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Abstract: Red, blue, white, pink, or black spots with irregular borders and small lesions on the skin
are known as skin cancer that is categorized into two types: benign and malignant. Skin cancer can
lead to death in advanced stages, however, early detection can increase the chances of survival of
skin cancer patients. There exist several approaches developed by researchers to identify skin cancer
at an early stage, however, they may fail to detect the tiniest tumours. Therefore, we propose a robust
method for the diagnosis of skin cancer, namely SCDet, based on a convolutional neural network
(CNN) having 32 layers for the detection of skin lesions. The images, having a size of 227 × 227,
are fed to the image input layer, and then pair of convolution layers is utilized to withdraw the
hidden patterns of the skin lesions for training. After that, batch normalization and ReLU layers are
used. The performance of our proposed SCDet is computed using the evaluation matrices: precision
99.2%; recall 100%; sensitivity 100%; specificity 99.20%; and accuracy 99.6%. Moreover, the proposed
technique is compared with the pre-trained models, i.e., VGG16, AlexNet, and SqueezeNet and it
is observed that SCDet provides higher accuracy than these pre-trained models and identifies the
tiniest skin tumours with maximum precision. Furthermore, our proposed model is faster than the
pre-trained model as the depth of its architecture is not too high as compared to pre-trained models
such as ResNet50. Additionally, our proposed model consumes fewer resources during training;
therefore, it is better in terms of computational cost than the pre-trained models for the detection of
skin lesions.

Keywords: convolution neural network; benign; malignant; skin cancer; batch normalization; max
pooling; skin lesion; softmax; dermoscopic images

1. Introduction

Biomedical images are used more frequently for the timely recognition, prevention,
and classification of deadly illnesses [1]. Cells and skin tissues are assessed for the diagnosis
of any illness. Usually, the organs are scanned, for example, X-rays, ECG, and MRIs [2].
Imaging modalities such as X-rays, CT scans, and MRIs are commonly used by oncologists
for cancer detection. The structure of the body parts and physiological functions are
evaluated by employing these modalities of biomedical imaging [3]. Furthermore, the
progression of several types of tumours: brain, lungs, and skin are assessed and detected
using CT scans [4]. Whereas adipose nerves and breast tumours can be diagnosed easily
using mammography [5,6]. This technique is painful, therefore advanced imaging ways
have been introduced for breast cancer diagnosis [7]. Cardiac and gum disease diagnoses
are achieved by CT [8,9]. These techniques of biomedical imaging are utilized to detect
the above-mentioned diseases, yet we are anxious about skin cancers and how they are
detected employing these techniques of biomedical imaging. In Ref. [10], the authors
utilized X-rays and CT scans for lung analysis to identify the coronavirus. Similarly, in [11],
fundus images are utilized for eye disease detection, namely Glaucoma.

Diagnostics 2023, 13, 1824. https://doi.org/10.3390/diagnostics13111824 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13111824
https://doi.org/10.3390/diagnostics13111824
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0009-0002-4253-7351
https://orcid.org/0000-0003-1983-8201
https://orcid.org/0000-0002-7339-6419
https://orcid.org/0000-0002-1982-6609
https://doi.org/10.3390/diagnostics13111824
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13111824?type=check_update&version=1


Diagnostics 2023, 13, 1824 2 of 18

Brown or red stains over the skin are known as skin lesions [12]. Primary skin lesions
exist by birth. Secondary skin lesions are formed by the irregular progress of cells. Skin
lesions that are formed by irregular growth of cells are recognized as malignant tumours
or cancer. Skin tumours have two types: non-melanoma and melanoma. Melanoma skin
cancer may cause the death of a patient in a later stage; however, it is twenty times lesser
than other forms of cancer [13]. The annual count for skin cancer patients has enlarged
over the past few decades due to a lazy lifestyle and unhygienic food.

Skin cancer manifestation is continuously growing globally [14]. In India, approxi-
mately 5000 patients having skin cancer are admitted in a single year [15]. Skin cancer
detection requires additional effort, time, and care if performed by eye [16]. Moreover,
the grading of tumours is a time-taking process that requires high expertise. The results
may be imprecise and necessitate effort and time. The challenges in identifying tumours
include asymmetrical shapes and several types exhibiting similar appearances and magni-
tudes. The erroneous diagnosis may cause severe complications for the patient’s health
and reduces survival chance. To address the challenges mentioned above, the room for
developing computerized skin cancer detectors has been proposed [13]. Although the
biopsy process of histopathology is used for skin cancer detection, it is a painful process
and needs to be replaced [17]. Various works have been proposed by researchers for skin
melanoma detection, however, they fail to diagnose tiny skin tumours. Therefore, in this
study, we propose a robust method for skin cancer detection that can identify the tiniest
tumours on the skin with maximum accuracy.

The important features of this paper are below:

• To propose an automated robust method to detect skin cancer from skin images with
high accuracy;

• The technique is based on a novel architecture of a convolutional neural network
(CNN). We have utilized 32 layers including image input as the first layer, and 30 layers
in between including an output layer. This model makes possible an effective detection
of benign and malignant skin lesions through these layers;

• The utilization of a dropout layer has regularization properties that help the SCDet to
minimize overfitting;

• We performed a comparative analysis with existing deep learning models, i.e., SqueezeNet,
AlexNet, and VGG16. The results show that SCDet outperformed the existing techniques;

• We assessed the performance using the Dermis Dataset containing 1000 samples of
skin lesions, distributed into validation, training, and testing sets. The model provides
99.6% accuracy for skin lesion detection and we noticed that the results are remarkable
for tiny tumours as well;

• We analysed that the proposed model utilized less computational cost than existing methods;
• We also compared the performance of SCDet with the existing techniques of machine

learning (ML), segmentation, and deep learning (DL) models. We observed that our
proposed model provides high performance in terms of accuracy and precision.

The remaining paper is arranged as follows: Section 2 is about the related work that
describes the methods of skin lesions that have been developed previously; Section 3
describes the methodology of the proposed CNN and how the model is implemented for
the detection of skin lesions; Section 4 demonstrates the experimentation and results of
our proposed CNN along with comparison with other state-of-the-art models; and finally,
Section 5 is about the conclusion and future work.

2. Related Work

Benign lesions can be differentiated from malignant cancer using DL techniques that
successfully use visual samples. Asymmetrical appearance mostly represents melanoma
or malignant skin lesion. Benign skin lesions have regular edges while lesions are irreg-
ular and blurred in the case of melanoma. The shade of grey algorithm is utilized for
preprocessing in [18]. Furthermore, for the segmentation of skin lesions, Mask R-CNN is
utilized, which is a DL approach. Morphological operations have been performed for the
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noise removal method in the skin images. Recognition of a lesion appearing on the skin
using dermoscopy images, comprising three steps, has been executed in [19]: (1) image
preprocessing to enhance the performance of the technique by splitting them into two
classes; (2) augmentation of images is used on data to shield the method from overfitting;
(3) Densnet-121 is used to mine the features and U-net is proposed for skin cancer identifi-
cation. However, the results described in the paper do not represent correctly the accuracy
of the proposed model.

H. A. Hasan developed a hybrid identification method and converted the images for
the recognition of skin lesions. Non-cancerous images were assigned a value of 0 and
cancerous ones as 1 into the Numpy array. For the training of CNN using K-fold validation,
the dataset was split into two sets to test and train. An 85.303% accuracy was achieved by
the Xception net [20], whereas other methods have also been tested, such as mobile net
v2, Resnet 50, and VGG19. Mobilenet v2 provided a minimum accuracy of 54.54%. Less
accuracy was achieved due to the use of images that were of low quality present in the
dataset. Identification of the skin cancer was performed by employing the ML approach
Support Vector Machine (SVM) in [21] to detect melanoma. The grey level co-occurrence
matrix (GLCM) method was used as a feature descriptor/extractor and extracted features
were then fed to SVM for skin cancer detection. The accuracy attained by the model was
95%, however, it can be enhanced by applying some preprocessing methods of image
enhancement on the dataset to minimize the noise present in the images and to improve
the procedure of training.

M. R. Ibraheem in [22], developed a contrast-limited method of adaptive histogram
equalization to improve the lesions of images. Bilinear interpolation was used in Contrast
to limited adaptive histogram equalization (CLAHE) along with a threshold equalization
algorithm. Moreover, a pixel-based technique was utilized to segment the lesions and
extract features. The labels of classes were 0 to 2, background objects were referred to
with 0, benign was referred to with 1, and melanoma was denoted by 2. Gradient Boosted
Tree (GBT) provided 97.5% accuracy. Rahajeng, M. Nuh in [23] utilized various techniques
such as a median filter, cropping, and threshold as preprocessing processes. Additionally,
Sobel filters and active contours were used to segment the skin lesions depending on the
shape, texture features, and colour achieved using the GLCM algorithm. SVM was used to
recognize the category of skin cancer attaining an accuracy of 85%.

In G. S. et al., 400 × 400 pixel resized images are passed to an input layer. To extract
features, a 32-filter convolutional layer was employed. Further, reparameterization was
utilized using a BN layer to improve the performance by internal covariant shift [24].
A ReLU layer was employed after max-pooling and FC layers. The authors achieved
89.3% accuracy having the loss factor as 0.2633; however, accuracy could be increased by
modifying training weights and customizing the network’s layer structure. The authors
in [25] utilized CNN to categorize skin images into cancerous and non-cancerous. The
authors used the International Skin Collaboration 2016 dataset for training which comprised
images with the dimensions 1024 × 767 pixels. These images consisted of three types:
melanoma was categorized as cancerous, whereas seborrheic keratosis and nevus were
categorized as benign. The generalized Gaussian distribution technique was utilized to
segment images with a CNN to classify the images. The accuracy attained for the proposed
model was 98.32%, however, the technique was not validated on other datasets.

Y. Filali developed a classification technique by decomposing the images of skin lesions
into texture and object components. To attain the region of interest, segmentation was
employed on the objects after the texture and segmented area were combined. Feature
extraction was performed using Convolution layers. A pooling layer just followed by the
convolution layer was employed to minimize the spatial size and then FC layers were
applied. The softmax activation function followed by a final classification layer was used
as an activation function to classify melanoma as cancerous and nevus as a non-cancerous
class. For this method, 93.50% accuracy was attained, which could be improved [26].
N. Rezaoana proposed a CNN model for nine classes: MEL, VASC, BCC, AKIEC, NV, DF,
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BKL, seborrheic keratosis, and squamous carcinoma. Data augmentation operations such
as flip, rotation, and shear were used on the images. Conv. layers were utilized to extract
features, a max-pooling layer was used to minimize the dimensions, and a softmax was
utilized after the pair of FC layers for categorization [27]. VGG-19 and VGG-16 were also
implemented and attained fidelities of 69.57% and 71.19%, respectively. For this method,
79.45% was the highest accuracy; however, this could be increased by improving the model
architecture. Some of the existing techniques that are used for skin cancer detection are
reported in Table 1.

Table 1. Comparison of Related Work.

Ref Year Classes of Skin Lesions Model Type Model Activation Function Dataset Used Accuracy

[28] 2019 Melanoma, Non-Melanoma supervised CNN ReLU ISIC 2017, PH2 95%
[29] 2020 NV, VASC, DF,

BCC, MEL, AKIEC, BKL supervised CNN ReLU ISIC 2019 96%

[30] 2020 Melanoma, Nevus, Seborrheic Keratosis supervised CNN softmax ISIC2018,
HAM10000 86%

[20] 2020 Binary supervised CNN ReLU ISIC 80%
[31] 2020 Melanoma, common Nevus, atypical Nevus, supervised CNN softmax PH2 95.0%
[32] 2020 NV, DF, BKL VASC, MEL, BCC, AKIEC supervised CNN ReLU HAM1000 90%
[33] 2021 Benign and malignant supervised CNN SIGMOID HAM10000 90.93%
[34] 2021 Binary supervised CNN - Dermis 95%
[35] 2022 NV, DF, MEL, AKIEC, VASC, BCC, BKL supervised CNN - PH2 95%

3. Materials and Methods

In this study, we propose a robust method for skin cancer detection, i.e., SCDet based
on a convolutional neural network (CNN). CNN is a commonly used artificial neural
network (ANN), which executes the mathematical functions on feature maps recognized as
convolutional [36]. CNNs work in 2 phases during the whole training process, i.e., forward-
propagation and backwards-propagation. The weights assigned to the connections among
consecutive layers are modified during the backpropagation phase to minimize the errors.
The cost function is used to find errors by comparing the output with the ground truth [37].

There exists numerous layers in CNNs such as convolutional, pooling, batch normal-
ization, FC, activation, and a classification layer. CNNs outperform in the problems that
are related to the image data. Our proposed SCDet consists of 32 layers, including the
image input layer as the first layer of the model, 31 hidden layers in between, along with
the output layer. The proposed model’s architecture is shown in Figure 1. The dermoscopic
images of skin lesions from the dermis dataset are initially provided to the image input
layer of the proposed model. Convolutional layers are added to the proposed CNN for the
extraction of more prominent features from the images. A batch normalization layer and
ReLU layers are inserted after the pair of convolutional layers to normalize the data and
prevent overfitting. After that, a pair of max pooling layers are added to summarize the
features to reduce the computational cost. Finally, three fully connected layers are used to
convert the data into a one-dimensional array for the detection of skin lesions. At the end,
softmax and classification layers are added for the final prediction of malignant and benign
tumours of skin lesions.
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Figure 1. The Proposed CBIR.

Max-pooling, convolution, and fully connected layers are further expanded to improve
the accuracy, as shown in Figure 2. We used a pair of convolution layers after the image
input layer so that our proposed model extracted the most prominent features from the
images because these features are used to boost the model’s performance. Similarly, as
shown in Figure 2, we used the pair of max pooling layers to reduce the computation levels
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and generate a smaller feature map. Finally, three fully connected layers are used for the
conversion of the feature map into a one-dimensional vector.
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Figure 2. Expanded Layers of proposed model.

3.1. Input Layer

Images are resized to a dimension of 227 × 227 pixels and passed to an image input
layer. These are coloured images with a height and width of 227 each and a depth of 3,
which is an RGB channel in an input layer.

3.2. Convolutional Layer

The convolutional layer creates feature maps that highlight the hidden features of an
original image. Convolutional layers use some fixed-size filters known as convolutional
filters that can be 5 × 5, 3 × 3, or even 1 × 1. Convolutional filters perform a function on
input images by sliding a trained filter over the image. Weight and bias values remain the
same throughout the image during the sliding of the trained filter [38]. Convolutional filters
are determined during the training process and not selected manually. The convolutional
filter of 2 × 2 is applied to an image of 4 × 4 pixels in Figure 3 given below. An image
patch of 2 × 2 is obtained from the image, then the image patch is multiplied with the
convolutional filter, and the result is obtained in the form of a matrix. The convolutional
filter strides on the image with an image stride of 1 and the final matrix is the complete
feature map obtained from the convolutional filter.

3.3. Batch Normalization Layer

1. The batch-normalization layer is inserted to increase the convergence of training
after the convolutional layer [39]. The input of activation function is normalized
with additional scaling and shifting by inserting the batch normalization layer to
overcome vanishing gradient before the sigmoid/ReLU/tanh hidden layer [40]. Two
channel-wise sequential operations are performed with batch normalization; the
first one is normalization and the second is an affine transformation. Normalization
operation includes mean and variance of batch B of data consisting of n features.
Equation (1) presents the formula to calculate the mean, Equation (2) shows variance,
and Equation (3) calculates the normalization.
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µB =
1
n

n

∑
i=1

xi (1)

σ2
B =

1
n

n

∑
i=1

(xi − µB)2 (2)

where B is the mini-batch of size n for a network layer with d-dimension input; xi, µB
represents the mean; and σ2

B represents the variance that is further used to calculate nor-
malization. Input batch is normalized to have unit S.D. and zero mean.

X̂ =
X − µB√

σ2
B + ε

(3)

Equation (3) ε is an arbitrarily small constant for numerical stability and is added in
the denominator. Then, affine transformation is applied to X̂. Affine transformation is
calculated using the equation provided below, Equation (4).

y = Υ.X̂ + β, (4)

where β is the shift parameter and Υ is the learnable scale.
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3.4. ReLU Layer

Output generated after the convolutional layer is adjusted with ReLU non-linear
function to limit the output. Sigmoid and tanh can cause a problem in backpropagation,
therefore we have applied ReLU as an activation function. Definition of ReLU in gradient
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and function is given below in Equations (5) and (6), respectively. For negative input, ReU
returns 0, it returns that value for any positive value of t. Thus, the output of this function
has a range from 0 to infinity.

d
dt

reLU(t) =
{

1, t > 0
0, t < 0

, (5)

RELU (t) = max(0, t) (6)

3.5. Max Pooling Layer

Feature maps generated through convolutional filter and activation function are
further summarized by the max pooling process. Smaller feature maps are generated by
max pooling as it reduces the size, therefore mitigating the computational load and reducing
the chance of overfitting. Complexity for the next layers is reduced with downsampling,
which is achieved using a pooling layer. The most important type of pooling is max pooling
which returns only a rectangular sub-region of an image with a maximum value of the
sub-region. The largest or maximum value of each patch of every feature map is calculated
with the max pooling operation. The results are down-sampled and highlight the most
present features in the patch, the process of max pooling is shown in Figure 4.
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3.6. Fully Connected Layer

Data are transformed into a one-dimensional vector after pooling and convolutional
layer and provided to the FC layers. Connection weights are multiplied by previous layer
data and with an added bias value. The operation performed by a fully connected layer is
represented in Equation (7).

Fc1 = f (b + ∑n
r=1 w1, r ∗ or), (7)

where w shows the weight vector; o represents the input vector of the rth neuron; b repre-
sents bias value; and f is an activation function.
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3.7. Softmax Layer

For multiclass classification softmax layer is used. Selection of activation function
performed by softmax is provided in Equation (8) below.

s(vi) =
evi

∑n
j=1 evj , (8)

where S is a softmax function of input vector v, n shows no. of classes; evi represents the
standard exponential function for the input vector; and evj is the standard exponential
function for output vector. The detail of layers used in architecture is given in Table 2.

Table 2. Layer architecture of proposed model SCDet.

Type Channel/Stride Learnable Activation

input - - 227 × 227 × 3

4 × [Conv_1] Stride [1 1] Weights 3 × 3 × 3 × 32 227 × 227 × 32Padding same Bias 1 × 1 × 32

4 × [Conv_2]
Stride [1 1] Weights 3 × 3 × 32 × 32 227 × 227 × 32Padding same Bias 1 × 1 × 32

4 × [Batchnorm_1] 32 channels Scale 1 × 1 × 32 227 × 227 × 32Offset 1 × 1 × 32
2 × [FC-1]
4 × Relu_1 - - 227 × 227 × 32

4 × [Maxpool_1]
Stride [1 1]

- 227 × 227 × 32Padding same
5 × 5 max pooling

4 × [Maxpool_2]
Stride [1 1]

- 227 × 227 × 32Padding same
5 × 5 max pooling

Fc_2 - Weights 2 × 10 1 × 1 × 2Bias 2 × 1

Fc_3 - Weights 2 × 2 1 × 1 × 2Bias 2 × 1

Fc_4 - Weights 2 × 2 1 × 1 × 2Bias 2 × 1
softmax - - 1 × 1 × 2

Class output - - 1 × 1 × 2

Process of skin lesion detection into benign and malignant classes is presented in
Figure 5. Initially, images are provided to the image input layer, then features are extracted
using convolutional layer. After that, extracted features are normalized and provided
as input to the ReLU layer. ReLU layer regularizes the features, which helps the model
to minimize the problem of overfitting. After that, features are summarized using max
pooling and finally classified as benign and malignant tumours by classification layer.
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4. Experimentation Methods
4.1. Dataset Used

Dermis dataset images are collected from the Kaggle website, which is publicly avail-
able [41]. Benign and malignant are the two classes that are used from the dermis dataset.
In total, 75% of the images of both classes have been used to train the model, and the
remaining 25% of images have been used for validation purposes. The images comprised
1000 in total and had two classes, i.e., benign and malignant. Moreover, 500 images are
benign and 500 belong to the malignant class, having dimensions of 600 × 450 pixels.
Pre-processing is performed on images to resize them to 227 × 227 pixels. Samples of the
images of benign and malignant classes are provided in Figure 6.
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4.2. Environmental Setup

First, 750 images out of 1000 are selected randomly for the training process and 250 are
selected for validation of the model. We choose SGD with momentum as an optimizer with
an initial-learning rate of 0.01, learn-rate drop factor of 0.2, and learn-rate drop period of 5.
Mini-batch size is adjusted to 64 and Max-epoch is 20. The training process of the model
with the loss and accuracy of the model observed in MATLAB is presented in Figure 7.
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Recall, precision, sensitivity, accuracy, and specificity are the performance matrices of
the proposed CNN model. The percentage of benign images that the system recalled is the
recall of the model. The recall is computed as the fraction of malignant lesions of skin that
are correctly classified to all positive images of malignant class and false-classified benign
class images, see Equation (9)

Recall = TP/(FN + TP), (9)

Specificity is to correctly identify benign class images, also called a true negative rate
and calculated as the proportion of generally negative samples to given negative results by
model. Equation (10) is used to calculate specificity.

Speci f icity = TN/(FP + TN), (10)

Percentage of accurately classified images is the precision that is provided by the
proposed CNN model. The number of images that are generally positive is divided by the
total number of predicted positive classes and calculated using Equation (11) shown below.

Precision = TP/(FP + TP), (11)

Sensitivity is the ability to correctly identify a malignant class by the model. Sensitivity,
sometimes referred to as true positive rate TPR, is the calculated proportion of positive
samples that give positive results.

Sensitivity = TP/(FN + TP), (12)

All correct predictions provided by the proposed CNN model reflect the accuracy. The
number of predictions that are correct divided by the total number of predictions provides
the accuracy.

accuracy = TN + TP/(FP + TN + TP + FN), (13)

Evaluation metrics are presented in Table 3.

Table 3. Evaluation Metrics of the proposed model SCDet.

Method TP FP FN TN Recall Specificity Precision Sensitivity Accuracy

Proposed
CNN 49.6% 0% 0.4% 50.0% 100% 99.2% 99.2% 100% 99.6%

The percentage of all correctly classified images represents the precision of the model [42].
It is observed from the confusion matrix that the proposed CNN provides high accuracy as
the diagonal of the confusion matrix has high values in Figure 8. The result of the confusion
matrix is also represented in terms of percentage accuracy of both classes, benign and
malignant, used in our dataset. In the Figure 8 confusion matrix, there are 125 images of
the benign class that our proposed model correctly classified and there was only one case
that the proposed model classified as in the benign class but actually the image belonged
to the malignant class. Similarly, 124 images were correctly classified by the model as the
malignant class, and there was no such case where the proposed model classified it as
malignant and the image belong to the benign class. So, it is clearly observed that out of
250 images, 249 images are correctly classified by the model and only one image was not
classified correctly by the proposed model.

4.3. Validation

The proposed model was tested on the images of another dataset that were not
used during training, as well as the validation process of our model. Proposed CNN
performs best in the classification of these images as benign or malignant. Proposed CNN
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provides an accuracy of 85% on the HAM1000 dataset. The HAM1000 dataset is used for
validation purposes, which is collected from the Kaggle website [43]. We use two classes for
classification, melanoma and not melanoma as malignant and benign. Training accuracy
and loss of proposed CNN on the HAM1000 dataset are presented in Figure 9. From
Figure 8, it is clearly observed that proposed CNN provides 85% accuracy on the HAM1000
dataset, which is used for the validation of the proposed CNN. Although this accuracy is
not good enough, it is much better than the accuracy of the pre-trained model i.e. AlexNet
and SqueezeNet as shown in Figures 10 and 11, respectively.
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The proposed model is also validated by training on another dataset and it is also
compared with AlexNet, SqueezeNet, and VGG16.

4.4. Comparison with Existing Pre-Trained Models
4.4.1. Alex Net

In Ref. [44], the research authors proposed a model AlexNet that was trained on
1000 different classes. S. Sadhana and R. Mallika in [45] used AlexNet for the detection
of diabetic retinopathy. We utilized AlexNet for skin lesion classification as benign and
malignant for comparison but pre-trained AlexNet provides an accuracy of only 90%.
However, 99.6% accuracy is obtained by our proposed CNN, which is much better than
pre-trained AlexNet. Training accuracy of AlexNet is presented in Figure 10.

4.4.2. SqueezeNet

In Ref. [46], authors proposed a model SqueezeNet that provides similar accuracy
to the AlexNet on the ImageNet with 50x fewer parameters. K. Nakamichi and H. Lu
focused on attaining significant results on circulating tumour cells (CTC) classification using
fluorescence microscopy images with pre-trained CNN model SqueezeNet [47]. Similarly,
K. N. Akpinar, S. Genc, and S. Karago identified the presence of disease in the chest from
chest X-ray using SqueezeNet [48]. The complexity of network is high and classification
accuracy is low as compared to our proposed model. SqueezeNet has 68 layers while our
model has only 32 layers, so the complexity of SqueezeNet is high and it is slow compared
to our model. A 99.6% accuracy is achieved by our proposed model, whereas SqueezeNet
provides only 83% accuracy, which is very low. Figure 11 shows training accuracy of the
deep learning pre-trained model SqueezeNet.

4.4.3. VGG16

In Ref. [49], the authors proposed a model that improves the accuracy of classification-
related problems by increasing the depth of the model. Panthakkan, S. M. Aznar used
X-rays of lungs and VGG16 for the prediction of COVID-19 into binary classes, i.e., positive
COVID-19 and negative COVID-19 [50]. H. Aung also used VGG16 with the combination
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of the YOLO algorithm to detect the face from real-time live video [51]. However, VGG16
faced an issue of vanishing gradient. The accuracy of VGG16 for the classification of the
skin lesion is low compared to our SCDet, as our model provides 99.6% accuracy whereas
VGG16 provides about 80%. A comparison of various models with SCDet is listed in Table 4.

Table 4. Comparison with pre-trained models.

Method AlexNet SqueezeNet VGG16 Proposed CNN on HAM1000 Proposed CNN

Accuracy 90% 83% 80% 85% 99%

4.5. Comparison with Machine Learning Techniques

In this experiment, we compare the performance of SCDet with ML-based methods.
The purpose of the [52] study was melanoma detection from skin lesions using a machine
learning model. Homogeneity, correlation, energy, and contrast features were used. PH2
dataset was used and 3-fold cross-validation was applied to divide the data into training
and validation. An SVM classifier was utilized for the prediction of skin lesions that
provided 96% accuracy. MS.H.R. Mhaske classified melanoma class of skin cancer with
one of the supervised learning techniques, i.e., K-means and two supervised learning
techniques SVM and Neural networks. A low-pass and a high-pass filter were applied
and then segmentation was performed to achieve better results [53]. The unsupervised
technique, K-means algorithm, obtained 52.63% accuracy, whereas supervised learning
technique, i.e., neural network gained 75%. The support vector machine performed best
among these, providing 80–90% accuracy. Authors in [15] identified malignant and benign
classes using an ML model, named support vector machine. Image preprocessing was
performed to improve the quality of the image and to eliminate hair, noise, and skin colour.
GLCM and HOG feature extractor was applied to extract the features from images. A
97.8% accuracy was obtained using an SVM. A comparison of accuracy for SCDet with ML
techniques is presented in Figure 12.
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Figure 12. Comparison with Machine Learning Techniques [15,52,53].

4.6. Comparison with Segmentation-Based Techniques

In this experiment, we compared the performance of SCDet with the segmentation-
based methods. The aim of [54] was to recognize skin cancer using segmentation and
then feature extraction. First, authors utilized image pre-processing using median filter
to reduce the noise from images. The size they used for median filter was 5 × 5. Further,
morphological operations such as dilation and translation were used to remove the skin
hair and colour from images. The authors used threshold technique to obtain the region of
interest from the image. They attained classification accuracy of 90.83%. Manu Gofal [18]
developed a technique using boundary segmentation employing dermoscopic images
through DL method. ISIC 2017 and PH2 datasets were utilized for lesion segmentation.
Image preprocessing was utilized to enhance the visual features attained from the images.
The proposed method achieved 98% sensitivity and 93% accuracy. The aim of [55] was
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to automate the process of classification for skin cancer by employing deep learning. The
U-Net was used for significant skin cancer localization. In the segmented part, the images
contained the disconnected objects; therefore, to enhance the region of interest, authors
used post-morphological operations. The noise and extra hairs were removed from the
images. Region-mapping functions were utilized for selection of region with the maximum
area. The proposed technique attained 96% accuracy and 98% specificity. The comparative
analysis in form of a plot is shown in Figure 13.
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4.7. Comparison with Existing DL-Based Skin Cancer Detectors

N. Rezaoana categorized 9 classes: MEL, AKIEC, NV, VASC, BCC, BKL, DF, seborrheic
keratosis, and squamous carcinoma with a CNN model. Rotation, flip, shear, etc. were
the data augmentation techniques utilized to enhance the amount of data for the training
purpose. Moreover, Conv. layers were utilized to extract features and max-pooling was
used to minimize the dimensionality [27]. Various metrics such as F1-score, precision,
accuracy, and recall were utilized to assess the performance. They compared the results
with VGG-19 attaining an accuracy of 69.57% and for VGG-16 at 71.19%. Whereas our
proposed method attained 79.45% accuracy. The aim of [56] was the identification of types
of skin lesions by employing an artificial neural network. PH2 dataset was used consisting
of only 40 images of melanoma and 160 benign. Pre-processing was performed on images
that were used to minimize the noise and segment the area. The shape and centroid features
were utilized achieving 98% accuracy. Y. Filali, developed the classification technique by
decomposing the images of skin lesions into texture and object components. To attain the
region of interest, segmentation was employed on objects and then textures and segmented
areas were combined. Feature extraction was performed using a Convolution layer. A
pooling layer just followed by the convolution layer was employed to minimize the spatial
size and then fully connected layers were applied. Softmax activation function followed
by final classification layer was used as an activation function to classify Melanoma as
cancerous and Nevus as a non-cancerous class. A 93.50% accuracy was attained, which
could be improved [26]. Varma, in [57], introduced a method named SLDCNet for skin
cancer detection using image pre-processing and full-resolution CNN. The proposed model
provides 99.92% accuracy, however, the SLDCNet model uses a hybrid approach with
pre-processing, which makes it computationally expensive compared to our SCDet model.
Additionally, SCDet is more user friendly and easier to use, making it a simple alternative
to the more complex SLDCNet model. A comparative analysis with existing methods is
given in Figure 14, and the results are reported in Table 5.



Diagnostics 2023, 13, 1824 15 of 18Diagnostics 2023, 13, x FOR PEER REVIEW 19 of 22 
 

 
Figure 14. Comparison with Deep Learning Techniques. 

Table 5. Comparison with ML, DL, and Segmentation Techniques. 

Ref. Model Type Precision Specificity Recall Accuracy 
[52] ML - 84% 97% 96 % 
[15] ML - 85% 86% 97% 
[55] Segmentation  98% 93% 96% 
[27] DL 76% - 78% 79% 
[54] Segmentation - 97% 87.5% 90% 
[56] DL - 98.75% 95% 98%% 
[53] ML - - - 90% 
[26] DL - - - 93.5% 
[18] Segmentation - 97% 89% 94% 

Proposed 
CNN 

DL 99.2% 99.2% 100% 99.6% 

5. Conclusions 
We propose an effective architecture, named SCDet, for skin lesions classified as 

benign and malignant in this study. To train our model, the Dermis dataset was utilized 
from the Kaggle, which is publicly available [41]. There exists in total 1000 images 
comprising 500 images belonging to the benign class and 500 to the malignant class. A 
pair of convolutional layers were used to extract hidden patterns from the tumourous 
samples. Batch normalization was added for the normalization of features. A ReLU layer 
was employed in the proposed network that is faster than the sigmoid activation function. 
Then, a pair of the max-pooling layers along with three FCs and softmax is used before 
the classification layer. The proposed methodology attained 99.6% accuracy, 100% recall, 
100% sensitivity, 99.2% specificity, and 99.2% precision. The proposed model is also 
evaluated on another dataset and provides an accuracy of 85% on that dataset. Moreover, 
we also compared the results of SCDet with VGG16, AlexNet, and SqueezeNet, and 
observed that the proposed methodology provides higher accuracy among these 
pertained networks effectively. In the future, we aim to fine-tune our network for 
subclasses of benign and malignant skin cancer, e.g., Markel cell carcinoma, squamous 
cell carcinoma, Kaposi sarcoma, Basal cell carcinoma, etc. 

  

0
10
20
30
40
50
60
70
80
90

100

Rezaoana et
al.2020

Filali et
al.2019

Majumder et
al.2019

Varma et
al.2022

Proposed
CNN

79.45

93
98 99.92 99.6

Accuracy (%)

Figure 14. Comparison with Deep Learning Techniques [26,27,56,57].

Table 5. Comparison with ML, DL, and Segmentation Techniques.

Ref. Model Type Precision Specificity Recall Accuracy

[52] ML - 84% 97% 96 %
[15] ML - 85% 86% 97%
[55] Segmentation 98% 93% 96%
[27] DL 76% - 78% 79%
[54] Segmentation - 97% 87.5% 90%
[56] DL - 98.75% 95% 98%%
[53] ML - - - 90%
[26] DL - - - 93.5%
[18] Segmentation - 97% 89% 94%

Proposed
CNN DL 99.2% 99.2% 100% 99.6%

5. Conclusions

We propose an effective architecture, named SCDet, for skin lesions classified as benign
and malignant in this study. To train our model, the Dermis dataset was utilized from
the Kaggle, which is publicly available [41]. There exists in total 1000 images comprising
500 images belonging to the benign class and 500 to the malignant class. A pair of convo-
lutional layers were used to extract hidden patterns from the tumourous samples. Batch
normalization was added for the normalization of features. A ReLU layer was employed in
the proposed network that is faster than the sigmoid activation function. Then, a pair of
the max-pooling layers along with three FCs and softmax is used before the classification
layer. The proposed methodology attained 99.6% accuracy, 100% recall, 100% sensitivity,
99.2% specificity, and 99.2% precision. The proposed model is also evaluated on another
dataset and provides an accuracy of 85% on that dataset. Moreover, we also compared the
results of SCDet with VGG16, AlexNet, and SqueezeNet, and observed that the proposed
methodology provides higher accuracy among these pertained networks effectively. In
the future, we aim to fine-tune our network for subclasses of benign and malignant skin
cancer, e.g., Markel cell carcinoma, squamous cell carcinoma, Kaposi sarcoma, Basal cell
carcinoma, etc.

Author Contributions: Conceptualization, S.S. (Shahbaz Sikandar) and R.M.; methodology, S.S.
(Shahbaz Sikandar); software, S.S. (Shahbaz Sikandar); validation, R.M. and A.E.R.; formal analysis,
S.Y.Y.; investigation, R.M.; resources, S.S. (Shahbaz Sikandar); data curation A.E.R.; writing—original



Diagnostics 2023, 13, 1824 16 of 18

draft preparation, S.S. (Shahbaz Sikandar); writing—review and editing, R.M.; visualization, A.E.R.;
supervision, A.E.R., S.Y.Y. and S.S. (Sarang Shaikh); project administration, S.S. (Shahbaz Sikandar).
All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to King Saud University for funding this work through
Researchers Supporting Project number (RSPD2023R711), King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: As the authors have utilized openly accessible datasets, which are
elaborated in the “experimental results and discussions” segment of this article, data sharing is not
relevant to this article. If you require additional information, kindly reach out to the authors.

Acknowledgments: The authors extend their appreciation to King Saud University for funding
this work through Researchers Supporting Project number (RSPD2023R711), King Saud University,
Riyadh, Saudi Arabia.

Conflicts of Interest: The authors state that they have no conflict of interest.

References
1. Latif, J.; Xiao, C.; Imran, A.; Tu, S. Medical Imaging using Machine Learning and Deep Learning Algorithms: A Review. In

Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Sukkur, Pakistan, 30–31 January 2019; pp. 1–5.
[CrossRef]

2. Zemouri, R.; Zerhouni, N.; Racoceanu, D. Deep Learning in the Biomedical Applications: Recent and Future Status. Appl. Sci.
2019, 9, 1526. [CrossRef]

3. Ravishankar, S.; Ye, J.C.; Fessler, J.A. Image Reconstruction: From Sparsity to Data-Adaptive Methods and Machine Learning.
Proc. IEEE 2019, 108, 86–109. [CrossRef] [PubMed]

4. Qiu, L.; Kantekure, K.; Vitkin, E.; Itzkan, I.; Perelman, L.T.; Zhang, L.; Turzhitsky, V.; Khan, U.; Zakharov, Y.; Pleskow, D.K.;
et al. Multispectral Endoscopy With Light Gating for Early Cancer Detection. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 1–9.
[CrossRef] [PubMed]

5. Pardo, A.; Streeter, S.S.; Maloney, B.W.; Gutierrez-Gutierrez, J.A.; McClatchy, D.M.; Wells, W.A.; Paulsen, K.D.; Lopez-Higuera,
J.M.; Pogue, B.W.; Conde, O.M. Modeling and Synthesis of Breast Cancer Optical Property Signatures With Generative Models.
IEEE Trans. Med. Imaging 2021, 40, 1687–1701. [CrossRef]

6. Song, H.; Sasada, S.; Masumoto, N.; Kadoya, T.; Okada, M.; Arihiro, K.; Xiao, X.; Kikkawa, T. A Two-Stage Rotational Surface
Clutter Suppression Method for Microwave Breast Imaging With Multistatic Impulse-Radar Detector. IEEE Trans. Instrum. Meas.
2020, 69, 9586–9598. [CrossRef]

7. Song, H.; Sasada, S.; Masumoto, N.; Kadoya, T.; Shiroma, N.; Orita, M.; Arihiro, K.; Okada, M.; Kikkawa, T. Detectability of Breast
Tumors in Excised Breast Tissues of Total Mastectomy by IR-UWB-Radar-Based Breast Cancer Detector. IEEE Trans. Biomed. Eng.
2018, 66, 2296–2305. [CrossRef] [PubMed]

8. Wang, W.; Ye, C.; Zhang, S.; Xu, Y.; Wang, K. Improving Whole-Heart CT Image Segmentation by Attention Mechanism. IEEE
Access 2019, 8, 14579–14587. [CrossRef]

9. Han, Y.; Kim, J.; Ye, J.C. Differentiated Backprojection Domain Deep Learning for Conebeam Artifact Removal. IEEE Trans. Med.
Imaging 2020, 39, 3571–3582. [CrossRef]

10. Haris, M.H.M.; Mahum, R.; Nafees, M.; Aitaza, M.; Irtaza, A. An Automated Framework for Corona Virus Severity Detection
using Combination of AlexNet and Faster RCNN. Int. J. Innov. Sci. Technol. 2021, 3, 197–209. [CrossRef]

11. Mahum, R.; Rehman, S.U.; Okon, O.D.; Alabrah, A.; Meraj, T.; Rauf, H.T. A Novel Hybrid Approach Based on Deep CNN to
Detect Glaucoma Using Fundus Imaging. Electronics 2021, 11, 26. [CrossRef]

12. Phan, T.-D.-T.; Kim, S.H. Skin Lesion Segmentation by U-Net with Adaptive Skip Connection and Structural Awareness. Appl.
Sci. 2021, 11, 4528. [CrossRef]

13. Marosán-Vilimszky, P.; Szalai, K.; Horváth, A.; Csabai, D.; Füzesi, K.; Csány, G.; Gyöngy, M. Automated skin lesion classification
on ultrasound images. Diagnostics 2021, 11, 1207. [CrossRef] [PubMed]

14. Khamparia, A.; Singh, P.K.; Rani, P.; Samanta, D.; Khanna, A.; Bhushan, B. An internet of health things-driven deep learning
framework for detection and classification of skin cancer using transfer learning. Trans. Emerg. Telecommun. Technol. 2020, 32, 7.
[CrossRef]

15. Vidya, M.; Karki, M.V. Skin Cancer Detection using Machine Learning Techniques. In Proceedings of the 2020 IEEE International
Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2–4 July 2020; pp. 1–5.
[CrossRef]

16. Jasil, S.G.; Ulagamuthalvi, V. Skin Lesion Classification Using Pre-Trained DenseNet201 Deep Neural Network. In Proceedings of
the 3rd International Conference on Signal Processing and Communication (ICPSC), Tamil Nadu, India, 4 May 2021.

https://doi.org/10.1109/icomet.2019.8673502
https://doi.org/10.3390/app9081526
https://doi.org/10.1109/JPROC.2019.2936204
https://www.ncbi.nlm.nih.gov/pubmed/32095024
https://doi.org/10.1109/JSTQE.2018.2854608
https://www.ncbi.nlm.nih.gov/pubmed/31244520
https://doi.org/10.1109/TMI.2021.3064464
https://doi.org/10.1109/TIM.2020.3004683
https://doi.org/10.1109/TBME.2018.2887083
https://www.ncbi.nlm.nih.gov/pubmed/30571614
https://doi.org/10.1109/ACCESS.2019.2961410
https://doi.org/10.1109/TMI.2020.3000341
https://doi.org/10.33411/IJIST/2021030516
https://doi.org/10.3390/electronics11010026
https://doi.org/10.3390/app11104528
https://doi.org/10.3390/diagnostics11071207
https://www.ncbi.nlm.nih.gov/pubmed/34359290
https://doi.org/10.1002/ett.3963
https://doi.org/10.1109/conecct50063.2020.9198489


Diagnostics 2023, 13, 1824 17 of 18

17. Setiawan, A.W. Image Segmentation Metrics in Skin Lesion: Accuracy, Sensitivity, Specificity, Dice Coefficient, Jaccard Index, and
Matthews Correlation Coefficient. In Proceedings of the 2020 International Conference on Computer Engineering, Network, and
Intelligent Multimedia (CENIM), Online, 17–18 November 2020.

18. Goyal, M.; Oakley, A.; Bansal, P.; Dancey, D.; Yap, M.H. Skin Lesion Segmentation in Dermoscopic Images With Ensemble Deep
Learning Methods. IEEE Access 2019, 8, 4171–4181. [CrossRef]

19. Wei, L.; Ding, K.; Hu, H. Automatic Skin Cancer Detection in Dermoscopy Images Based on Ensemble Lightweight Deep Learning
Network. IEEE Access 2020, 8, 99633–99647. [CrossRef]

20. Hasan, H.A.; Ibrahim, A.A. Hybrid Detection Techniques for Skin Cancer Images. In Proceedings of the 4th International
Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 26–28 October 2020.

21. Ansari, U.B.; Sarode, T. Skin cancer detection using image processing. Int. Res. J. Eng. Technol. 2017, 4, 2875–2881.
22. Ibraheem, M.R.; Elmogy, M. A Non-invasive Automatic Skin Cancer Detection System for Characterizing Malignant Melanoma

from Seborrheic Keratosis. In Proceedings of the 2nd International Conference on Computer and Information Sciences (ICCIS),
Sakaka, Saudi Arabia, 13–15 October 2020; pp. 1–5. [CrossRef]

23. Rahajeng, A.C.D.; Nuh, M.; Hikmah, N.F. An Evaluation Performance of Kernel on Support Vector Machine to Classify The
Skin Tumors in Dermoscopy Image. In Proceedings of the International Conference on Computer Engineering, Network, and
Intelligent Multimedia (CENIM), Online, 17–18 November 2020; pp. 76–81. [CrossRef]

24. Jayalakshmi, G.; Kumar, V.S. Performance analysis of Convolutional Neural Network (CNN) based Cancerous Skin Lesion
Detection System. In Proceedings of the International Conference on Computational Intelligence in Data Science (ICCIDS),
Gurgaon, India, 6–7 September 2019. [CrossRef]

25. Rehman, M.U.; Khan, S.H.; Rizvi, S.M.D.; Abbas, Z.; Zafar, A. Classification of Skin Lesion by Interference of Segmentation and
Convolotion Neural Network. In Proceedings of the 2nd International Conference on Engineering Innovation (ICEI), Bangkok,
Thailand, 5–6 July 2018; pp. 81–85. [CrossRef]

26. Filali, Y.; El Khoukhi, H.; Sabri, M.A.; Yahyaouy, A.; Aarab, A. Texture Classification of skin lesion using convolutional neural
network. In Proceedings of the International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS),
Fez, Morocco, 3–4 April 2019; pp. 1–5. [CrossRef]

27. Rezaoana, N.; Hossain, M.S.; Andersson, K. Detection and classification of skin cancer by using a parallel CNN model. In
Proceedings of the IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering
(WIECON-ECE), Bhubaneswar, India, 15–16 November 2020.

28. Adegun, A.A.; Viriri, S. Deep Learning-Based System for Automatic Melanoma Detection. IEEE Access 2019, 8, 7160–7172.
[CrossRef]

29. Razzak, I.; Shoukat, G.; Naz, S.; Khan, T.M. Skin Lesion Analysis Toward Accurate Detection of Melanoma using Multistage Fully
Connected Residual Network. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow,
UK, 19–24 July 2020; pp. 1–8. [CrossRef]

30. Raut, G.; Raut, A.; Bhagade, J.; Bhagade, J.; Gavhane, S. Deep Learning Approach for Brain Tumor Detection and Segmentation.
In Proceedings of the International Conference on Convergence to Digital World-Quo Vadis (ICCDW), Mumbai, India, 18–20
February 2020.

31. Alkarakatly, T.; Eidhah, S.; Al-Sarawani, M.; Al-Sobhi, A.; Bilal, M. Skin lesions identification using deep convolutional neural
network. In Proceedings of the International Conference on Advances in the Emerging Computing Technologies (AECT), Al
Madinah Al Munawwarah, Saudi Arabia, 10 February 2020.

32. Kondaveeti, H.K.; Edupuganti, P. Skin Cancer Classification using Transfer Learning. In Proceedings of the IEEE International
Conference on Advent Trends in Multidisciplinary Research and Innovation (ICATMRI), Buldhana, India, 30 December 2020.

33. Islam, K.; Ali, S.; Ali, M.; Haque, M.F.; Das, A.A.; Hossain, M.; Duranta, D.S.; Rahman, A. Melanoma Skin Lesions Classification
using Deep Convolutional Neural Network with Transfer Learning. In Proceedings of the 2021 1st International Conference on
Artificial Intelligence and Data Analytics (CAIDA), Riyadh, Saudi Arabia, 6–7 April 2021; pp. 48–53. [CrossRef]

34. Dhar, P.; Guha, S. Skin lesion detection using fuzzy approach and classification with CNN. Int. J. Eng. Manuf. 2021, 11, 11–18.
[CrossRef]

35. Afza, F.; Sharif, M.; Mittal, M.; Khan, M.A.; Jude Hemanth, D. A hierarchical three-step superpixels and deep learning framework
for skin lesion classification. Methods 2021, 202, 88–102. [CrossRef]

36. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the International
Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017.

37. Iranpoor, R.; Mahboob, A.S.; Shahbandegan, S.; Baniasadi, N. Skin lesion segmentation using convolutional neural networks with
improved U-Net architecture. In Proceedings of the 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS),
Mashhad, Iran, 23–24 December 2020; pp. 1–5. [CrossRef]

38. Sarıgül, M.; Ozyildirim, B.; Avci, M. Differential convolutional neural network. Neural Netw. 2019, 116, 279–287. [CrossRef]
39. Ting, Y.-S.; Teng, Y.-F.; Chiueh, T.-D. Batch Normalization Processor Design for Convolution Neural Network Training and

Inference. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea,
22–28 May 2021; pp. 1–4. [CrossRef]

https://doi.org/10.1109/ACCESS.2019.2960504
https://doi.org/10.1109/ACCESS.2020.2997710
https://doi.org/10.1109/iccis49240.2020.9257712
https://doi.org/10.1109/cenim51130.2020.9297941
https://doi.org/10.1109/iccids.2019.8862143
https://doi.org/10.1109/icei18.2018.8448814
https://doi.org/10.1109/wits.2019.8723791
https://doi.org/10.1109/ACCESS.2019.2962812
https://doi.org/10.1109/ijcnn48605.2020.9206881
https://doi.org/10.1109/caida51941.2021.9425117
https://doi.org/10.5815/ijem.2021.01.02
https://doi.org/10.1016/j.ymeth.2021.02.013
https://doi.org/10.1109/icspis51611.2020.9349577
https://doi.org/10.1016/j.neunet.2019.04.025
https://doi.org/10.1109/iscas51556.2021.9401434


Diagnostics 2023, 13, 1824 18 of 18

40. Na, W.; Liu, K.; Zhang, W.; Xie, H.; Jin, D. Deep Neural Network with Batch Normalization for Automated Modeling of Microwave
Components. In Proceedings of the IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics
Modeling and Optimization (NEMO), Hangzhou, China, 7–9 December 2020.

41. Farhat Ullah. Skin Lesion Dermis Dataset. 2022. Available online: https://www.kaggle.com/datasets/farhatullah8398/skin-
lesion-dermis-dataset (accessed on 15 July 2022).

42. Mahum, R.; Munir, H.; Mughal, Z.-U.; Awais, M.; Khan, F.S.; Saqlain, M.; Mahamad, S.; Tlili, I. A novel framework for potato leaf
disease detection using an efficient deep learning model. Hum. Ecol. Risk Assess. Int. J. 2022, 29, 303–326. [CrossRef]

43. Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of
common pigmented skin lesions. Sci. Data 2018, 5, 180161. [CrossRef] [PubMed]

44. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

45. Sadhana, S.; Mallika, R. An intelligent technique for detection of diabetic retinopathy using improved alexnet model based
convoluitonal neural network. J. Intell. Fuzzy Syst. 2021, 40, 7623–7634. [CrossRef]

46. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

47. Nakamichi, K.; Lu, H.; Kim, H.; Yoneda, K.; Tanaka, F. Classification of Circulating Tumor Cells in Fluorescence Microscopy
Images Based on SqueezeNet. In Proceedings of the 19th International Conference on Control, Automation and Systems (ICCAS),
Jeju, Republic of Korea, 15–18 October 2019; pp. 1042–1045.

48. Akpinar, K.N.; Genc, S.; Karagol, S. Chest X-ray Abnormality Detection Based on SqueezeNet. In Proceedings of the International
Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 2–13 June 2020; pp. 1–5.
[CrossRef]

49. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
50. Panthakkan, A.; Anzar, S.M.; Mansoori, S.A.; Ahmad, A. Accurate Prediction of COVID-19 (+) Using AI Deep VGG16

Model. In Proceedings of the 3rd International Conference on Signal Processing and Information Security (ICSPIS),
Dubai, United Arab Emirates, 7–8 December 2020.

51. Aung, H.; Bobkov, A.V.; Tun, N.L. Face Detection in Real Time Live Video Using Yolo Algorithm Based on Vgg16 Convolutional
Neural Network. In Proceedings of the International Conference on Industrial Engineering, Applications and Manufacturing
(ICIEAM), Sochi, Russia, 17–21 May 2021; pp. 697–702. [CrossRef]

52. Waheed, Z.; Waheed, A.; Zafar, M.; Riaz, F. An efficient machine learning approach for the detection of melanoma using
dermoscopic images. In Proceedings of the International Conference on Communication, Computing and Digital Systems
(C-CODE), Islamabad, Pakistan, 8–9 March 2017; pp. 316–319. [CrossRef]

53. Mhaske, H.R.; Phalke, D.A. Melanoma skin cancer detection and classification based on supervised and unsupervised learn-
ing. In Proceedings of the international conference on Circuits, Controls and Communications (CCUBE), Bengaluru, India,
27–28 December 2013; pp. 1–5. [CrossRef]

54. Zghal, N.S.; Derbel, N. Melanoma skin cancer detection based on image processing. Curr. Med. Imaging 2020, 16, 50–58. [CrossRef]
[PubMed]

55. Araújo, R.L.; de Andrade, L.R.R.; Rodrigues, J.J.P.C.; Silva, R.R.V.E. Automatic segmentation of melanoma skin cancer using deep
learning. In Proceedings of the IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM),
Shenzhen, China, 1–2 March 2021.

56. Majumder, S.; Ullah, M.A.; Dhar, J.P. Melanoma diagnosis from dermoscopy images using artificial neural network. In Proceedings
of the 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 26–28 September 2019.

57. Varma, P.B.S.; Paturu, S.; Mishra, S.; Rao, B.S.; Kumar, P.M.; Krishna, N.V. SLDCNet: Skin lesion detection and classification using
full resolution convolutional network-based deep learning CNN with transfer learning. Expert Syst. 2022, 39, e12944. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.kaggle.com/datasets/farhatullah8398/skin-lesion-dermis-dataset
https://www.kaggle.com/datasets/farhatullah8398/skin-lesion-dermis-dataset
https://doi.org/10.1080/10807039.2022.2064814
https://doi.org/10.1038/sdata.2018.161
https://www.ncbi.nlm.nih.gov/pubmed/30106392
https://doi.org/10.1145/3065386
https://doi.org/10.3233/JIFS-189582
https://doi.org/10.1109/icecce49384.2020.9179404
https://doi.org/10.1109/icieam51226.2021.9446291
https://doi.org/10.1109/c-code.2017.7918949
https://doi.org/10.1109/ccube.2013.6718539
https://doi.org/10.2174/1573405614666180911120546
https://www.ncbi.nlm.nih.gov/pubmed/31989893
https://doi.org/10.1111/exsy.12944

	Introduction 
	Related Work 
	Materials and Methods 
	Input Layer 
	Convolutional Layer 
	Batch Normalization Layer 
	ReLU Layer 
	Max Pooling Layer 
	Fully Connected Layer 
	Softmax Layer 

	Experimentation Methods 
	Dataset Used 
	Environmental Setup 
	Validation 
	Comparison with Existing Pre-Trained Models 
	Alex Net 
	SqueezeNet 
	VGG16 

	Comparison with Machine Learning Techniques 
	Comparison with Segmentation-Based Techniques 
	Comparison with Existing DL-Based Skin Cancer Detectors 

	Conclusions 
	References

