clinical data, etc.) can be
challenging due to data privacy and protection regulations such as the Health Insurance
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Portability and Accountability Act (HIPPA). These regulations, either mandated by local or
federal jurisdictions, strictly control the access to and usage of personal health information,
thereby adding a layer of complexity to the data collection process for multimodal training.
In addition, ensuring accurate alignment across different types of data is essential and
non-trivial. For successful and accurate multimodal training, it is critical to ensure that all
data types—the images, the textual information, and the structured clinical data—correctly
correspond to the same entity, such as a patient. This alignment guarantees that the
integrated data maintain their contextual relevance, thereby enabling the model to develop
a coherent understanding of the information. Moreover, it can be difficult to understand
which modality is contributing to the predictions and how they are interacting with each
other. These challenges can be investigated further in future studies. Researchers could
delve deeper into these issues, developing innovative solutions to streamline the alignment
process across different data types, and enhance the interpretability of multimodal models.

4. Conclusions

In this study, we present a novel approach to improve the performance of DenseNet169-
based knee osteoarthritis detection using X-ray images. Our approach utilizes an adaptive
early stopping technique coupled with gradual cross-entropy loss estimation. We have
shown that our approach improved the accuracy of knee osteoarthritis detection when com-
pared to traditional early stopping techniques. Our results demonstrate that the proposed
approach can lead to more accurate and efficient diagnostic tools for knee osteoarthritis.
This study also investigates the effect of several types of classification on detection accuracy
and shows that fewer classes generate accurate predictions. It is important to note that
our approach is not without limitations. Further research is needed to investigate the
generalizability of our method to other types of imaging modalities and to different types
of osteoarthritis. Additionally, more efforts are needed to improve the model for multi-class
classification when the number of classes increases. This is crucial for diagnosing the
development of OA and identifying what stage the disease is at. The incorporation of other
types of information, such as clinical data, may further improve the performance of the
proposed method. Despite these limitations, our results are a promising step toward the
development of more effective deep learning-based diagnostic tools for knee osteoarthritis.
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