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Abstract: Ventricular arrhythmia is one of the main causes of sudden cardiac death. Hence, identi-
fying patients at risk of ventricular arrhythmias and sudden cardiac death is important but can be
challenging. The indication for an implantable cardioverter defibrillator as a primary preventive
strategy relies on the left ventricular ejection fraction as a measure of systolic function. However,
ejection fraction is flawed by technical constraints and is an indirect measure of systolic function.
There has, therefore, been an incentive to identify other markers to optimize the risk prediction
of malignant arrhythmias to select proper candidates who could benefit from an implantable car-
dioverter defibrillator. Speckle-tracking echocardiography allows for a detailed assessment of cardiac
mechanics, and strain imaging has repeatedly been shown to be a sensitive technique to identify
systolic dysfunction unrecognized by ejection fraction. Several strain measures, including global
longitudinal strain, regional strain, and mechanical dispersion, have consequently been proposed
as potential markers of ventricular arrhythmias. In this review, we will provide an overview of the
potential use of different strain measures in the context of ventricular arrhythmias.

Keywords: strain; arrhythmia; mechanical dispersion; dyssynchrony; myocardial work

1. Introduction

Ventricular arrhythmias (VA) pose a substantial risk for the development of sudden
cardiac death (SCD) [1,2]. While VA may develop because of channelopathies, toxicity,
or for idiopathic reasons, structural heart disease is a frequent cause of VA [3]. Cardiac
imaging, including echocardiography, may help detect structural and functional heart
disease to identify patients at risk of VA. In line with this, the estimation of systolic
function by left ventricular ejection fraction (LVEF) is used to guide the indication for the
implantation of an implantable cardioverter defibrillator (ICD) in heart failure (HF) [3,4].
However, LVEF is limited by its pure volume-based assessment of systolic function and by
technical constraints, including poor reproducibility, geometric assumptions, and loading
dependency [5,6]. Consequently, LVEF has shown to be limited in terms of predicting VAs,
particularly in patients with LVEF >35%, and early prediction of the occurrence of VAs
remains a challenge despite being the most common cause of SCD [1–3,5,7].

Given the constraints of LVEF and the varying pathophysiological mechanisms that
may promote the development of VAs, several studies have evaluated the potential prog-
nostic utility of other biomarkers in the context of VAs. These include electrocardiographic
markers as well as findings from cardiac magnetic resonance imaging, computed tomogra-
phy, radionuclide imaging, and novel echocardiographic techniques [8–21].

Speckle tracking is one of the most promising echocardiographic techniques in this
regard. As outlined in Table 1, speckle tracking offers several advantages for the assessment
of myocardial function. Strain imaging parameters, in particular global longitudinal
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strain (GLS), have been shown to be more sensitive markers of cardiovascular risk than
LVEF [22–26]. Accordingly, strain imaging could be of value in terms of predicting VAs
and may potentially aid in the selection of candidates who would benefit from an ICD.

Table 1. Advantages and limitations of strain.

Strengths

On the verge of guideline implementation
Direct tissue measure
Can investigate each fiber aspect
High reproducibility, automatic options
Angle independent (compared to Doppler)
Can provide regional details
Can provide measures of diastolic function and dyssynchrony
Changes typically precede changes in LVEF

Limitations

Vendor dependency
Loading dependency

This review will provide an overview of the potential use of different strain imaging
measures as predictors of VA. Although this has been investigated in various patient
groups, it has most widely been studied in the settings of ischemic heart disease and HF.
This review will therefore focus on the utility of strain measures in these conditions but
also highlight other potential disease categories.

2. Concept of Myocardial Strain Imaging

Strain imaging was initially introduced as a derivative of tissue Doppler imaging but
was made quantifiable through speckle tracking in 2004 by Lysyanski et al. [27,28]. The
method of speckle tracking takes advantage of the presence of natural acoustical markers
within the myocardium that can be tracked throughout the cardiac cycle [29]. Speckle
tracking is therefore possible in multiple projections, typically measured in either apical
or short-axis views, and allows for the quantification of longitudinal, circumferential, and
radial strain, as well as twist and torsion [30]. Key practical points to consider include
proper visualization of myocardial tissue, adequate temporal resolution (~60–90 fps), and
careful consideration of ECG trigger points, but more details are available in published
practical guidelines [31]. The longitudinal strain has been most widely assessed because of
its higher feasibility and reproducibility [5,6] but also because longitudinal fibers located in
the subendocardial layer are most susceptible to ischemia [32,33]. Accordingly, most avail-
able evidence relies on findings from longitudinal strain. The assessment of longitudinal
strain can provide widespread insight into cardiac mechanics, including quantification of
GLS, regional strain, mechanical dispersion (MD), and, most recently, myocardial work as
potential markers of cardiovascular outcomes, including the risk of arrhythmias.

3. Global Longitudinal Strain
3.1. Value of GLS

As indicated by the name, GLS represents a global measure of LV myocardial tissue
deformation acquired from the three main apical projections. Since the introduction of my-
ocardial speckle tracking, several studies have emerged to suggest that GLS can detect LV
systolic dysfunction at an earlier point than LVEF [34,35]. Several technical and pathophys-
iological aspects contribute to why that is. As mentioned above, GLS evaluates myocardial
deformation and, thereby, contractile tissue function, whereas LVEF is a volume-based
measurement and, thereby, an indirect surrogate of systolic function. In addition, GLS
specifically evaluates longitudinal fiber function, which is more sensitive to ischemia since
coronary perfusion extends from the subendocardium and outwards [36–38]. Finally, GLS
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has been shown to correlate closely with the neurohumoral response, infarct size, and
myocardial fibrosis [39–41].

The primary impediment that has prevented GLS from earlier widespread clinical
implementation has been its vendor dependency [42,43]. However, collaborations have
already been created to mitigate this issue [44]. In addition, data from several studies
proposing normal values for GLS are now available, further benchmarking GLS for clinical
practice. A large-scale meta-analysis of ~2600 subjects reported that normal values varied
from −15.9 to −22.1% with a mean value of −19.7% [45], and a rule of thumb has been that
−16 to −18% is considered borderline abnormal, whereas a lower threshold of −16% was
considered abnormal [46]. This lower threshold was recently validated in ~2000 healthy
participants from a general population study (the Copenhagen City Heart study), which
found −15.8% to be the lower limit of normality for GLS [47]. Finally, GLS has consistently
shown excellent reproducibility, and by direct comparison, the reproducibility of GLS was
substantially better than LVEF, regardless of the operator’s level of expertise [48]. These
efforts have promoted the dissemination of GLS into various guidelines and recommenda-
tions [49,50].

3.2. GLS as a Marker of Ventricular Arrhythmia

As an extension to simply recognizing systolic dysfunction, several observational
studies have also shown that GLS can predict cardiovascular outcomes even in patients
with preserved LVEF [34,51,52]. Such findings also extend into the context of the prediction
of VA. Figure 1 is a representative example of GLS measured in a patient at risk of VA.
Table 2 provides an outline of studies examining GLS in relation to VAs across various
cardiac disorders. Even though GLS has shown potential for predicting VAs, it should be
noted that heterogeneity exists concerning endpoint definition, rhythm monitoring, and
length of follow-up.
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Figure 1. Global and regional strain. The figure shows an example of strain analysis in a patient
with ischemic cardiomyopathy and ICD who experienced appropriate therapy after implantation.
On the left side, speckle tracking of the left ventricle in the apical 4–chamber view is shown. In the
middle panel, strain profiles for each segment are shown (colored curves), and the global value for
this projection is shown as the white dotted profile. On the right, a corresponding bulls–eye plot
of regional strain values is shown, and the global strain value is denoted as ‘GS’ in the upper right-
hand corner. Overall, this patient had markedly reduced global longitudinal strain and widespread
regional abnormalities in longitudinal strain, most notable for the basal lateral wall segment, showing
positive strain values indicating paradoxical motion.
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For the selection of candidates for ICD implantation as a primary preventive strategy,
current guidelines rely heavily on an LVEF threshold of <35% [3], despite studies showing
that VA and SCD risk stratification by LVEF may be suboptimal [53–55]. Ersbøll et al.
reported on the value of GLS for predicting VA in the acute setting of myocardial infarction
(MI) with echocardiograms performed within 48 h of admission (n = 988 with 34 events
during 29.7 months of follow-up) in a prospective study. The authors found that GLS
was significantly reduced among patients who developed VAs compared to those who
did not (9.9% vs. 13.9%, p < 0.001) and that GLS was an independent predictor of VAs
after adjusting for clinical, electrocardiographic, and echocardiographic parameters. In
addition, GLS improved risk prediction beyond LVEF and Killip class. Finally, GLS was
found to be an independent predictor of VAs even in patients with LVEF above 35%, further
emphasizing the potential added value of GLS [56]. However, landmark analysis from the
study suggested that GLS, as opposed to MD, was significantly associated with VAs in
the short term (within 90 days) and highlighted the fact that there could be a diminishing
return on its predictive value with increasing length of time from the index infarction as
compared to MD. Indeed, in a multicenter, prospective study of 569 patients (15 events
during 30 months of follow-up), with echocardiograms performed >40 days after the MI,
Haugaa et al. found both GLS and MD to be univariable predictors of VAs; however,
when both parameters were included in the same regression model, only MD remained
significantly associated with VAs [57]. Central limitations to both these studies, as well as
others, have been the use of admission with VAs rather than systematic rhythm monitoring
for endpoint ascertainment as well as the few numbers of events. It is also worth noting that
in an antecedent study by Haugaa et al. on post-MI patients with ICDs (n: 85 with 38 events
during 2.3 years of follow-up), only MD and not GLS was found to be an independent
predictor of appropriate ICD therapy [58]. It should, however, be noted that even though
this was a prospective study, the echocardiograms were performed at various time points
from ICD implantation, and the median time from the MI to the study’s baseline was about
6 years. Accordingly, the lack of independent predictive value for GLS could be related to
the long time that elapsed from MI to echocardiogram.

As can be appreciated above and from Table 2, some inconsistencies appear concerning
GLS’ predictive value, particularly in ischemic heart disease. To that end, a meta-analysis
based on undifferentiated populations reported that GLS was not associated with VA
events (2076, events: 147) [59]. However, it should be noted that in another meta-analysis
based on 984 patients with non-ischemic cardiomyopathy (231 events), GLS was found
to be significantly associated with VAs [60]. It is also worthwhile to mention that in a
MADIT-CRT substudy, representing the largest study that has examined GLS’ value with
continuous rhythm monitoring and adjudicated VA events (n = 1064, events: 254), GLS was
also found to be associated with VAs [61]. Compared to meta-analyses, which extrapolate
results based on events that may differ markedly in terms of rhythm monitoring and
definition of VA endpoints, large-scale studies such as MADIT-CRT provide findings from
a more homogenous design.

In addition to the above-mentioned studies, several other studies have also reported
on the potential of GLS for predicting VAs in MI patients [62–64]. A brief outline of these
studies is provided in Table 2; however, the findings are less easily interpreted since the
studies were either retrospective or included VAs in a composite outcome with HF or
mortality.
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Table 2. Global longitudinal strain and ventricular arrhythmia.

Study Year Design Sample
Size

Arrhythmia
Outcome

Arrhythmia
Monitoring

No. of
Events Follow-Up Key Strain Findings

Myocardial infarction

Haugaa
et al. [58] 2010 Prosp. 85 Appropriate ICD

therapy ICD monitoring 38
2.3 (range:
0.6–5.5)
years

MD but not GLS was an
independent predictor
of appropriate ICD
therapy.

Haugaa
et al. [57] 2013 Prosp. 569

Composite:
Sustained VT
VF
SCD

Not specified 15 30 (IQR: 18)
months

GLS was a univariate
predictor of VA but not
an independent
predictor of VA when
adjusted for MD.
MD was an independent
predictor of VA.

Ersbøll
et al. [56] 2013 Prosp. 988

Composite:
VA
Appropriate ICD
therapy
Definite/suspected
SCD

Admission with
documented VA
ICD monitoring
in subgroup
SCD based on
hospital and
prehospital
records.

34
29.7 (IQR:
23.5–32.7)
months

GLS and MD were
independent predictors
of VA.
In patients with
LVEF < 35%, both GLS
and MD were
independent predictors
of VAs, but only GLS
was an independent
predictor of VAs in
patients with
LVEF > 35%.

Sjøli
et al. [62] 2011 Prosp. 77

Composite:
Cardiac death
Reinfarction
Hospitalization
for HF
UAP
Life-threatening
arrhythmia

Not specified 17
3.29 ± 1.59
(range:
0–5.22) years

GLS measured in both
the acute phase and
after 10 days was an
independent predictor
of the composite
outcome.

Nguyen
et al. [63] 2015 Not

specified 467 VT

Documented on
24 h ambulatory
ECG
monitoring
during hospital-
izationEP
study

51
Median: 25
(range: 6–43)
months

In multivariate analysis,
MD was significantly
associated with VT, and
GLS was borderline
significantly associated
with VT.

Choi
et al. [64] 2022 Retrosp. 545

Composite:
All-cause death
Rehospitalization
for acute HF
VA

National
database and
electrical medical
records

55 Median: 49.5
months

Reduced 3D and 2D
GLS were both
independently
associated with the
composite outcome.

Leong
et al. [65] 2015 Retrosp. 206 Appropriate ICD

therapy ICD monitoring 75
Median: 24
(IQR: 7.8–24)
months

GLS and MD were
independently
associated with VT.

Structural heart disease

Guerra
et al. [66] 2020 Prosp. 203 Any VA detected

by ICD ICD monitoring 74
817 (IQR:
440–1105)
days

GLS Ws an independent
predictor of the first VA
episode but not
recurrent episodes. MD
was not associated
with VAs.

Heart failure with reduced ejection fraction

Nikoo
et al. [67] 2020 Prosp. 70 Appropriate ICD

therapy ICD monitoring 30 1.8 ± 0.6
(1–3) years

Reduced GLS was a
predictor of VAs. Better
diagnostic performance
than LVEF.
MD was not reported.
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Table 2. Cont.

Study Year Design Sample
Size

Arrhythmia
Outcome

Arrhythmia
Monitoring

No. of
Events Follow-Up Key Strain Findings

Hasselberg
et al. [68] 2016 Prosp. 170

Composite:
VT
VF
SCA
Appropriate ATP
Appropriate
defibrillator shock
therapy

CRT-D
monitoring 18 1.9 ± 0.3

years

GLS and MD at baseline
were not independent
predictors of the VA
endpoint.
MD at 6 months was an
independent predictor
of the VA endpoint.

Mornoş
et al. [69] 2017 Prosp. 340

Composite:
VT
VF
SCD

Hospital docu-
mentationDeath
certificate

48 36 ± 9
months

GLS, MD, and the ratio
of GLS to MD
(GLS/MD) were
univariate predictors of
VAs, but only GLS/MD
was an independent
predictor of VAs.

Matsuzoe
et al. [70] 2016 Retrosp. 72 Appropriate ICD

therapy ICD monitoring 34

17
(IQR:
0.2–72.5)
months

GLS and MD were not
independently
associated with the VA
endpoint. Only LV
dyssynergy (SD of peak
strain) was
independently
associated with the VA
endpoint.

Biering-
Sørensen
et al. [61]

2017 RCT
substudy 1064

Appropriate
ICD/CRT-D
therapy

ICD/CRT-D
monitoring
Adjudicated
events

254
2.9 (IQR:
2.0–3.7)
years

GLS and all regional
(anterior and inferior)
strain were associated
with VT/VF, whereas
MD was not.

Bax
et al. [71] 2017 RCT

substudy 755

Composite:
Appropriate
ICD/CRT-D
therapy
Arrhythmic death
Atrial
tachyarrhythmias

ICD/CRT-D
monitoring
Adjudicated
events

72 19.4 months

GLS was not
independently
associated with the
arrhythmic endpoint.
MD was not
investigated.

Biering-
Sørensen
et al. [72]

2016 Retrosp. 151

Composite:
CVD
Appropriate ICD
therapy

ICD monitoring
CVD from the
national cause of
death registry

40 2.3 (IQR:
1.5–3.1) years

Neither MD nor GLS
was associated with
VAs.

Winsløw
et al. [73] 2023 RCT

substudy 401

Composite:
SCD
Appropriate ICD
therapy
Admission with
sustained
ventricular
arrhythmia
Resuscitated
cardiac arrest

ICD monitoring
ECG
Hospital/source
documentation
Adjudicated
events

52
4.0
(IQR:2.8–5)
years

Neither GLS nor LVEF
was associated with the
VA endpoint. Only
inferior strain was
independently
associated with the VA
endpoint.

Non-ischemic dilated cardiomyopathy

Haugaa
et al. [74] 2012 Prosp. 94

Composite:
Appropriate ICD
therapy
Sustained VT
Cardiac arrest
Cardiac syncope

Not specified 12
22
(Range:1–46)
months

Both GLS and MD were
independent predictors
of the VA endpoint.
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Table 2. Cont.

Study Year Design Sample
Size

Arrhythmia
Outcome

Arrhythmia
Monitoring

No. of
Events Follow-Up Key Strain Findings

Melichova
et al. [75] 2021 Prosp. 290

Composite:
SCD
Shock from ICD
Sustained VT

Medical records
(ICD therapy,
ECG, Holter,
aborted cardiac
arrest)
Cause of death
registry

32 22 ± 12
months

Both GLS and MD were
independent predictors
of the VA endpoint.

Negishi
et al. [76] 2016 Retrosp. 124 Appropriate ICD

therapy ICD monitoring 36
3.8 (IQR:
2.2–6.0)
years

GLS, but not MD, was
an independent
predictor of VAs.

Hypertrophic cardiomyopathy

Haland
et al. [77] 2016 Prosp. 150

HCM

Composite:
Sustained and
non-sustained VT
Previous aborted
cardiac arrest

24–48 h Holter
monitoring
ICD monitoring

37 Not specified

GLS and MD were
univariate predictors of
the VA endpoint, but
only MD was an
independent predictor.

Candan
et al. [78] 2017 Prosp. 63 Appropriate ICD

therapy ICD monitoring 17
3 years
(21.5 ± 6.9
months)

GLS and MD were
independent predictors
of VAs.

Debonnaire
et al. [79] 2014 Retrosp. 92 Appropriate ICD

therapy ICD monitoring 21 4.7 (2.2–8.2)
years

GLS was independently
associated with VAs.
MD was not
investigated.

Candan
et al. [80] 2019 Prosp. 59 Non-sustained VT 24–72 h Holter

monitoring 17 N/A

LV Twist and GLS were
independent predictors
for non-sustained VT.
MD was not
investigated.

Popa-
Fotea
et al. [81]

2020 Prosp. 47 Non-sustained VT 24 h Holter
monitoring 16 N/A

GLS, RV and LV MD
were univariate
predictors of
non-sustained VT, but
only RV and LV MD
were independent
predictors of
non-sustained VT.

Hiemstra
et al. [82] 2017 Prosp. 427

Composite:
Aborted SCD
Appropriate ICD
therapy

Medical chart
review
Contact with
general
practitioner

53
6.7 (IQR:
3.3–10.0)
years

GLS was independently
associated with the VA
endpoint.
MD was not
investigated.

Jalanko
et al. [83] 2016 Prosp. 31 Non-sustained VT 24 h Holter

monitoring 11 N/A

Both GLS and MD were
associated with
non-sustained VT in
univariate analysis, but
only MD was
independently
associated with
non-sustained VT.

Chagas cardiomyopathy

Barros
et al. [84] 2016

Retrosp.,
case-
control
study

62

Clinically
indicated
implantation of
ICD.

N/A 28 N/A

MD and GLS were more
abnormal in the group
with ICD, and both were
independent markers of
previous events
precipitating ICD.
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Table 2. Cont.

Study Year Design Sample
Size

Arrhythmia
Outcome

Arrhythmia
Monitoring

No. of
Events Follow-Up Key Strain Findings

Azevedo
et al. [85] 2021 Prosp. 77

Composite:
VES
Non-sustained VT

24 h Holter
Not
speci-
fied

N/A

Both GLS and MD were
associated with
non-sustained VT in
univariate analysis, but
only MD was
independently
associated with
non-sustained VT,
paired VES, and VES in
bigeminy.

Long QT syndrome

Haugaa
et al. [86] 2010 Prosp.

101
LQTS
35
healthy
individ-
uals

History of either:
Documented
arrhythmia
Syncope
Cardiac arrest

N/A 48 N/A

LQTS patients with a
history of arrhythmia
had higher MD but
similar GLS compared
to those without
arrhythmia.

Lamin A/C mutation

Haugaa
et al. [87] 2015 Prosp. 33

Composite:
Non-sustained VT
VT
VF

Not specified 11 Not specified

Patients with any
ventricular arrhythmia
had higher MD but
similar GLS compared
to those without
ventricular arrhythmia.

Tetralogy of Fallot

Diller
et al. [88] 2012 Retrosp. 413

Composite:
SCD
Sustained
VTResuscitated
SCD
Appropriate ICD
discharge

ICD monitoring 19
2.9
(IQR:1.4–4.4)
years

GLS was an
independent predictor
of the VA endpoint.
MD was not
investigated.

Van
Grootel
et al. [89]

2019 Prosp. 151 ToF

Composite:
Death
HF
Reintervention
Hospitalization
for cardiac
reasons
Symptomatic
ventricular and
supraventricular
arrhythmias

Regularly
checked at an
outpatient clinic

62

71.5
(IQR:
64–75.3)
months

GLS, RV strain, and
apical rotation were
univariate predictors of
the composite outcome.
Only apical rotation was
independently
associated with the
composite outcome.
MD was not
investigated.

Cardiac amyloidosis

Hamon
et al. [90] 2016 Prosp. 45 Appropriate ICD

therapy ICD monitoring 12 17 ± 13.7
months

GLS was not associated
with VAs.
MD was not
investigated.

Brugada syndrome

Scheirlynck
et al. [91] 2020

Case-
control
study

175 BrS

History of either:
VT
VF
Aborted cardiac
arrest

Medical records 19 N/A

Patients with a history
of VAs or aborted
cardiac arrest had higher
MD than, but similar
GLS to, those who had
not had VAs or aborted
cardiac arrest.
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Table 2. Cont.

Study Year Design Sample
Size

Arrhythmia
Outcome

Arrhythmia
Monitoring

No. of
Events Follow-Up Key Strain Findings

Elite Athletes

Lie
et al. [92] 2021

Cross-
sectional
study

43
athletes
with VT
and 30
healthy
athletes

Composite of
life-threatening
VAs:
VF
Sustained VT
Aborted cardiac
arrest
Appropriate ICD
therapy

24 h Holter
monitoring
ECG
Telemetry
ILR monitoring
Intracardiac
device
monitoring

23 N/A

MD was higher and GLS
was lower in VA
patients.
Only MD was
independently
associated with
life-threatening VAs.

Arrhythmogenic cardiomyopathy

Lie
et al. [93] 2018 Prosp. 117

VT
Cardiac arrest
Appropriate ICD
shock

ECG
Holter
monitoring
ICD monitoring

18
2.0
(IQR:0.5–3.5)
years

Patients with VAs had
reduced LV and RV
strain and higher LV
and RV MD. RV strain
and LV MD were
independently
associated with VAs.

Lie
et al. [94] 2021 LCS 168

Composite:
Aborted cardiac
arrest
Sustained VT
Appropriate ICD
shock

Not specified 54
1.3 (IQR:
0.4–3.5)
years

LV GLS was
independently
associated with VAs.
MD was not reported.

Sarvari
et al. [95] 2011

Prosp.
Case-
control
study

42 symp-
tomatic
27
asymp-
tomatic
30
healthy

History of either:
VT
VF

N/A 42 N/A

Patients with a history
of VAs had lower LV
and RV strain and
higher LV and RV MD.
Only RV MD was
independently
associated with a history
of VAs.

Kirkels
et al. [96] 2021 Retrosp. 160

History of either:
Sustained VT
Appropriate ICD
therapy
Aborted cardiac
arrest

N/A 47 N/A

Patients with a history
of VAs had reduced LV
GLS and RV strain and
higher RV MD than
those without VA
history. RV MD was
independently
associated with VAs.

Mitral valve prolapse

Ermakov
et al. [97] 2019 Retrosp. 59 MVP

History of:
Ventricular
couplets
Ventricular
bigeminy
Non-sustained VT
VT
ICD for aborted
cardiac arrest

N/A 32 N/A

MD higher but similar
GLS in patients with a
history of VA compared
to those without
arrhythmia. MD was
independently
associated with a history
of VA.

Unexplained syncope

Falsing
et al. [98] 2021 Retrosp. 288 VT ILR monitoring 36

2.9
(IQR:1.3–3.5)
years

GLS was independently
associated with VT. MD
was not associated
with VT.
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Table 2. Cont.

Study Year Design Sample
Size

Arrhythmia
Outcome

Arrhythmia
Monitoring

No. of
Events Follow-Up Key Strain Findings

Idiopathic ventricular fibrillation

Groeneveld
et al. [99] 2021

Retrosp.
Case-
control
study

47 IVF
47
healthy
individ-
uals

VF N/A N/A N/A

IVF patients had lower
GLS, higher MD, and
higher post-systolic
index than matched
controls. No adjusted
analyses were
performed.

Acute myocarditis

Pruitt
et al. [100] 2021 Retrosp. 66

Composite:
VT
VF
SVT
High-grade or
complete heart
block
Any arrhythmia
requiring
antiarrhythmic
medication

Medical records 23 During hos-
pitalization

GLS was independently
associated with the
composite arrhythmia
outcome.

Abbreviations: Prosp., prospective; Retrosp., retrospective; HCM, hypertrophic cardiomyopathy; LQTS, long
QT syndrome; MVP, mitral valve prolapse; Brs, Brugada syndrome; VT, ventricular tachycardia; IVF, idiopathic
ventricular fibrillation; ICD, implantable cardioverter-defibrillator; SCD, sudden cardiac death; VF, ventricular
fibrillation; SCA, sudden cardiac arrest; CRT, cardiac resynchronization therapy; VES; ventricular extrasystoles;
HF, heart failure; VA, ventricular arrhythmia; ECG, electrocardiogram; GLS, global longitudinal strain; MD, me-
chanical dispersion; LVEF, left ventricular ejection fraction; LV, left ventricle; RVMD, right ventricular mechanical
dispersion; RV, right ventricle; MD, mechanical dispersion; LBBB, left bundle branch block.

4. Regional Strain
4.1. Is Regional Strain Worthwhile to Consider?

Since myocardial strain imaging can be performed from multiple projections, the
assessment of tissue deformation within specific regions of the LV is feasible. Cardiac MRI
studies have shown that radial, circumferential, and longitudinal strain deteriorate in a
stepwise fashion from non-infarcted areas to peri-infarct regions and infarcted regions after
a MI [101]. Since GLS reflects global LV function, regional LV strain could be of potential
value to detect specific areas of systolic dysfunction. In fact, in a subset of participants
in the VALIANT study, the authors showed that regional strain was impaired even in
segments that were visually estimated to be normokinetic and that a higher number of
regions with abnormal strain posed a higher risk of death [102]. It should be noted, though,
that studies relating regional strain to outcome have been inconsistent. Conceptually, lower
regional strain in infarcted areas was thought to pose an increased risk of outcomes such as
HF and all-cause death. However, a study by Biering-Sørensen et al. found that reduced
regional strain outside the culprit perfusion area was a more important aspect to consider,
as this would indicate limited compensatory reserve after an MI [103]. In addition to the
above-mentioned considerations, the regional strain has also been shown to be associated
with other outcomes after MI, including LV thrombus formation [104].

It is, however, worthwhile to note that compared to GLS, regional strain is even more
heterogenous across different vendor solutions and exhibits poorer reproducibility [105,106].
A representative example of regional strain in a patient with ischemic cardiomyopathy is
shown in Figure 1.

4.2. Regional Strain and Risk of Ventricular Arrhythmia

Several underlying mechanisms could indicate a potential for regional strain as a
marker of VA risk, one being the ability to identify regions within an infarct zone or in the
peri-infarct zone that may contribute to arrhythmogenic potential. This relies on the fact
that in patients with MI, areas of the infarcted zone commonly consist of fibrotic tissue and
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represent an anatomical and physiological substrate for malignant arrhythmias [107,108].
Meanwhile, the peri-infarct zone comprises heterogeneous areas with an intermediate
degree of non-transmural fibrosis with potential for conduction delay, unidirectional con-
duction block, and electrical dispersion, thereby creating re-entry substrates that could
result in VAs [109]. Indeed, several cardiac MRI studies have demonstrated an ability
to anatomically identify myocardial scar tissue, characterize the peri-infarct zone, and
quantify the function and extent of the dysfunctional myocardium to predict mortality and
the occurrence of VAs [110–113].

In general, studies on echocardiographically assessed regional strain in the context
of VAs are sparse compared to GLS and MD. Bertini et al. investigated 134 patients with
chronic ischemic cardiomyopathy scheduled for a clinically indicated electrophysiological
(EP) study who had an echocardiogram performed within 24 h prior to the EP study. They
found that peak longitudinal systolic strain at the peri-infarct zone was independently
associated with inducible VT, whereas peak longitudinal systolic strain values in the
infarct and remote zones were not associated with inducibility [114]. By extension, in a
prospective study of 424 patients with ischemic cardiomyopathy and prophylactic ICD,
Ng et al. investigated the potential of regional strain for predicting appropriate ICD
therapy as a secondary outcome. During 24.2 months of follow-up, 95 patients received
appropriate ICD therapy. The authors found that regional strain in the peri-infarct zone
was independently associated with the occurrence of appropriate ICD therapy [115]. In
a related study, Hoogslag et al. investigated the utility of regional strain for predicting a
composite outcome of appropriate ICD therapy or cardiac mortality in 79 patients with MI
by performing echocardiography at baseline and after 3 months. Interestingly, no difference
in regional strain was detected in the infarct, peri-infarct, or remote zone at baseline between
patients who developed the outcome and those who did not. However, at the 3-month
echocardiogram, it became evident that strain in the peri-infarct zone was reduced in
those who developed the outcome, and reduced peri-infarct zone strain was independently
associated with the outcome [116]. The findings were extended in a study of 467 patients.
During 25 months of follow-up, 51 patients had documentation of VA either on 24 h ECG
monitoring, monitoring during hospitalization, or through an EP study. Interestingly, both
longitudinal and circumferential strain yielded high AUCs for recognizing VAs, but only
abnormal circumferential per-infarct strain was independently associated with VAs along
with MD [63]. This may be ascribed to the fact that more extensive MIs would not be
limited to subendocardial ischemia and thereby impairment of solely longitudinal function
but also reductions in circumferential strain. It is, however, important to keep in mind that
none of the above-mentioned studies specifically ascertained where the infarct was located
based on late gadolinium enhancement but rather defined the infarct zone based on either
regional strain values or wall motion score index.

In the setting of HF, a substudy of the MADIT-CRT trial represents the largest study
to report on the potential of regional strain for predicting VAs. Based on 1064 patients
with 254 events, Biering-Sørensen et al. reported that longitudinal strain in the inferior and
posterior segments of the LV wall was significantly associated with the development of
VT/VF and that longitudinal strain obtained from the inferior wall provided prognostic
information beyond clinical and echocardiographic parameters for VT/VF [61]. These
findings have recently been replicated in a substudy of 401 patients from the DANISH
trial with 52 events, also demonstrating an association between inferior wall strain and
VAs [73]. The proposed underlying mechanisms for these findings included a differential
distribution of parasympathetic and sympathetic innervation to the LV and differential
wall stress owing to different radii of curvature across the LV [117–121].

5. Mechanical Dyssynchrony

Mechanical dyssynchrony is a term used to describe myocardial contraction inho-
mogeneity within the LV. Echocardiographic measures of mechanical dyssynchrony have
been a point of focus for several decades as a means to identify responders to cardiac
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resynchronization therapy and predict VA in specific patient groups [57,122–124]. The
aspect of using dyssynchrony measures in cardiac resynchronization therapy lies beyond
the scope of this review, which focuses on the prediction of VA. For that purpose, the most
widely investigated dyssynchrony measure has been MD.

5.1. Mechanical Dispersion Fundamentals

MD is defined as the standard deviation of the time to peak of the longitudinal strain,
typically in a 16-segment model, although this has varied across studies. As for GLS, MD
has been reported to have excellent reproducibility with intra- and interobserver ICCs of
0.95 and 0.94, respectively [125]. Figure 2 depicts the heterogeneous contraction of the LV
as identified by MD in a patient with ischemic cardiomyopathy.
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Figure 2. Mechanical dispersion. The figure shows an example of strain analysis, for assessing
mechanical dispersion, in a patient with ischemic cardiomyopathy and ICD who experienced appro-
priate therapy after implantation. On the left, segmental strain profiles from the apical 4–chamber
view are shown, with white arrows highlighting a heterogenous timing of peak strain values for the
segments (each colored curve represents a single segment). On the right, a bulls–eye plot of time–to–
peak strain is shown for all segments, and mechanical dispersion is provided as the peak systolic
dispersion (PSD), calculated as the standard deviation of the time–to–peak of the segmental strain.

The presence of LV fibrosis can result in a heterogeneous contraction pattern since
fibrosis leads to electrical dispersion, influencing both activation time and refractoriness.
This has been noted as the primary underlying mechanism for which MD may be a marker
of elevated VA risk [125,126] since MD has been shown to correlate with fibrosis as assessed
by LGE [127,128].

Even though MD has been extensively studied, primarily in the context of VA predic-
tion, studies looking at normal reference values based on healthy individuals are sparse.
A single study by Rodrígues-Zenella et al. sought to define reference values. Based on
334 healthy volunteers (Caucasian, median age 54 (range: 18–79) years, and 54% women),
the authors found an overall normal value of 34 ± 10 ms with an upper limit of normality
of 56 ms. Of note, they did not find that MD differed between men and women, but it
did increase with age. In addition to proposing reference values, the authors evaluated
clinical and echocardiographic correlates and found age, GLS, and E/e’ to be independently
correlated with MD [125] in a larger, general population study not restricted to healthy
individuals. Aagaard et al. similarly investigated which clinical and echocardiographic
parameters correlated to MD, although this study population was not restricted to healthy
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individuals. Based on 2529 participants, they found coronary artery disease, hypertension,
GLS, e’, and LVEF to be significantly associated with higher MD [129].

5.2. Mechanical Dispersion and Ventricular Arrhythmias

Similar to GLS, the association between MD and VA has been studied extensively,
mostly within HF and coronary artery disease [58,68–70,130,131], but also in congenital
heart disease [89], long QT syndrome [86,132], and arrhythmogenic cardiomyopathy [93].
An outline of studies is provided in Table 3, and key studies in MI patients have been
addressed in the previous section regarding GLS.

Two systematic reviews have assessed the potential of MD for predicting VAs. Recently,
in a meta-analysis, Harapoz et al. reported on the potential of MD in patients with non-
ischemic cardiomyopathy (n: 346 with 107 events), by which no significant association
between MD and VAs was found [60]. However, it should be noted that the authors
highlighted that the analysis was limited by the few and relatively small studies, which
also precluded an assessment of publication bias. However, it does raise the question as to
whether MD is as suitable a predictor of VAs in non-ischemic cardiomyopathy as compared
to ischemic cardiomyopathy, which differs in terms of the underlying pathophysiology and
distribution of fibrosis. In ischemic cardiomyopathy, a systematic review and meta-analysis
by Kawakami et al., which included 12 studies with 3198 patients and 387 arrhythmic
events over 17 to 70 months of follow-up, found that MD was higher in patients with VAs,
that MD was independently associated with VAs, and that MD was superior to LVEF and
GLS for this purpose [59]. It should, however, be noted that the studies included in the
meta-analysis were quite heterogenous (I2 of 84%), as both patient groups, endpoints, and
monitoring differed across the studies. In addition, the timing of the echocardiogram was
not considered, which seems to be important in patients with MI, as outlined previously,
but also in the context of CRT. Interestingly, Kawakami et al. stated that MD cannot predict
VAs in CRT patients since CRT impacts regional timing and the risk of arrhythmias [59].
Indeed, this has been substantiated in substudies from the MADIT-CRT trial [61,133]. As
reported by Biering-Sørensen et al., in 1064 patients with continuous rhythm monitoring
for a median of 2.9 years, the 254 patients who developed VAs had similar MD as those
who remained free of VAs [61]. Before that, Kutyifa et al. reported that baseline MD was
not predictive of VAs but noted that CRT patients with LBBB who had improvement in MD
at 12 months had a lower risk of VAs [134]. Similar findings have also been noted in a large-
scale retrospective study by Van der Bijl al. Based on 1185 patients with 403 events, they
did not find that baseline MD was associated with VAs but rather that MD at 6 months was
independently associated with VAs [131]. Accordingly, the timing of the echocardiogram
seems to be of importance when considering the use of MD for predicting VAs.

Table 3. Mechanical dispersion and ventricular arrhythmia.

Study Year Design Sample
Size

Arrhythmia
Outcome

Arrhythmia
Monitoring

No. of
Events Follow-Up Key Strain Findings

Myocardial infarction

Ersbøll
et al. [56] 2013 Prosp. 988

Composite:
VA
Appropriate ICD
therapy
Definite/suspected
SCD

Admission with
documented VA
ICD monitoring in
subgroup
SCD based on
hospital and
prehospital records

34
29.7 (IQR:
23.5–32.7)
months

GLS and MD were
independent predictors of
VA.
In patients with LVEF <
35%, both GLS and MD
were independent
predictors of VAs, but only
GLS was an independent
predictor of VAs in
patients with LVEF > 35%.

Haugaa
et al. [57] 2013 Prosp. 569

Composite:
Sustained VT
VF
SCD

Not specified 15 30 (IQR: 18)
months

GLS was a univariate
predictor of VA but not an
independent predictor of
VA when adjusted for MD.
MD was an independent
predictor of VA.
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Table 3. Cont.

Study Year Design Sample
Size

Arrhythmia
Outcome

Arrhythmia
Monitoring

No. of
Events Follow-Up Key Strain Findings

Nguyen
et al. [63] 2015 Not

specified 467 VT

Documented on
24 h ambulatory
ECG
Monitoring during
hospitalization
EP study

51 25 (range:
6–43) months

In multivariate analysis,
MD was significantly
associated with VT, and
GLS was borderline
significantly associated
with VT.

Leong
et al. [65] 2015 Retrosp. 206 Appropriate ICD

therapy ICD monitoring 75
24 (IQR:
7.8–24)
months

GLS and MD were
independently associated
with VT.

Haugaa
et al. [58] 2010 Prosp. 85 Appropriate ICD

therapy ICD monitoring 38 2.3 (range:
0.6–5.5) years

MD, but not GLS, was an
independent predictor of
appropriate ICD therapy.

Structural heart disease

Guerra
et al. [66] 2020 Prosp. 203 Any VA detected by

ICD ICD monitoring 74
817 (IQR:
440–1105)
days

GLS was an independent
predictor of the first VA
episode but not recurrent
episodes. MD was not
associated with VAs.

Heart failure with reduced ejection fraction

Matsuzoe
et al. [70] 2016 Retrosp. 72 Appropriate ICD

therapy ICD monitoring 34
17
(IQR: 0.2–72.5)
months

GLS and MD were not
independently associated
with the VA endpoint.
Only LV dyssynergy (SD
of peak strain) was
independently associated
with the VA endpoint.

Hasselberg
et al. [68] 2016 Prosp. 170

Composite:
VT
VF
SCA
Appropriate ATP
Appropriate
defibrillator shock
therapy

CRT-D monitoring 18 1.9 ± 0.3 years

GLS and MD at baseline
were not independent
predictors of the VA
endpoint.
MD at 6 months was an
independent predictor of
the VA endpoint.

Mornoş
et al. [69] 2017 Prosp. 340

Composite:
VT
VF
SCD

Hospital documen-
tationDeath
certificate

48 36 ± 9 months

GLS, MD, and the ratio of
GLS to MD (GLS/MD)
were univariate predictors
of VAs, but only GLS/MD
was an independent
predictor of VAs.

Banasik
et al. [130] 2016 Retrosp. 47 Appropriate CRT-D

therapy CRT-D monitoring 29 4 years

MD was greater in
patients experiencing VAs.
GLS was not reported. No
multivariate analyses
were performed.

Van der Bijl
et al. [131] 2018 Retrosp. 1185 Appropriate CRT-D

therapy CRT-D monitoring 403 55 ± 36
months

No difference in VA
events between high vs.
low baseline MD but more
frequent VA events in
those with high MD at 6
months. MD at 6 months
was independently
associated with VAs.
GLS was not reported.

Biering-
Sørensen
et al. [61]

2017 RCT
substudy 1064 Appropriate

ICD/CRT-D therapy

ICD/CRT-D
monitoring
Adjudicated events

254
2.9
(IQR:2.0–3.7)
years

GLS and all regional
(anterior and inferior)
strains were associated
with VT/VF, whereas MD
was not.

Kutyifa
et al. [133]. 2013 RCT

substudy 1077 VT/VF
ICD/CRT-D
monitoring
Adjudicated events

- 205 (for
baseline as-
sociations)
- 90 (for as-
sociations
after 12
months)

2.3 ± 0.9 years

Baseline MD was not
associated with VAs.
Patients with LBBB who
had >15% improvement in
MD had a lower risk of
VAs.

Biering-
Sørensen
et al. [72]

2016 Retrosp. 151

Composite:
CVD
Appropriate ICD
therapy

ICD monitoring
CVD from the
national cause of
death registry

40 2.3 (IQR:
1.5–3.1) years

Neither MD nor GLS was
associated with VAs.
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Table 3. Cont.

Study Year Design Sample
Size

Arrhythmia
Outcome

Arrhythmia
Monitoring

No. of
Events Follow-Up Key Strain Findings

Non-ischemic dilated cardiomyopathy

Haugaa
et al. [74] 2012 Prosp. 94

Composite:
Appropriate ICD
therapy
Sustained VT
Cardiac arrest
Cardiac syncope

Not specified 12
22
(Range:1–46)
months

Both GLS and MD were
independent predictors of
the VA endpoint.

Kosiuk
et al. [134] 2015 Prosp. 20

Composite:
VT
VF

Holter, duration
not specified
ICD monitoring

11 70 ± 40
months

Greater MD in patients
with VAs and MD was
independently associated
with the VA endpoint.

Negishi
et al. [76] 2016 Retrosp. 124 Appropriate ICD

therapy ICD monitoring 36 3.8 (IQR:
2.2–6.0) years

GLS but not MD was an
independent predictor
of VAs.

Melichova
et al. [75] 2021 Prosp. 290

Composite:
SCD
Shock from ICD
Sustained VT

Medical records
(ICD therapy, ECG,
Holter, aborted
cardiac arrest)
Cause of death
registry

32 22 ± 12
months

Both GLS and MD were
independent predictors of
VA endpoint.

Hypertrophic cardiomyopathy

Haland
et al. [77] 2016 Prosp. 150 HCM

Composite:
Sustained and
non-sustained VT
Previous aborted
cardiac arrest

24–48 h Holter
monitoring
ICD monitoring

37 Not specified

GLS and MD were
univariate predictors of
the VA endpoint, but only
MD was an independent
predictor.

Candan
et al. [78] 2017 Prosp. 63 Appropriate ICD

therapy ICD monitoring 17
3 years
(21.5 ± 6.9
months)

GLS and MD were
independent predictors
of VAs.

Jalanko
et al. [83] 2016 Prosp. 31 Non-sustained VT 24 h Holter

monitoring 11 N/A

Both GLS and MD were
associated with
non-sustained VT in
univariate analysis, but
only MD was
independently associated
with non-sustained VT.

Popa-Fotea
et al. [81] 2020 Prosp. 47 Non-sustained VT 24 h Holter

monitoring 16 N/A

GLS, RV, and LV MD were
univariate predictors of
non-sustained VT, but
only RV and LV MD were
independent predictors of
non-sustained VT.

Chagas cardiomyopathy

Barros
et al. [84] 2016

Retrosp.,
case-control
study

62 Clinically indicated
implantation of ICD. N/A 28 N/A

MD and GLS were more
abnormal in the group
with ICD, and both were
independent markers of
previous events
precipitating ICD.

Azevedo
et al. [85] 2021 Prosp. 77

Composite:
VES
Non-sustained VT

24 h Holter Not
specified N/A

Both GLS and MD were
associated with
non-sustained VT in
univariate analysis, but
only MD was
independently associated
with non-sustained VT,
paired VES, and VES in
bigeminy.

Long QT syndrome

Haugaa
et al. [132] 2008 Prosp.

73 LQTS
20 healthy
individu-
als

History of either:
Documented
arrhythmia
Syncope
Cardiac arrest

N/A 33 Not specified

LQTS patients with a
history of arrhythmia had
a higher MD than those
without arrhythmia.
GLS not reported.

Haugaa
et al. [86] 2010 Prosp.

101 LQTS
35 healthy
individu-
als

History of either:
Documented
arrhythmia
Syncope
Cardiac arrest

N/A 48 N/A

LQTS patients with a
history of arrhythmia had
a higher MD but similar
GLS compared to those
without arrhythmia.
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Table 3. Cont.

Study Year Design Sample
Size

Arrhythmia
Outcome

Arrhythmia
Monitoring

No. of
Events Follow-Up Key Strain Findings

Lamin A/C mutation

Haugaa
et al. [87] 2015 Prosp. 33

Composite:
Non-sustained VT
VT
VF

Not specified 11 Not specified

Patients with any
ventricular arrhythmia
had higher MD but
similar GLS compared to
those without ventricular
arrhythmia.

Arrhythmogenic cardiomyopathy

Lie et al. [93] 2018 Prosp. 117

VT
Cardiac arrest
Appropriate ICD
shock

ECG
Holter monitoring
ICD monitoring

18
2.0
(IQR:0.5–3.5)
years

Patients with VAs had
reduced LV and RV
strain and higher LV and
RV MD. RV strain and LV
MD were independently
associated with VAs.

Kirkels
et al. [96] 2021 Retrosp. 160

History of either:
Sustained VT
Appropriate ICD
therapy
Aborted cardiac
arrest

N/A 47 N/A

Patients with a history of
VAs had reduced LV GLS
and RV strain and higher
RV MD than those
without VA history. RV
MD was independently
associated with VAs.

Sarvari
et al. [95] 2011

Prosp.
Case-control
study

42 symp-
tomatic
27 asymp-
tomatic
30 healthy

History of either:
VT
VF

N/A 42 N/A

Patients with a history of
VAs had lower LV and
RV strain and higher LV
and RV MD. Only RV
MD was independently
associated with a history
of VAs.

Mitral valve prolapse

Ermakov
et al. [97] 2019 Retrosp. 59 MVP

History of:
Ventricular couplets
Ventricular
bigeminy
Non-sustained VT
VT
ICD for aborted
cardiac arrest

N/A 32 N/A

MD was higher but
similar GLS was seen in
patients with a history of
VA compared to those
without arrhythmia. MD
was independently
associated with a history
of VA.

Brugada syndrome

Scheirlynck
et al. [91] 2020 Prosp. 175 BrS

History of:
Sustained VT
VF
Aborted cardiac
arrest

Medical records 19 Not specified

Patients with a history of
VAs had higher LV MD
but similar LV GLS, RV
strain, and RV MD
compared to those
without VA history. High
LV MD was
independently associated
with VA history.

Elite Athletes

Lie et al. [92] 2021
Cross-
sectional
study

43 athletes
with VT
and 30
healthy
athletes

Composite of
life-threatening VAs:
VF
Sustained VT
Aborted cardiac
arrest
Appropriate ICD
therapy

24 h Holter
monitoring
ECG
Telemetry
ILR monitoring
Intracardiac device
monitoring

23 N/A

MD was higher and GLS
was lower in VA patients.
Only MD was
independently associated
with life-threatening
VAs.

Idiopathic ventricular fibrillation

Groeneveld
et al. [99] 2021

Retrosp.
Case-control
study

47 IVF
47 healthy
individuals

VF N/A N/A N/A

IVF patients had lower
GLS, higher MD, and
higher post-systolic
index than matched
controls. No adjusted
analyses were
performed.
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Table 3. Cont.

Study Year Design Sample
Size

Arrhythmia
Outcome

Arrhythmia
Monitoring

No. of
Events Follow-Up Key Strain Findings

Repaired Tetralogy of Fallot

Van Grootel
et al. [89] 2019 Prosp. 151 ToF

Composite:
Death
HF
Reintervention
Hospitalization for
cardiac reasons
Symptomatic
ventricular and
supraventricular
arrhythmias.

Regularly checked
at an outpatient
clinic

62
71.5
(IQR: 64–75.3)
months

GLS, RV strain, and apical
rotation were univariate
predictors of the
composite outcome. Only
apical rotation was
independently associated
with the composite
outcome.
MD was not investigated.

Unexplained syncope

Falsing
et al. [98] 2021 Retrosp. 288 VT ILR monitoring 36

2.9
(IQR:1.3–3.5)
years

GLS was independently
associated with VT. MD
was not associated
with VT.

Abbreviations: Prosp., prospective; Retrosp., retrospective; HCM, hypertrophic cardiomyopathy; LQTS, long
QT syndrome; MVP, mitral valve prolapse; Brs, Brugada syndrome; VT, ventricular tachycardia; IVF, idiopathic
ventricular fibrillation; ICD, implantable cardioverter-defibrillator; SCD, sudden cardiac death; VF, ventricular
fibrillation; SCA, sudden cardiac arrest; CRT, cardiac resynchronization therapy; VES, ventricular extrasystoles;
HF, heart failure; VA, ventricular arrhythmia; ECG, electrocardiogram; GLS, global longitudinal strain; MD, me-
chanical dispersion; LVEF, left ventricular ejection fraction; LV, left ventricle; RVMD, right ventricular mechanical
dispersion; RV, right ventricle; MD, mechanical dispersion; LBBB, left bundle branch block.

6. Future Directions
6.1. An Unexplored World of Strain Measures

Even though GLS, MD, and regional strain have been the most widely studied strain
measures in terms of predicting VAs, other potential strain measures of myocardial me-
chanics could be of value. These include measures of paradoxical motion and myocardial
work. To date, however, their associations with VAs have only been sparsely investigated.

In certain settings, the motion of myocardial tissue is altered such that segments
of the LV may lengthen when they are supposed to shorten. Such a feature is termed
paradoxical motion and is usually expressed as either early systolic lengthening or post-
systolic shortening [135]. Figure 3 shows examples of paradoxical motion in a patient with
ischemic cardiomyopathy and ICD who experienced appropriate therapy after implantation.
These abnormal movements have been linked to ischemic heart disease; they often co-exist,
and their presence has been thought to indicate ischemic segments with potential tissue
viability [136,137]. However, they can also develop in other settings, including conduction
abnormalities and mitral annular disjunction [138,139]. It should also be noted that, to some
extent, they may appear under normal circumstances as part of normal physiology [140,141].
Given that these features of myocardial deformation seem to be closely linked to ischemia
and the extent of myocardial affliction, they could represent markers of elevated VA risk.
Indeed, in the previously mentioned multicenter study by Haugaa et al. (n: 569, VA events:
15), the authors found that patients who developed VAs had a higher degree of post-systolic
shortening, expressed as the post-systolic strain index (PSSI), than patients who did not
develop VAs. This was also evident in those with LVEF > 35%. By extension, PSSI was
also a univariate predictor of VAs, yielding similar predictive performance by C-statistics
as MD, but was not an independent predictor of VAs in multivariate adjustments with
MD [57]. Similarly, Groeneveld et al. have also shown that patients with idiopathic VF
exhibit more frequent and widespread post-systolic shortening when compared to age- and
sex-matched healthy controls [99].
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Figure 3. Paradoxical motion. The figure shows an example of strain analysis for quantifying
paradoxical motion in a patient with ischemic cardiomyopathy and ICD who experienced appropriate
therapy after implantation. On the left side, segmental strain curves from the apical 4–chamber
view are shown, with arrows illustrating early systolic lengthening and post-systolic shortening
in the lateral wall segments (blue and red strain curves). On the right side, a bulls–eye plot of the
post-systolic index in all segments is presented, also showing a high post-systolic index in the anterior,
lateral, and anteroseptal segments.

The most recent advancement in strain imaging has been the development of a non-
invasive method for estimating myocardial work through pressure–strain loop analysis.
This method was introduced by Russell et al. in 2012 and allows for the estimation of
myocardial work by combining information on the strain, cuff arterial blood pressure, and
valvular event timing [142,143]. Figure 4 shows an example of myocardial work in a patient
with ischemic cardiomyopathy with ICD and appropriate therapy for VA. Similar to other
strain measures, the reproducibility has been reported to be excellent [142,144–146]. Since
this technique incorporates blood pressure as a surrogate of afterload, it may provide a
more valid assessment of systolic function. Expert statements have since been published
to guide the practical approach to measuring myocardial work [147]. In addition, normal
values and the impact of age and sex have been detailed in several studies, including a
meta-analysis [144,148–151]. Aside from quantifying myocardial work, the method also
allows for the quantification of wasted work, constructive work, and work efficiency [152],
all of which are influenced by the presence of paradoxical motion. Accordingly, these
metrics may be used as a means to quantify paradoxical motion and thereby indicate
the risk of VAs. Myocardial work measures have shown potential value in a wide range
of settings and potentially provide clinical information superior to GLS [145,153,154]. A
case report by Jaworski et al. alluded to the potential application of regional work in a
patient who developed VF [155]. Furthermore, in a study of 110 patients with hypertrophic
cardiomyopathy, Hiemstra et al. reported that constructive work was a viable predictor of a
combined clinical endpoint, which included aborted sudden cardiac death and appropriate
ICD therapy, which constituted 11 of the observed 24 events [146]. However, no separate
details were reported about the association between myocardial work measures and VA
endpoints. Accordingly, the potential use of myocardial work in the context of VAs remains
to be fully elucidated.
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Figure 4. Pressure–strain loop analysis. The figure shows an example of pressure–strain loop
analysis for quantifying myocardial work in a patient with ischemic cardiomyopathy and ICD who
experienced appropriate therapy after implantation. The upper left–sided panel shows the pressure–
strain loop, the area of which corresponds to the myocardial work index. The red profile shows
the global myocardial work, showing normal clockwise looping but overall reduced myocardial
work. The green profile depicts the mid–anteroseptal segment, showing a counterclockwise looping.
The bottom left panel shows the relative extent of constructive work (green bars) and wasted work
(blue bars), illustrating a fairly high amount of wasted work, particularly in the mid–anteroseptal
segment (bars on the left). The top right panel is a bulls–eye plot showing all regional myocardial
work estimates, and the global values for all work measures are shown in the bottom right panel,
along with blood pressure and global longitudinal strain.

6.2. Extending Current Findings into Clinical Practice

As outlined throughout this review, several studies have shown associations between
strain measures and VAs across a broad range of cardiovascular disease groups, high-
lighting their potential clinical value. However, no study has yet to evaluate whether
any of these strain measures may actually be used to guide clinical management, i.e., by
randomizing patients to ICD based on a strain measure. While studies are still needed
to explore whether measures of paradoxical motion or myocardial work relate to VAs,
trials are needed to examine whether the observed associations between VAs and strain
measures such as GLS or MD would translate into clinical benefit if they were to be applied
for selecting ICD candidates.

7. Conclusions

Speckle-tracking echocardiography allows for a comprehensive quantification of the
intricate myocardial mechanics that develop in various cardiac disorders. Abnormalities in
several strain measures, including regional strain, GLS, and MD, have been shown to be
associated with an increased risk of VAs, whereas strain measures of paradoxical motion
and myocardial work still need to be explored further in this context. GLS and MD have
been most widely investigated and may provide important information for assessing the
risk of VAs in several settings, even in patients with LVEF > 35%. Consequently, they could
be useful for identifying patients who could stand to benefit from an ICD for the prevention
of sudden cardiac death. However, trials are needed to substantiate this further.
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