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Abstract: MR urography can be an alternative to other imaging methods of the urinary tract in
children. However, this examination may present technical problems influencing further results.
Special attention must be paid to the parameters of dynamic sequences to obtain valuable data for
further functional analysis. The analysis of methodology for renal function assessment using 3T
magnetic resonance in children. A retrospective analysis of MR urography studies was performed in
a group of 91 patients. Particular attention was paid to the acquisition parameters of the 3D-Thrive
dynamic with contrast medium administration as a basic urography sequence. The authors have
evaluated images qualitatively and compared contrast-to-noise ratio (CNR), curves smoothness, and
quality of baseline (evaluation signal noise ratio) in every dynamic in each patient in every protocol
used in our institution. Quality analysis of the image (ICC = 0.877, p < 0.001) was improved so
that we have a statistically significant difference in image quality between protocols (χ2(3) = 20.134,
p < 0.001). The results obtained for SNR in the medulla and cortex show that there was a statistically
significant difference in SNR in the cortex (χ2(3) = 9.060, p = 0.029). Therefore, the obtained results
show that with the newer protocol, we obtain lower values of standard deviation for TTP in the aorta
(in ChopfMRU: first protocol SD = 14.560 vs. fourth protocol SD = 5.599; in IntelliSpace Portal: first
protocol SD = 15.241 vs. fourth protocol SD = 5.506). Magnetic resonance urography is a promising
technique with a few challenges that arise and need to be overcome. New technical opportunities
should be introduced for everyday practice to improve MRU results.

Keywords: kidney perfusion; MR urography; urinary tract; MRI

1. Introduction

Imaging of the urinary system in children is mainly based on ultrasound (US), classical
roentgenography, and scintigraphy. Each of these methods has its advantages as well
as limitations [1–3]. Ultrasound is an optimal tool for visualizing kidneys, and their
collecting systems are safe and commonly available. However, this method does not
carry information about the renal function. Whereas classic roentgenography gives enough
proper morphological evaluation of the collecting system and indirect information about the
renal function. Unfortunately, in this method, we have a radiation burden, and unavoidable
is the use of contrast media [4].

Another method used for imaging the urinary tract is computed tomography (CT).
When the acquisition of images has become faster, this method has gained popularity;
however, still limited due to radiation exposure and usage of an iodine contrast [5,6].

The gold standard in imaging renal function and determining split renal function is scinti-
graphic imaging with the use of a radionuclide Technetium-99m-mercaptoacetyltriglycine
(99mTc-MAG3). This method, like the previous ones, has a few disadvantages—limitations
in the detection of small subjects, low spatial and contrast resolution (inadequate anatomic
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information), usage of radionuclides, and hence ionizing radiation [7], which is why we
are looking for an alternative.

Like Uro-CT, magnetic resonance urography (MRU) gives the possibility of assessing
renal parenchyma, collecting systems, ureters, and bladder. The better signal, excellent
contrast resolution, and lack of ionizing radiation make MRU a promising examination for
non-invasive assessment of the urinary tract. However, it still requires a contrast medium,
and it does not exceed Uro-CT in spatial resolution, as well as has a lower sensitivity for
imaging renal stones [8–10].

Functional analysis of the MRU scan still requires external post-processing with rela-
tively complicated software. It can be a limiting factor in the full routine implementation of
functional analysis of the MRU, and the use of functional parameters of MRUs comparable
to nuclear medicine [4,7,11–14].

MRU allows quantifying the perfusion of the parenchyma and glomerular filtration
and visualizing of kidney excretory functions as well as urination [9,10,14–16]. All these
advantages make MRU ideally suited for a comprehensive assessment of the upper urinary
tract. However, the need for children’s anesthesia is still the main limitation [10,17,18].

For dynamic sequences, we use T1-weighted images followed by a paramagnetic
intravenous contrast agent based on gadolinium. These sequences are usually preceded by
diuretic injection approximately 15 min before contrast administration at a dose of 0.25 to
0.5 mg/kg body weight. The dynamic sequence is being performed in the coronal plane,
which allows for assessing the anatomy of large kidney vessels, parenchyma, and collecting
systems [4,17]. The imaging needs fat suppression to increase the visibility of the ureters.
In this technique, the recommended (ESUR, Contrast Media Safety Guidelines 10.0) dose
of gadolinium is 0.1 mmol/kg [19] (in our case: Gadobutrolum at flow rate of 0.5 mL/s).
The use of diuretics is a supplement that can improve the excretion of the contrast agent
and allows its greater dilution [20,21]. Contraindications for contrast agent use are: anuria,
hypersensitivity to the drug, electrolyte imbalance, or hypotension and are cautious in
patients allergic to sulphonamides. MRU technique can be performed in conjunction with
a conventional MR for an integrated assessment of the urinary tract.

However, pediatric MRU has some limitations: structures are much smaller than adult
structures, heart rate, and respiratory frequency are higher than in adults, and patients are
less likely to cooperate. Due to these adversities, acquisition parameters should be adjusted
precisely to optimize the spatial and temporal resolution, and to make the acquisition
time relatively short, but together with the right results. Therefore, imaging protocols and
specific sequence parameters often need to adjust for the patients [4,22,23].

The aim of this study was the analysis of methodology for renal function assessment
using 3T magnetic resonance imaging in children.

2. Materials and Methods
2.1. Subjects

A retrospective analysis of MRU 3D-Thrive dynamic sequence with contrast injection was
performed on 91 patients (55 female, 36 male, mean age: 6.00± 5.84, range: 6 months–17 years).

The research was according to the Helsinki Declaration of 1975, as revised in 2000.

2.2. Imaging Protocol Evaluation

The examinations were performed using a Philips Achieva 3T TX magnetic resonance
scanner (Philips Healthcare; Best, The Netherlands) with 16-channel coil dedicated to
abdominal examinations.

After taking the localizer sequence (a set of three-plane, low-resolution, large field-of-
view images to localize part of the body to examination), morphological imaging sequences
were acquired in three directions to provide anatomical orientation. The protocol included
3D thrive dynamic sequence for functional analysis. This sequence was changing over time;
mainly, we changed parameters, such as matrix, the number of signals averaged (NSA), flip
angle (FA), and number of dynamics. Every single examination was fitted for each patient
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to optimize time and spatial resolution—such as the field of view (FOV), and number of
slices. Patients differ in age, weight, and height, which had an impact on the image signal
and quality. Thus, we can put in approximate acquisition parameters (Table 1).

Table 1. Evaluation of examination protocol.

1st Protocol 2nd Protocol 3rd Protocol 4th Protocol

1 Survey 1 Survey 1 Survey 1 Survey

2 T1_TFE_IP_Cor_FB 2 T1_TFE_IP_Cor_FB 2 mDixon_Tra 2 T2W_TSE_Tra_HR

3 T1_TFE_IP_Tra_FB 3 VISTA_COR 3 VISTA_COR_Sense 3 VISTA_COR_Sense

4 BTFE_SPIR_COR_FB 4 BTFE_SPIR_SAG_FB 4 DWI_5b_Tra_navi 4 1 BTFE_SPIR_SAG_FB

5 T2_TSE_TRA_FB 5 T2_TSE_HR_TRA_FB 5 T2W_TSE_Tra_HR 5 mDixon_Tra

6 T2W_SPAIR_TRA_FB 6 STIR_Tra_FB 6 T2_SPAIR_TRA 6 DWI_5b_Tra_navi

7 VISTA_COR 7 DWI_5b_Tra_navi 7 BTFE_SPIR_SAG_FB 7 STIR_Tra_FB

8 sMRCP_3D_HR_COR 8 mDIXON_ TRA_FB 8 THRIVE_COR_3D 8 2 sMRCP_3D_HR_COR

9 e-THRIVE_COR_FB 9 THRIVE_COR_FB 9 sT1W_FFE_IP 9 e-THRIVE_COR_FB

10 T1_TFE_IP_COR_FB 10 T1_TFE_IP_COR_FB 10 mDixon_Tra

TFE—turbo field echo; IP—in phase; FB—free breath, Navi—breathing navigator, TSE—turbo spin echo;
SPAIR—spectral attenuated inversion recovery; VISTA—Volume isotropic turbo spin-echo acquisition = 3D-FAST
SPIN ECHO; MRCP—magnetic resonance cholangiopancreatography; mDixon—time-consuming acquisition of
in-phase and opposed-phase gradient-echo images; eTHRIVE—enhanced T1 high-resolution isotropic volume
excitation; T1—the time constant for regrowth of longitudinal magnetization; T2—is the time constant for de-
cay/dephasing of transverse magnetization; DWI—diffusion-weighted imaging. 1 This sequence is useful, when
patient have uretero-pelvic junction structure obstruction. 2 This sequence is useful, when VISTA sequence have
not enough good quality.

For optimization time resolution and the acquisition matrix, we did use thinner slice,
higher matrix, SENSitivity Encoding (SENSE), and recently we add ENCASE (Enhanced
Coronal Acquisition with Sagittal Excitation [24]).

Both the protocol and the dynamic sequence were successively changed according to
our knowledge, experience, and current technical possibilities (Tables 1 and 2). The analysis
was performed on images obtained in the dynamic schema with 3D-THRIVE sequence
with the administration of the contrast agent.

Table 2. Acquisition parameters of the dynamic sequence.

Parameters 1st Protocol 2nd Protocol 3rd Protocol 4th Protocol

Slice thickness/gap (mm) 5 3 3 4

Suppress fat SPAIR SPIR SPIR SPAIR

Flip angle 10 25 25 10

Number of averages 3 1 1 1

TE/TR (ms) Default Default default default

Matrix ≈214/214 ≈214/214 ≈232/232 ≈384/384

Time (s) per dynamic ≈10 ≈12 ≈8 ≈8

Breath hold Free breath Free breath Free breath Free breath

Sense - + + +

ENCASE - - - +

Number of dynamics 10 25 ≈25–30 ≈40–50

Number of dynamics
without contrast 1 1 5–7 >7

Delay between dynamics 30 s 30 s 30 s

For the beginning, dynamics
were acquired one by one,
without delay. After a few

minutes—30 s

Plane
Coronal with the angle of the
oblique-coronal plane in long

axis kidney

Coronal with the angle of the
oblique-coronal plane in long

axis kidney

Coronal with the angle of the
oblique-coronal plane in long

axis kidney

Coronal with a maximum of
5 degrees
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2.3. Assessment of Image Quality

Both kidneys were used for analysis. Image quality was performed on dynamic
sequences before contrast by two examinators assessing in consensus. Visual assessment
was performed by using scale of the visibility of corticomedullary differentiation in the
time (1—poor, 2—moderate, 3—good, 4—excellent) [25,26]. The data were randomized for
each author.

2.4. Contrast-to-Noise Ratio (CNR) and Signal-to-Noise-Ratio (SNR) Measurements

Contrast-to-noise ratio (CNR) and signal-to-noise-ratio (SNR) [27] is a measure used
to determine image quality. This measurement was obtained with ROI (region of interest),
which was placed in the cortex and medulla in the upper part of the kidney. ROI was as
large as possible (Figure 1). The data were taken on the four places with the same size ROI
in medulla and cortex and then averaged. Signal intensity on background noise was taken
in the four ROIs in the background away from the body. CNR was calculated using the
following formula [3,28]:

CNR = |SNRcortex − SNRmedulla|
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Figure 1. Signal noise ratio measurements.

In our case, when we use parallel image acquisition, SNR was defined as a relative
mean signal in each subject divided by the standard deviation in the background.

2.5. Signal Intensity Curves Evaluation

Passing the contrast in time through specific anatomical parts of the kidneys can be
represented by the changes in signal intensity curves depending on time from a specific
ROI (Figure 1). This analysis was carried out in the Philips IntellinSpace Portal program.
From the semiquantitative analysis, we can obtain information about relative enhancement,
maximum enhancement, maximum relative enhancement, T0 (time of contrast in-flow),
time to peak (time between the time of contrast inflow and time with a maximum of
enhancement), wash in rate, washout rate, the brevity of enhancement, the area under the
curve. However, for our needs, we used only T0 and TTP, to calculate RTT, and CTT in
each kidney.
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Functional analysis of kidneys was carried out in the program ChopfMRU (v 1.11,
the Department of Radiology, at The Children’s Hospital of Philadelphia, https://www.
parametricmri.com/ accessed on 17 May 2023) [9], which works on IDL Machine. Firstly,
files of the MRU scan are exported into a single directory using free program DicomWorks®

(version 1.3.5, dicomworks.com accessed on 17 May 2023) [17] (Figure 2) and sorted.
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The analysis in the ChopfMRU program has been divided into three stages:

• Separation of the aorta (Figure 3)—the number of time points was found so that the
aorta was marked significantly against the background of the organs (the moment of
the highest signal intensity in the vessel),

• Separation of the kidneys (Figure 4)—the number of time points was found where
contrast is first seen in the calyces,

• Biophysical model analysis (Figure 5)—estimation of functional parameters for the
aorta and each kidney.
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Figure 5. Example of mathematical analysis.

From the biophysical model, the analysis included Patlak–Rutland method we can ob-
tain information that was described by Khrichenko et al. [29]. For our usage, we focused on
parameter: time to peak (TTP; time to achieve the maximum enhanced of the parenchyma;
calculated automatically).

The analysis of curves of signal intensity as a function of time from the ChopfMRU
program was qualitatively compared by two authors with the curves obtained in the
Philips IntelliSpace Portal program (Figure 6). The authors have evaluated qualitatively
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and compared contrast noise ratio (CNR), curves smoothness, and quality of baseline
(evaluation signal noise ratio) in every dynamic in each patient in every protocol.
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2.6. Statistical Analysis

The agreement between observers was measured by ICC (intraclass correlation co-
efficient). All results were tested for normal distribution with the Shapiro–Wilk test for
each protocol. To improve the difference between data obtained with a different protocol,
we used the Kruskal–Wallis H test and used U Manna–Whitney test to compare data be-
tween protocols, where Kruskal–Wallis H test shows a significant difference. The statistical
analysis was prepared in IBM SPSS 25.0 (SPSS, Inc., Chicago, IL, USA).

3. Results
3.1. Evaluation of Imaging Techniques

In the first of three protocols, we used dynamic sequences of the angle of the oblique-
coronal plane. At the fourth, the maximum angle of the plane can be 5 degrees, be-
cause we use ENCASE and for this angulation from the coronal orientation is limited to
+/−5 degrees for all directions. However, we used this modality mainly to suppress the
breathing artifacts.

We placed the patient with his or her hands up; this allowed us to adjust the kid-
ney’s long axis, thus compensating for the restriction—the second problem which we
have a problem with analysis enhanced plot. We increased the number and frequency of
consecutive dynamics in the initial phase. For the first protocol, we had 30 s break between
dynamics, while in the fourth protocol, we use for beginning, dynamics were acquired one
by one, without interruption. Then a few minutes of scanning—30 s break. Thanks to that,
we have more information about kidney perfusion from the first minutes after contrast
injection until notice a contrast in the ureter below the lower pole of the kidney.
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3.2. Assessment of Image Quality

The agreement between observers was 0.877 (a high intraclass correlation coefficient)
with p < 0.001. Therefore, the results in Table 3 present descriptive statistics of data
collected by one observer. The results for each protocol were tested for normal distribution
with the Shapiro–Wilk test. This test showed that obtained data do not have a normal
distribution (p < 0.05). Hence, gain data were tested with the Kruskal–Wallis H test. This
test shows that there was a statistically significant difference in image quality between
protocols (χ2(3) = 20.134, p < 0.001). To improve which group of the protocols is a significant
difference (Figure 7), we used the U Manna–Whitney test. We obtained that the significant
difference was between the first and fourth protocol (Z = −3.423, p = 0.001), the second and
third (Z = −2.323, p = 0.020), second and fourth (Z = −4.212, p < 0.001).

Table 3. Results of visual assessment with a 4-point scale.

Number of
Protocol

Visual Assessment with a 4-Point Scale

N Minimum Maximum Mean Median Standard Error

1st protocol 20 2.00 4.00 2.85 3 0.18

2nd protocol 32 1.00 4.00 2.78 3 0.13

3rd protocol 22 1.00 4.00 3.27 3 0.19

4th protocol 17 3.00 4.00 3.77 4 0.11

Where: N—the number of patients in the group, minimum—minimum value of results, maximum—maximum
value of results, median—optimal prediction of values using a single number.
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3.3. Contrast-to-Noise Ratio (CNR) and Signal-to-Noise-Ratio (SNR) Measurements

Results of signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) for each pro-
tocol did not have a normal distribution (p < 0.05). The mean value of CNR was almost
the same for every protocol (Table 4) (Figures 8–10). However, the median in the fourth
protocol had the highest value, and this may indicate a better contrast of the image in this
protocol. By analyzing the results obtained for SNR in medulla and cortex (Table 5), we can
expect significant differences between the older protocols and the latest ones.
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Table 4. Results of contrast-to-noise ratio (CNR).

Number of
Protocol

Contrast to Noise Ratio (CNR)

N Minimum Maximum Mean Median Standard Error

1st protocol 20 1.33 17.13 7.07 6,28 0.91

2nd protocol 32 0.43 15.73 6.15 5.29 0.72

3rd protocol 22 1.83 24.82 8.84 6.34 1.43

4th protocol 17 0.35 17.44 8.59 8.16 1.04

Where: N—the number of patients in the group, minimum—minimum value of results, maximum—maximum
value of results, median—optimal prediction of values using a single number.
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Table 5. Results of signal-to-noise ratio (SNR) in medulla and cortex.

Number of
Protocol

Signal to Noise Ratio (SNR) in Medulla Signal to Noise Ratio (SNR) in Cortex

N Minimum Maximum Mean Median Standard Error Minimum Maximum Mean Median Standard Error

1st protocol 20 5.18 86.11 23.867 17.89 4.39 6.51 90.68 30.98 24.10 4.24

2nd protocol 32 8.09 34.75 16.22 12.09 1.31 11.82 45.75 22.38 19.55 1.61

3rd protocol 22 7.20 94.76 26.37 18.62 4.24 12.48 118.94 35.22 26.80 5.07

4th protocol 17 5.95 39.81 23.14 22.52 2.38 13.12 49.99 31.74 33.21 2.91

Where: N—the number of patients in the group, minimum—minimum value of results, maximum—maximum
value of results, median—optimal prediction of values using a single number.

Therefore, obtained data were tested with the Kruskal–Wallis H test. This test shows
that there was a statistically significant difference in SNR in the cortex (χ2(3) = 9.060,
p = 0.029) and medulla (χ2(3) = 8.114, p = 0.44) between protocol, but in CNR we do not
obtain the significant difference between protocols (χ2(3) = 4.542, p = 0.209).

To improve which group of the protocol is a significant difference in SNR, we used the
U Manna–Whitney test. We obtained that the significant difference was in the:

• Cortex: 2nd and 3rd (Z = −2.429, p = 0.015), 2nd and 4th (Z = −2.626, p = 0.009),
• Medulla: 2nd and 3rd (Z = −2.324, p = 0.020), 2nd and 4th (Z = −2.626, p = 0.009).

3.4. Quality of Enhancement Curves

The enhancement curve of dynamic sequences for each patient was assessed. Changing
the parameters of acquisitions of new dynamics during the initial phase until excretion,
increased the effectiveness of the renal perfusion assessment.

The use of techniques shortening the duration of one dynamic, and techniques chang-
ing the direction of data collection (ENCASE), has improved the quality of the data ob-
tained. There are no graph line jumps (Figures 11 and 12a) at subsequent time points on
the obtained signal intensity curves which are smoother and out of breathing artifacts
(Figures 6 and 12a). That illustrates how much information we lost in the first protocol,
and how much information we can obtain with the fourth protocol. To improve this, we
check TTP in the aorta (the time between highest signal intensity and point before contrast
injection) in IntelliSpace Portal and ChopfMRU, and we checked TTP standard deviation
for each protocol (Table 6). We used data in the aorta because we have a constant contrast
injection flow and time-to-peak in the aorta should be approximately comparable in each
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patient without the difference in weight, age, height, or kidney disease. The obtained
results show that with the newer protocol, we obtain lower values of standard deviation for
TTP in the aorta (in ChopfMRU: first protocol SD = 14.560 vs. fourth protocol SD = 5.599;
in IntelliSpace Portal: first protocol SD = 15.241 vs. fourth protocol SD = 5.506). This may
indicate that with the latest protocol, we can achieve repeatable results with a possible low
data loss.
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Table 6. Standard deviation obtained on TTP in the aorta.

TTP Standard Deviation

IntelliSpace Portal ChopfMRU

1st protocol 15.241 14.560

2nd protocol 10.550 13.768

3rd protocol 9.214 11.520

4th protocol 5.506 5.599

4. Discussion

The present study evaluated imaging techniques for assessing kidney perfusion. The
fourth protocol significantly improved image quality and renal perfusion assessment by
suppressing breathing artifacts and increasing the number and frequency of consecutive
dynamics during the initial phase until excretion. These findings have important clinical im-
plications, as imaging techniques are critical for diagnosing and managing kidney disease.

The most significant technical problem concerning functional MRU imaging is obtain-
ing the balance between spatial resolution, time resolution, and adjusting the acquisition
matrix to the patient’s age [30]. Additionally, the qualitative analysis has problems with
ROI (region of interest) positioning and respiratory artifacts. To address these limitations,
techniques such as ENCASE and SENSE, and increasing the matrix size adequately to the
patient’s size must be implemented [31,32].

To improve time resolution, we started using compressed sensing, a method for
accelerated MR data acquisition based on the semi-random sampling of k-space. Adding
compressed SENSE to multiple sequences in an exam can accelerate our examinations
by 20–40%, which is very good for the patients and examination quality [33,34]. This is
obvious because the shorter the examination time, the greater the patient’s comfort and,
thus, the fewer motion artifacts adversely affecting the images. The other option to improve
the quality of obtaining images could be a 4D MRI—RT respiratory self-gating sequence.
This technique captions organ motion under free-breathing and automatic sorting obtaining
data without external respiratory devices [35].

The proposed fourth protocol overcomes these mentioned above limitations by the
highest matrix (384/384), the shortest time of the single dynamic sequence (8 s), and the
highest number of dynamic sequences (40–50).
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In the presented study, the analysis of the resolution based on corticomedullary differ-
entiation showed a significant difference between the fourth and first protocol (Z = −3.423,
p = 0.001), as well as between the second and third (Z = −2.323, p = 0.020), and second
and fourth (Z = −4.212, p < 0.001) protocols. This evaluation is because diagnosis is based
primarily on a visual assessment of the dynamics, and the temporal resolution greatly
influences the quantitative evaluation of contrast intensity curves during postprocessing.
Results obtained from the analysis of TTP in the aorta showed that with the latest, updated
protocols, lower values of standard deviation were characterized, which may indicate more
repeatable results (in ChopfMRU: first protocol SD = 14.560 vs. fourth protocol SD = 5.599;
in IntelliSpace Portal: first protocol SD = 15.241 vs. fourth protocol SD = 5.506). In addition,
SNR significantly differs in the medulla and cortex between the second and third (cortex:
Z = −2.429, p = 0.015; medulla: Z = −2.324, p = 0.020), and the second and fourth (cortex:
Z = −2.626, p = 0.009; medulla: Z = −2.626, p = 0.009) protocols. When we achieve optimal
time resolution, renal function can be assessed more accurately. Based on our results’ lowest
standard deviation (TTP in the aorta), we can assume that the fourth protocol can produce
repeatable results with minimal data loss. All the changes introduced have led to better
visibility of corticomedullary differentiation, as confirmed by visual and SNR evaluations.
This improvement will help diagnosis, which is primarily based on qualitative evaluation.
Obtained results illustrate that our changes helped us obtain higher-resolution images
without compromising time resolution.

Moreover, the changes introduced in the proposed protocol allowed for a more accu-
rate assessment of renal status, and the precise quantitative and qualitative analysis and
calculations of the values of signal intensity curves in individual segments and parts of the
kidneys were improved.

While the present study focused on MRI techniques, it is worth noting that other
imaging modalities, such as CT and ultrasound, are also commonly used to diagnose
and manage kidney disease [3,14,36]. The combination of fMRI with contrast-enhanced
ultrasound (CEUS) may be particularly interesting. Hence, future studies could compare
the efficacy of these imaging modalities to determine the most effective and appropriate
technique for different clinical scenarios.

The findings of this study have potential implications for future research in the field
of renal imaging. For instance, the fourth protocol presented in this study could be further
optimized and improved upon in future studies using artificial intelligence (AI) and deep
learning techniques [1].

It is important to note that the present study has some limitations. For instance, the
study was limited to a small sample size, and the results may not be generalizable to larger
populations or different clinical scenarios. Additionally, the study only evaluated one
aspect of renal imaging, and future studies could explore other aspects of renal function
imaging supported with AI [37–40].

In summary, there are several methods to improve the quality of the resulting images,
including:

• High-field MRI: using a higher magnetic field strength can improve the signal-to-noise
ratio and overall image quality.

• Parallel imaging: this technique allows data to be acquired from multiple coils simul-
taneously, reducing acquisition time and improving spatial resolution.

• Motion correction: motion artifacts can negatively impact image quality, but mo-
tion compensation algorithms can compensate for patient movement and improve
image quality.

• Compressed sensing: this signal processing technique can reconstruct high-quality
images from undersampled data.

• Deep learning: the newest technique uses deep learning methods such as convolutional
neural networks to improve image quality by reducing noise and enhancing contrast.
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5. Conclusions

Functional magnetic resonance imaging (fMRU) is a non-invasive imaging modality
that combines functional MRI and urography to provide a detailed picture of the function-
ing urinary tract. It is a promising technique with a few challenges that arise and need to
be overcome. New technical opportunities should be introduced for everyday practice to
improve MRU results.
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