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Abstract: The gastrointestinal system contains the upper and lower gastrointestinal tracts. The main
tasks of the gastrointestinal system are to break down food and convert it into essential elements that
the body can benefit from and expel waste in the form of feces. If any organ is affected, it does not
work well, which affects the body. Many gastrointestinal diseases, such as infections, ulcers, and
benign and malignant tumors, threaten human life. Endoscopy techniques are the gold standard
for detecting infected parts within the organs of the gastrointestinal tract. Endoscopy techniques
produce videos that are converted into thousands of frames that show the disease’s characteristics
in only some frames. Therefore, this represents a challenge for doctors because it is a tedious task
that requires time, effort, and experience. Computer-assisted automated diagnostic techniques help
achieve effective diagnosis to help doctors identify the disease and give the patient the appropriate
treatment. In this study, many efficient methodologies for analyzing endoscopy images for diagnos-
ing gastrointestinal diseases were developed for the Kvasir dataset. The Kvasir dataset was classified
by three pre-trained models: GoogLeNet, MobileNet, and DenseNet121. The images were opti-
mized, and the gradient vector flow (GVF) algorithm was applied to segment the regions of interest
(ROIs), isolating them from healthy regions and saving the endoscopy images as Kvasir-ROI. The
Kvasir-ROI dataset was classified by the three pre-trained GoogLeNet, MobileNet, and DenseNet121
models. Hybrid methodologies (CNN–FFNN and CNN–XGBoost) were developed based on the
GVF algorithm and achieved promising results for diagnosing disease based on endoscopy images of
gastroenterology. The last methodology is based on fused CNN models and their classification by
FFNN and XGBoost networks. The hybrid methodology based on the fused CNN features, called
GoogLeNet–MobileNet–DenseNet121–XGBoost, achieved an AUC of 97.54%, accuracy of 97.25%,
sensitivity of 96.86%, precision of 97.25%, and specificity of 99.48%.

Keywords: CNN; XGBoost; FFNN; fusion features; Kvasir dataset; gastrointestinal

1. Introduction

The gastrointestinal system consists of internal body organs. The system is divided
into the upper system, which includes the mouth cavity, esophagus, and stomach, and
the lower system, which contains the small intestine, colon, and rectum. The primary
task of the gastrointestinal system is to break down food into essential elements for the
body and to expel waste in the form of feces [1]. If any organ is disturbed, its functions
do not work well, which affects the body. Many gastrointestinal disorders exist, such as
infections, ulcers, polyps, and malignant tumors [2]. Cancers of the stomach, esophagus,
colon, and rectum constitute about 3 million new cancer cases per year, and about 2 million
people die annually from these diseases [3]. Malignant tumors in the upper and lower
gastrointestinal tract threaten human life. For the upper gastrointestinal tract, esophageal
cancer is the least prevalent, whereas stomach cancer is the fifth most common type of
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cancer and the third most common cause of death [4]. In contrast, malignant tumors of
the lower gastrointestinal tract are the second most common cause of death and the third
most common type of cancer [5]. There are many imaging techniques for the organs of the
gastrointestinal tract. Wireless capsule endoscopy (WCE) [6] is a wireless capsule-sized
camera that is swallowed through the mouth and takes thousands of images, starting
from the pharynx until it reaches the rectum. This technique is good because it reaches
all places of the gastrointestinal tract, such as the small intestine, but it takes two days to
pass to the end of the gastrointestinal system. However, there are some problems with
WCE, the device can be difficult to swallow and pass normally and can get stuck in the
narrow places in the intestines and cause an obstruction. Thus, endoscopy is the gold
standard for detecting diseases of the gastrointestinal system [7]. An upper GI endoscopy
examines the stomach, esophagus, and the beginning of the small intestine. In contrast, a
lower gastrointestinal endoscopy covers the colon and rectum. Endoscopy is a video to
discover the gastrointestinal internal parts using high-resolution digital endoscopes [8].
Endoscopic examinations require expensive equipment and a skilled specialist. Detection
by endoscopy is imperative for colorectal cancer to be removed. Therefore, detecting benign
tumors is necessary to remove them before they develop into a malignant type. However,
the diagnostic ability of endoscopy varies according to the experience of doctors, which
may result in colon and rectal cancer. Accurate diagnosis of diseases is vital to avoid
malignancy and to survive. Esophageal infections are a normal and pathological condition,
and early detection of esophagitis is necessary before complications lead to ulcers, stenosis,
and bleeding [9]. If left untreated it develops into cancer. Therefore, a distinction must
be made between the esophagus and the z-line. Endoscopy technology produces a video
that converts to thousands of frames, increasing the burden of the doctors to keep track
of all the video frames. The frames appear healthy; the disease (lesion, ulcer, or bleeding)
does not occur except in a few frames. Therefore, this technique requires examining all
frames, which takes a long time and is a tedious process [10]. Computer-aided diagnostic
methods are used to support clinicians and experts in addressing the challenge of manual
insufficiency. With the advancement in AI technologies, many researchers have focused on
its application in healthcare, including biomedical image processing. Artificial intelligence
techniques are used to detect gastrointestinal diseases and develop systems that can detect
infections, ulcers, bleeding, polyps, colon cancer, and stomach cancer. The application
of automated techniques is expected to improve the efficiency of diagnosis, reduce the
gap between the number of doctors and patients, and reduce diagnostic costs. Many
researchers have proposed deep learning techniques for analyzing and diagnosing medical
images, including CNN models. CNN models are a good research topic in medical imaging
diagnostics to help radiologists and medical specialists provide high-quality healthcare.
CNN is an integrated model with dozens of layers to analyze thousands of endoscopy
images and extract accurate feature maps to detect infections, ulcers, bleeding, polyps, and
colorectal cancer. In this study, several effective systems for diagnosing endoscopy images
of the gastrointestinal tract were developed. Due to the similarity of the clinical signs
between infections and ulcers and the need for early detection of polyps, this study focused
on developing hybrid techniques between deep and machine learning. CNN models have
superior capabilities to extract features that are not visible to the naked eye, thus extracting
features from many CNNs and integrating feature maps vectors CNN.

Artificial intelligence (AI) has made significant contributions to medical image pro-
cessing, revolutionizing the field with its ability to analyze and interpret complex medical
images. Some of the most important applications of AI in this domain include:

Classification of medical images: AI algorithms can analyze medical images such as
endoscopy, X-rays, CT scans, and MRI scans to classify them into different categories, which
helps in detecting diseases and abnormalities. For example, AI can identify cancerous
tumors or diagnose certain conditions such as gastrointestinal diseases, pneumonia or
retinal diseases, heart diseases, and skin diseases.
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Computer-Aided Detection/Diagnosis (CAD): AI-based CAD systems can act as a “sec-
ond opinion” by flagging potential abnormalities in medical images. These systems assist
radiologists in the detection of tumors, lesions, or other abnormalities that may be missed or
difficult to spot. CAD systems help reduce human error and improve diagnostic accuracy.

Segmentation and Annotation: AI techniques can segment medical images, separating
different structures or organs for further analysis. This enables precise measurements and
quantitative analysis. AI can also assist in annotating medical images, marking specific
regions of interest for radiologists or clinicians.

Disease Detection and Diagnosis: AI algorithms assist in detecting diseases and
conditions by analyzing medical images. They can learn patterns and features associated
with various diseases, aiding in early detection and accurate diagnosis. For example, AI
could help identify signs of gastrointestinal disease in endoscopic images, Alzheimer’s
disease in brain scans, or detect diabetic retinopathy in retinal images.

Image Reconstruction and Enhancement: AI can reconstruct or enhance medical
images to improve their quality or extract additional information. This can be particularly
useful when dealing with noisy or low-resolution images. AI algorithms can fill in missing
data or enhance image details, assisting radiologists, endoscopists, and physicians in
making informed decisions.

Prognosis and Predictive Analytics: AI can analyze medical images to predict patient
outcomes and provide prognostic information. By identifying patterns and features in
images, AI algorithms can estimate disease progression, survival rates, or response to
treatment, aiding in personalized patient care.

These applications of AI in medical image processing have the potential to enhance
diagnostic accuracy, improve patient outcomes, and streamline healthcare workflows by
reducing the time and effort required for manual analysis. However, it is important to note
that AI systems should always be used in conjunction with human expertise and not as a
replacement for clinical decision making.

The main contribution of this study is as follows:

• Classification of endoscopy images of gastrointestinal diseases by a hybrid methodol-
ogy CNN-FFNN and CNN-XGBoost based on the GVF segmentation algorithm.

• Fusion of features of CNN models and their classification by FFNN and XGBoost
based on the GVF segmentation algorithm.

The rest of this paper is organized as follows: Section 2 discusses relevant techniques
and results from the literature. Section 3 explains the methodologies and tools applied
to analyze endoscopy images from gastroenterology. Section 4 presents the results of the
proposed methodologies. Section 5 discusses the performance of the methodologies and
compares their results. Section 6 concludes the study.

2. Related Work

Öztürk et al. [11] developed three CNN models for classifying gastroenterological
endoscopy images based on combining LSTM layers. The features are extracted from each
CNN model and sent to an LSTM layer to evaluate the contribution to a dataset with various
image counts. Imran et al. [12] propose a DCNN architecture with multiple pathways
and layers to improve the efficiency of detecting endoscopy image abnormalities of the
human gastrointestinal tract. The network works on two tracks with different resolutions,
each with four units. Different degrees of image resolution may be useful in detecting
gastrointestinal tract lesions. Yoshiok et al. [13] reported comparison of the performance
of four CNN models to the analysis of endoscopy images to detect of esophagitis. The
GoogLeNet achieved an F1-score that was better than the other models, whereas MobileNet
V3 achieved a better average positive rate. Zahra et al. [14] presented a system for detecting
abnormalities in WCE images of the gastrointestinal tract. The images were enhanced,
the region of interest was extracted by the thresholding method, and the color, shape,
and texture features were extracted. Finally, the features were fed to SVM to classify the
extracted features. Shima et al. [15] described a method for detecting the anatomical features
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of endoscopy images of the gastrointestinal tract by supervised CNN and their comparison
with semi-supervised CNN. The results showed that the supervised CNN achieved better
results than the semi-supervised CNN. Ibtesam et al. [16] studied the retraining of five
pre-trained CNN models to classify a Kvasir dataset containing eight classes, including an
anatomical parameter, disease condition, and medical procedure. Inception-v3 and ResNet
achieved 90% and 97.6% accuracy. Xing et al. [17] reported on a hybrid learning framework
for tagging in medical endoscopy images and its fusion with deep learning. Experiments
demonstrated the superiority of the framework for classifying the Hyper-Kvasir dataset
with an accuracy of 95%. Ranit et al. [18] proposed a lightweight Mobile-PolypNet for the
segmentation of colorectal polyps. The network uses a set of blocks of the autoencoder to
improve the system’s efficiency. The network was trained and tested on the Kvasir dataset,
achieving a DICE score of 93.5%. Subhashree et al. [19] developed an intelligent system
for detecting abnormalities in GI endoscopy images based on CNN and time–frequency
analysis. The images were improved, and separate waveform coefficients were extracted
and submitted to two CNN models for training and testing at two levels. The system
achieved an accuracy of 93.75% in the first level. Ali et al. [20] used pre-trained CNNs with
filters to improve endoscopy images to detect GI disease. The preprocessing stage was
combined with the classification methods of the Kvasir dataset, which achieved an accuracy
of 90.17%. Debesh et al. [21] presented a classic U-Net architecture for hashing the Kvasir-
Instrument dataset, which achieved a Jaccard index of 85.78% and a dice factor of 91.58%.
Ramzan et al. [22] described a new framework for image preprocessing, integrating texture
features, LBP, and deep learning serially to improve diagnostic imaging of gastrointestinal
diseases. The improved features were selected by PCA and entropy. Yogapriya et al. [23]
developed a model that integrates traditional algorithms and data augmentation with
CNNs to classify gastrointestinal diseases. The model with the VGG16 network achieved
better results than the rest of the CNN networks, achieving an accuracy of 96.33% and an
F1 score of 96.5%. Muhammad et al. [24] reported on two deep learning models based
on the hybrid crow–moth method for classifying gastrointestinal disease datasets. The
features were extracted using average layers and then combined with crow–moth features.
Muhammad et al. [25] used contrast enhancement technology to improve images and
segmentation of the region of interest by saliency map, feeding regions of interest to
MobileNet-V2 for training and feature extraction. The authors applied a hybrid whale
method to select the best features.

The researchers devoted their efforts to developing a modern technique to obtain good
results for diagnosing abnormalities in diseases of the gastrointestinal tract. The character-
istics of gastrointestinal disorders are similar in the early stages, so this study focused on
extracting the attributes from the region of interest from many methods and integrating
them to achieve satisfactory results for the early detection of gastrointestinal diseases.

3. Materials and Methods
3.1. Description of the Kvasir Dataset

In this study, the performances of the systems were evaluated on endoscopy images
from the available Kvasir dataset. Endoscopy images were obtained by the Vestre Viken
Health Trust (VV) of four hospitals and the Cancer Registry of Norway (CRN), Norway.
CRN provides knowledge about cancer to prevent its spread and is part of a regional body
for Norway under the supervision of the Oslo Hospital. The Kvasir dataset images were
classified into eight types divided into three anatomical landmarks (ALs), three types of
pathological findings (PFs), and two types of polyps removal (PR). Endoscopy experts
have classified and annotated all images. The dataset consists of 8000 images distributed
evenly among eight classes. LA include three types: cecum and Z-line pylorus. LA within
the gastrointestinal tract can be identified endoscopically as marker of inflammation and
ulcers. In contrast, PFs include esophagitis, ulcerative colitis, and polyps. PFs are abnormal
signs of the gastrointestinal tract that are identified endoscopically [26]. These clinical
characteristics may be signs of an ongoing disease or an early cancer stage. PR includes
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two types: dyed and lifted polyps and dyed resection margins, which are polyps that may
be a harbinger of cancer. All images of the Kvasir dataset are in RGB color with resolutions
ranging from 720 × 576 to 1920 × 1072.

3.2. Enhancement of the Images of the Kvasir Dataset

When acquiring images through the endoscope, some artifacts negatively affect the
image enhancement stages and lead to incorrect results. The artifacts comprise air bubbles,
food residues in the upper digestive tract, stool residues in the lower digestive tract, mucous
membranes, and fluids [27]. All these artifacts are considered features in the next stages,
and they are artifacts and have nothing to do with the disease. Additionally, the low
contrast between the borders of the disease and the healthy part presents a challenge to
extract and analyze the diseased part by extracting its features. Thus, removing artifacts is
essential for proper feature extraction, and increased low variance is necessary for efficient
segmentation of a region of interest. This study calculated the mean achromatic area for
each RGB channel. After that, an averaging filter was applied to improve the images and
remove artifacts, followed by increasing the contrast of the low area between the infected
and the healthy regions by a contrast-limited adaptive histogram equalization (CLAHE)
method [28].

First, to refine the endoscopy images of the Kvasir dataset, each image was passed
through an averaging filter with an operator of size 6 × 6. The image is processed pixel by
pixel, called the target pixel, based on the value of 35 adjacent pixels. The filter continues to
run until the last pixel in the image is processed, as in Equation (1) [29]:

F(x) =
1
N

N−1

∑
i=0

a(x− i) (1)

where F(x) means the output, N means the number of pixels, a(x) means the input, and
a(x − i) means the prior input.

In order to address the low contrast between the infected and healthy areas, images are
passed through a CLAHE method optimization method [30]. The method works to light up
the dark areas by distributing bright pixels to the dark areas. The method processes pixels
based on the value of adjacent pixels. When processing each pixel, the method compares it
with the value of neighboring pixels as follows: if the value of the neighboring pixels is
greater than the target pixel, then the contrast is increased, whereas the contrast decreases
when the target pixel is larger than the adjacent ones. The method continues for each pixel
of the image until the contrast of the affected areas is improved. Figure 1b shows a set of
images from the Kvasir dataset after optimization.

3.3. Gradient Vector Flow Method

The GVF method is an extended method of the active contour method, which is
defined by the following steps: first step, detect the edges of the affected regions F(x, y)
from endoscopy images I(x, y). Equation (2) illustrates the mechanism for detecting the
edges of grayscale images [31]. The GVF algorithm was used because it spatially extends
the gradient vectors of the edge map, which produces a vector that contains information
about the edges of the lesion throughout the image [32].

f (x, y) = −|∇[Gσ(x, y) ∗ I(x, y)]|2 (2)

where ∇ refers to gradient operator and Gσ (x, y) refer to a 2D Gaussian function with σ
standard deviation.
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Figure 1. A sample from the Kvasir gastroenterology dataset classes: (a) before improving and
(b) after improvement.

The flow minimizes the energy functionalization in the gradient vector by the GVF
method. The functional energy depends on the smoothing and the level of edge noise
present in the image. The image edge noise level is measured through the parameter µ. If
the edge noise is high, the parameter µ should be increased, which leads to a decrease in
the noise around the edges and a weakening of the contour, as in Equation (3) [33].

ε =
x

µ
(

u2
x + v2

x + v2
y

)
+ |∇ f |2 |g−∇ f

∣∣∣2dxdy (3)

where g refers to a gradient vector flow that can be derived from Euler equations that
encourage edge map gradients that make g−∇ f smaller. When the gradients are large,
g−∇ f is multiplied by the square of the gradient length subscripts that indicate partisan
derivatives; ∇ f = fx, fy refers to a gradient map that shows edges. The affected area is
segmented with specific parameters using gradient vector flow models. These models
mark the edges of the affected regions and separate them from the rest of the image. The
aim of applying this algorithm is to segment the infected areas and separate them from the
healthy areas for further analysis. This method is an important contribution to this study
as the affected areas of all the endoscopy images from the Kvasir dataset are segmented
and saved in a new folder called Kvasir-ROI. CNN models receive endoscopy images of
the gastrointestinal tract to the new Kvasir-ROI dataset. Thus, the CNN models work
on analyzing endoscopy images of infected areas only instead of feeding them complete
images including the healthy regions. Figure 2 shows a dataset sample that underwent
segmentation and selected only affected areas.
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Figure 2. A sample of all classes from the Kvasir dataset after applying the GVF segmentation
algorithm. (a) Original image; (b) image segmentation; (c) region of interest.
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3.4. CNN Models for the Extract Feature

CNN networks are characterized by their superior ability to process, interpret, and an-
alyze the input data with high efficiency. The field of health care, especially the processing
of biomedical images, has enjoyed a large share of CNN networks for analyzing medical
images and diagnosing and predicting diseases and cancers at an early stage [34]. CNN
is characterized by dozens of convolutional, pooling, fully connected, and other auxiliary
layers. Convolution is a commutative operation involving two real-value functions. The
input to a convolutional layer is a multidimensional array, and the filter is also a multidi-
mensional array of parameters tuned by the learning process [35]. The convolutional layers
receive endoscope images with an RGB color space of size m × n × j, where m, n, and j
represent the width, height, and number of color channels of an image. Each CNN has a
different number of convolutional layers. Each layer has a different filter corresponding to
the image size regarding width, height, and number of filter channels. The filter f (t) wraps
around a region of the image x(t) as in Equation (4). Each filter cell will be multiplied by
the corresponding cell in the image to produce a matrix with smaller dimensions than the
original image [36].

y(t) = (x ∗ f )(t) =
∫

x(a) f (t− a) da (4)

where f (t), x(t), and y(t) denote the filter, input, and the image output, respectively.
Thus, a feature map is created by wrapping filters around the image. The number of

feature maps equals the number of filters in the layer, and the layer’s output becomes the
input for the next layer [37]. The convolutional layers are followed by a ReLU helper layer
whose task is to pass only positive values, while converting negative values to zero, as
in Equation (5).

ReLU(x) =

{
x, x ≥ 0
0, x < 0

(5)

The output of convolutional layers is millions of neurons, connections, and parameters;
therefore, networks will need complex calculations and a lot of training time. Thus, pooling
layers will reduce the high aspect ratio, which reduces the image dimensions by pooling
the output of a group of neurons in one layer to a single neuron in the next layer. There
are two types of pooling layers. Either maximum or average grouping performs the
calculations [38]. The Max pooling method uses the greatest value from a group of neurons
and represents it with one neuron in the next layer, as in Equation (6), whereas the average
pooling method calculates the average for a group of selected neurons and represents it
with one neuron in the next layer, as in Equation (7) [39].

z(i; j) = maxm,n=1....k f [(i− 1)p + m; ( j− 1)p + n] (6)

z(i; j) =
1
k2 ∑

m,n=1....k
f [(i− 1)p + m; ( j− 1)p + n] (7)

where f, p, k, and m, n are the wrapped filter, p-step filter, number of pixels, and matrix sites.
The fully connected layers (FCLs) are the classification layers in CNNs. In these

layers each neuron is connected to all neurons in the previous layer. The FCL transforms
map features from high-dimensional to vector levels. The SoftMax function is non-linear
and useful for handling classification problems. SoftMax is used with multiple classes; it
divides the output between 0 and 1 according to the classes and then labels each image to
its appropriate class [40].

Finally, in the last convolutional layer of the GoogLeNet, MobileNet, and DenseNet121
models are high-level features with sizes: (7, 7, 512), (7, 7, 1024), and (16, 32, 512), respec-
tively. The global average pooling layer represents the high levels of features in feature
vectors with sizes of 4069, 1024, and 1024 for the GoogLeNet, MobileNet, and DenseNet121
models, respectively. Therefore, the size of the gastrointestinal disease dataset is repre-
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sented by feature matrices with sizes 8000 × 4096, 8000 × 1024, and 8000 × 8000 × 1024
for the GoogLeNet, MobileNet and DenseNet121 models, respectively.

3.5. Training and Performance Evaluation

The classification phase, including training and testing of the systems, is based on
the previous phases of medical image processing. After enhancing the images, the ROI
was segmented and the images were sent to CNN models to extract the features. Because
of the high dimensions of the features, the CNN feature maps were passed to the PCA
method [41] to select the representative features and delete the redundant and unimportant
ones. [42] FFNN and XGBoost receive high-representation, low-dimensional features [43].
The classification phase includes an inductive phase called the training phase to build a
taxonomic model. The deductive stage, the most important stage for the system’s efficiency,
is called the testing stage.

3.5.1. FFNN Network

FFNN has the ability to handle computational complexities and different parameters
and perform classifications efficiently according to the training data. Whenever the training
data is well trained, this leads to good results for the test data [44]. Training the network
well depends on its internal structure, which consists of three basic layers: the input, hidden,
and output layers. Increasing the hidden layers and neurons does not necessarily lead
to satisfactory results; therefore, the network efficiency may improve when reducing the
hidden layers and interconnected neurons. The number of hidden cells varies from one
network to another. Thus, no fixed mechanism exists for identifying hidden layers and their
associated neurons to obtain accurate classification results [45]. Thus, the number of hidden
layers is adjusted through trial and error. The learning method is based on adjusting the
weights continuously, returning from the output layers to the hidden layers and updating
the weights. Each time the weights are updated, the minimum square error (MSE) is
calculated between the actual xj and expected yj values, as in Equation (8). The network
continues until no change appears with the least error value and the weights are fixed at
the minimum error rate. For the network mechanism, the input layer receives features
extracted from the CNN models (GoogLeNet, MobileNet and DenseNet121). The number
of entries for FFNN is 670, 495, and 520, based on the features of GoogLeNet, MobileNet,
and DenseNet121, respectively. Features move to hidden layers, where they are analyzed
and interpreted through 20 hidden layers. Finally, the output layer shows the FFNN
performance results [46]. The output layer consists of eight neurons, each representing a
class in the dataset, where each image is mapped to an appropriate neuron (class). Figure 3
shows the basic structure of FFNN for receiving, analyzing, and interpreting features of the
GoogLeNet, MobileNet, and DenseNet121 models.

MSE =
1
k

k

∑
j=1

(xj − yj)
2 (8)

where k is the number of data points.

3.5.2. XGBoost Algorithm

XGBoost is a machine learning algorithm that works with the ensemble learning
approach. A single model may not achieve good results in some algorithms, so the ensemble
learning model offers a powerful approach to predicting multiple learners; the output is
a single model. The algorithm sequentially generates many decision trees with different
weights so that the algorithm merges weak learners with strong learners to produce an
effective model; this process is called boosting. The boosting mechanism builds trees
sequentially so that each subsequent tree takes advantage of the previous tree’s errors and
reduces them [47]. Thus, any new tree is an updated version of the previous one with fewer
errors than the previous one. In boosting, basic learners are weak learners who contribute
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some information vital to prediction. Thus, boosting can produce a strong learner by
combining weak learners. When training the network, the weights of the variables that
predict the decision tree are incorrectly increased. The variables are fed to the next tree to
solve the errors in the previous tree, and so the network continues until the prediction of
an effective and accurate dataset.

Figure 3. FFNN architecture for endoscopy image analysis of the Kvasir gastroenterology dataset
classification.

The first strategy is to classify endoscopy images from the Kvasir dataset by three
pre-trained GoogLeNet, MobileNet, and DenseNet121 models. The second strategy is to
analyze endoscopy images from the Kvasir gastroenterology dataset using the GoogLeNet,
MobileNet, and DenseNet121 models based on the GVF segmentation algorithm. In this
method, the images are improved and the infected areas are segmented and isolated
from the healthy areas so that the CNN models receive the photos from the dataset after
segmentation of the infected areas.

The third strategy for analyzing endoscopy images from the Kvasir gastrointestinal
disease dataset is by a hybrid technique; CNN–FFNN and CNN–RF based on the GVF
and PCA algorithms goes through several stages (as shown in Figure 4): First, passing the
endoscopy images to the averaging and CLAHE techniques to improve the images. Second,
applying the GVF algorithm to segment the region of interest for further analysis in the
following stages. Third, applying the GoogLeNet, MobileNet, and DenseNet121 models to
analyze regions of interest by convolutional, auxiliary, and pooling layers. Feature maps
of 8000 × 4096, 8000 × 1024, and 8000 × 8000 × 1024 are produced for the GoogLeNet,
MobileNet, and DenseNet121 models, respectively. The fourth stage is to obtain more
representative features for the affected and diseased regions and delete the repetitive
features using the PCA method [48]. The PCA method produces reduced feature vectors
organized into feature matrices of sizes 8000 × 670, 8000 × 495, 8000 × 520, and 8000 × 520
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for the GoogLeNet, MobileNet, and DenseNet121 models, respectively. The fifth stage is the
training phase and performance evaluation by FFNN and XGBoost. FFNN and XGBoost
receive critical feature vectors after the PCA method [49] and divide them into two parts:
80% for training and validating a model and 20% for measuring its performance.

Figure 4. Hybrid methodology: CNN–FFNN and CNN–XGBoost based on the GVF segmentation
algorithm for endoscopy image analysis to classify the Kvasir gastroenterology dataset.

The fourth strategy for analyzing endoscopy images to detect gastrointestinal diseases is
by a hybrid model based on fused CNN features and the GVF and PCA algorithms, as shown
in Figure 5. The first four steps of the third strategy are the same in this strategy. Fifthly,
the fusion between the CNN features are as follows: GoogLeNet–MobileNet, MobileNet–
DenseNet121, GoogLeNet–DenseNet121, and GoogLeNet–MobileNet–DenseNet121. So,
the feature matrices in this strategy become 8000 × 1165, 8000 × 1015, 8000 × 1165,
and 8000 × 1685 for the fused models GoogLeNet–MobileNet, MobileNet–DenseNet121,
GoogLeNet–DenseNet121, and GoogLeNet–MobileNet–DenseNet121, respectively. Sixth,
the training phase and performance evaluation by FFNN and XGBoost. FFNN and XGBoost
receive essential feature vectors after the PCA method and divide them into 80% for training
and validating a model and 20% for measuring its performance.
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Figure 5. Hybrid methodology: CNN–FFNN and CNN–XGBoost based on fused CNN features and
the GVF segmentation algorithm for endoscopy image analysis to classify the Kvasir gastroenterol-
ogy dataset.

4. Results of Systems
4.1. Split of the Kvasir Dataset

The model performance was measured on endoscopy images from the Kvasir gas-
troenterology dataset. The Kvasir dataset consists of 8000 images distributed evenly across
eight classes. During the training phase, the dataset was divided into 640 images (64%) for
systems training, 160 images (16%) for validation, and 200 images (20%) for testing.

4.2. Metrics of Models Evaluation

When implementing systems and testing their performance, a confusion matrix can be
produced, which represents the gold standard for systems performance. A confusion matrix
is in a form similar to a quadrilateral matrix. The columns represent the number of target
samples, which corresponds to the number of output samples by the rows. All samples in
the confusion matrix are correctly classified samples located in the main diagonal and are
called true positives (TPs). At the same time, the other cells represent false positives (FPs)
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or false negative (FN) samples and are incorrectly classified. The results of the systems are
measured through Equations (9)–(13) [50].

AUC =
TPRate
FPRate

∗ 100% (9)

Accuracy =
TN + TP

TN + TP + FN + FP
∗ 100% (10)

Sensitivity =
TP

TP + FN
∗ 100% (11)

Precision =
TP

TP + FP
∗ 100% (12)

Specificity =
TN

TN + FP
∗ 100% (13)

4.3. Results of CNN Models

This section discusses the performance of the pre-trained GoogLeNet, MobileNet, and
DenseNet121 models. The pre-trained CNN models are based on an ImageNet dataset with
over a million images of over a thousand classes. This huge dataset lacks medical images,
so pre-trained CNN models do not reach good results for classifying some medical datasets.
In this study, the experience gained from the CNN models to classify the ImageNet dataset
has been transferred to perform the new task of classifying the Kvasir gastroenterology
dataset. The input layers of the GoogLeNet, MobileNet, and DenseNet121 models receive
endoscopy images of the Kvasir gastroenterology dataset and pass them to convolutional
layers to represent the images in high-level feature maps. Pooling layers reduces high
dimensionality and feature manipulation through helper layers. Fully connected layers
receive feature maps and convert them from 2D to 1D. Finally, the SoftMax function adjusts
each carrier to its appropriate class.

Table 1 summarize the results of the pre-trained GoogLeNet, MobileNet, and DenseNet121
models for endoscopy image classification of the Kvasir gastroenterology dataset. GoogLeNet
achieved an AUC of 91.46%, accuracy of 88.2%, sensitivity of 88.05%, precision of 88.34%,
and specificity of 98.19%. The MobileNet achieved an AUC of 90.99%, accuracy of 86.4%,
sensitivity of 86.34%, precision of 86.34%, and specificity of 97.96%. The DenseNet121
achieved an AUC of 89.13%, accuracy of 85.3%, sensitivity of 85.23%, precision of 85.29%,
and specificity of 97.85%.

Table 1. Results of pre-trained deep learning models for endoscopy image analysis of the Kvasir
dataset to discriminate gastrointestinal diseases.

Models Type of Disease AUC % Accuracy % Sensitivity % Precision % Specificity %

G
oo

gL
eN

et

dyed_lifted_polyps 88.7 79 79.2 91.3 99.2
dyed_resection_margins 92.5 91.5 92.4 83.2 96.5

esophagitis 90.2 83.5 83.1 82.7 97.4
normal_cecum 94.5 98.5 97.6 91.6 98.7

normal_pylorus 93.8 98.5 97.8 92.9 99.3
normal_z_line 91.6 81 81.2 81.8 96.9

polyps 86.2 79 78.9 94 98.6
ulcerative_colitis 94.2 94.5 94.2 89.2 98.9

Average ratio 91.46 88.20 88.05 88.34 98.19
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Table 1. Cont.

Models Type of Disease AUC % Accuracy % Sensitivity % Precision % Specificity %

M
ob

ile
N

et

dyed_lifted_polyps 92.6 91 91.2 88.8 98.1
dyed_resection_margins 90.4 87 87.3 87.4 98.3

esophagitis 92.1 90.5 90.8 89.2 97.6
normal_cecum 93.2 91.5 91.5 91.5 99.4

normal_pylorus 95.4 96 85.7 86.4 98.8
normal_z_line 88.1 81.5 80.9 83.6 97.5

polyps 86.4 81.5 81.2 76.9 96.3
ulcerative_colitis 89.7 82.5 82.1 88.2 97.7

Average ratio 90.99 86.40 86.34 86.50 97.96

D
en

se
N

et
12

1

dyed_lifted_polyps 82.4 73.5 72.9 75.4 97.4
dyed_resection_margins 86.2 75.5 76.2 77.8 96.6

esophagitis 81.2 78 78.4 78.4 96.9
normal_cecum 94.6 93 92.8 95.4 98.6

normal_pylorus 95.2 99 98.7 97.1 99.6
normal_z_line 83.4 79 78.8 77.5 96.7

polyps 94.9 92 91.7 84.4 97.8
ulcerative_colitis 95.1 92 92.3 96.3 99.2

Average ratio 89.13 85.30 85.23 85.29 97.85

4.4. Results of CNN Models Based on the GVF Algorithm

This section discusses the performance of the GoogLeNet, MobileNet, and Dense-
Net121 models based on the GVF hashing algorithm. In this section, the endoscopic images
are improved by an average filter and then passed to the CLAHE method to highlight the
edges of the lesion. Then, infected regions are divided and separated from healthy regions
and saved in a folder named Kvasir-ROI. The models receive pre-trained GoogLeNet,
MobileNet, and DenseNet121. Regions of interest are analyzed through convolutional
layers and pooling and saved in deep feature maps. A fully connected layer categorizes the
feature maps.

Table 2 summarize the results of the pre-trained GoogLeNet, MobileNet, and DenseNet121
models based on the GVF algorithm for endoscopy image classification of the Kvasir gas-
troenterology dataset. The GoogLeNet–GVF achieved an AUC of 91.8%, accuracy of 90.8%,
sensitivity of 91.09%, precision of 90.81%, and specificity of 98.49%. The MobileNet–GVF
achieved an AUC of 91.84%, accuracy of 91.5%, sensitivity of 91.56%, precision of 91.55%,
and specificity of 98.83%. The DenseNet121–GVF achieved an AUC of 90.89%, accuracy of
90.1%, sensitivity of 89.83%, precision of 90.03%, and specificity of 98.35%.

Table 2. Results of CNN models based on the GVF Algorithm for endoscopy image analysis of the
Kvasir dataset to discriminate gastrointestinal diseases.

Models Type of Disease AUC % Accuracy % Sensitivity % Precision % Specificity %

G
oo

gL
eN

et

dyed_lifted_polyps 91.2 89.5 90.2 85.2 98.2
dyed_resection_margins 88.3 81 80.8 87.1 97.8

esophagitis 95.1 93.5 93.7 95.4 99.3
normal_cecum 92.3 93.5 94.3 94.4 99.4

normal_pylorus 93.1 95.5 95.2 95.5 98.7
normal_z_line 92.9 94.5 93.8 92.6 99.1

polyps 89.1 87.5 88.4 87.9 97.6
ulcerative_colitis 92.4 91.5 92.3 88.4 97.8

Average ratio 91.80 90.80 91.09 90.81 98.49
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Table 2. Cont.

Models Type of Disease AUC % Accuracy % Sensitivity % Precision % Specificity %

M
ob

ile
N

et

dyed_lifted_polyps 91.2 90 90.4 90.9 98.5
dyed_resection_margins 89.3 87 86.9 89.7 99.1

esophagitis 92.4 96 95.6 93.2 98.6
normal_cecum 93.1 95 95.1 95 99.1

normal_pylorus 92.6 94 93.8 93.5 99.4
normal_z_line 93.4 91 91.1 93.8 98.8

polyps 90.9 90 90.4 84.1 97.9
ulcerative_colitis 91.8 89 89.2 92.2 99.2

Average ratio 91.84 91.50 91.56 91.55 98.83

D
en

se
N

et
12

1

dyed_lifted_polyps 91.3 92.5 93.2 89.8 98.2
dyed_resection_margins 94.2 97.5 96.8 95.1 99.1

esophagitis 80.2 70.5 70 70.5 95.6
normal_cecum 94.3 96.5 96.2 95.5 98.7

normal_pylorus 95.2 97 97.3 97.5 99.5
normal_z_line 83.4 76 75.6 78.4 96.7

polyps 94.9 96.5 95.8 96 99.2
ulcerative_colitis 93.6 94 93.7 97.4 99.8

Average ratio 90.89 90.10 89.83 90.03 98.35

4.5. Results of Hybrid Models of CNN, FFNN, and XGBoost

The section summarizes the results of the hybrid methodology between CNN mod-
els (GoogLeNet, MobileNet, and DenseNet121) and the FFNN or XGBoost networks for
endoscopy image classification of the Kvasir-ROI gastroenterology dataset.

The mechanism of the hybrid method is to improve the images, segment the affected
regions, and extract the feature map through the convolutional layers of the CNN models.
The output of the CNN models was fed to PCA to reduce the features, save the most
important features, and delete the unnecessary and redundant ones. FFNN and XGBoost
receive the most important features and segment them during the training and testing
phases. The CNN–FFNN and CNN–XGBoost models can analyze endoscopy images of
gastrointestinal diseases and distinguish between the types of gastrointestinal diseases
with high accuracy.

Table 3 presents the performance of the hybrid CNN–FFNN for endoscopy image
classification of the Kvasir gastroenterology dataset. The GoogLeNet–FFNN achieved an
AUC of 93.46%, accuracy of 93.8%, sensitivity of 93.99%, precision of 93.88%, and specificity
of 98.91%. The MobileNet–FFNN achieved an AUC of 95.08%, accuracy of 94.4%, sensitivity
of 94.45%, precision of 94.49%, and specificity of 98.98%. The DenseNet121–FFNN achieved
an AUC of 95.93%, accuracy of 94.8%, sensitivity of 94.76%, precision of 94.84%, and
specificity of 99.05%.

Table 3. Results of CNN–FFNN hybrid system based on ROI using the GVF algorithm for endoscopy
image analysis of the Kvasir dataset to discriminate gastrointestinal diseases.

Hybrid
Models Type of Lesion AUC % Accuracy % Sensitivity % Precision % Specificity %

G
oo

gL
eN

et
–F

FN
N

dyed_lifted_polyps 92.5 92.5 93.2 90.7 99.2
dyed_resection_margins 91.7 92.5 92.8 88.5 97.6

esophagitis 93.6 94 94.4 94.5 98.7
normal_cecum 96.8 98 97.8 97.5 99.8

normal_pylorus 95.7 96.5 96.3 98 99.5
normal_z_line 92.4 92.5 92.9 92.5 98.6

polyps 92.9 93 93.3 93.5 99.1
ulcerative_colitis 92.1 91 91.2 95.8 98.8

Average ratio 93.46 93.80 93.99 93.88 98.91
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Table 3. Cont.

Hybrid
Models Type of Lesion AUC % Accuracy % Sensitivity % Precision % Specificity %

M
ob

ile
N

et
–F

FN
N

dyed_lifted_polyps 95.4 94.5 94.2 95 98.7
dyed_resection_margins 94.6 93 93.4 91.6 99.4

esophagitis 97.5 98.5 98.1 96.6 99.1
normal_cecum 96.8 97 97.2 97.5 99.5

normal_pylorus 96.3 95 94.8 93.6 98.5
normal_z_line 94.1 93.5 93.9 96.9 99.6

polyps 92.8 92 92.4 88.9 97.8
ulcerative_colitis 93.1 92 91.6 95.8 99.2

Average ratio 95.08 94.40 94.45 94.49 98.98

D
en

se
N

et
12

1–
FF

N
N dyed_lifted_polyps 94.1 93 92.7 94.9 98.7

dyed_resection_margins 96.3 94.5 94.2 88.7 97.6
esophagitis 97.6 97 97.3 98.5 99.5

normal_cecum 98.2 99 99.1 97.5 99.7
normal_pylorus 96.1 95.5 95.2 95 98.6
normal_z_line 97.2 96 96.4 94.6 99.4

polyps 95.8 94 93.9 92.2 99.1
ulcerative_colitis 92.1 89 89.3 97.3 99.8

Average ratio 95.93 94.80 94.76 94.84 99.05

Table 4 presents the performance of the hybrid CNN–XGBoost for endoscopy image
classification of the Kvasir gastroenterology dataset. The GoogLeNet–XGBoost achieved an
AUC of 95.46%, accuracy of 94.3%, sensitivity of 94.29%, precision of 94.26%, and specificity
of 99.14%. The MobileNet–XGBoost achieved an AUC of 94.36%, accuracy of 93.8%, sensi-
tivity of 94.06%, precision of 93.83%, and specificity of 99.24%. The DenseNet121–XGBoost
achieved an AUC of 94.91%, accuracy of 94.20%, sensitivity of 94.29%, precision of 94.2%,
and specificity of 98.95%.

Table 4. Results of CNN–XGBoost hybrid system based on ROI using the GVF algorithm for en-
doscopy image analysis of the Kvasir dataset to discriminate gastrointestinal diseases.

Hybrid
Models Type of Disease AUC % Accuracy % Sensitivity % Precision % Specificity %

G
oo

gL
eN

et
–X

G
Bo

os
t dyed_lifted_polyps 93.8 93 93.2 92.5 99.2

dyed_resection_margins 96.5 96 96.4 92.8 99.4
esophagitis 97.3 96 95.8 94.6 98.7

normal_cecum 98.6 97.5 97.2 97.5 99.5
normal_pylorus 96.2 95.5 94.7 97.4 99.8
normal_z_line 94.9 93 93.4 94.9 98.6

polyps 92.3 90.5 90.9 90.5 99.4
ulcerative_colitis 94.1 92.5 92.7 93.9 98.5

Average ratio 95.46 94.30 94.29 94.26 99.14

M
ob

ile
N

et
–

X
G

Bo
os

t dyed_lifted_polyps 94.1 93.5 94.1 92.6 99.2
dyed_resection_margins 92.4 91.5 92.4 90.1 98.8

esophagitis 93.9 94 94.4 95.4 99.3
normal_cecum 95.7 96 95.6 97 99.5

normal_pylorus 98.4 97.5 97.3 97 99.7
normal_z_line 94.7 94 94.2 93.1 98.9

polyps 92.1 91 91.1 91.9 99.1
ulcerative_colitis 93.6 93 93.4 93.5 99.4

Average ratio 94.36 93.80 94.06 93.83 99.24
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Table 4. Cont.

Hybrid
Models Type of Disease AUC % Accuracy % Sensitivity % Precision % Specificity %

D
en

se
N

et
12

1–
X

G
Bo

os
t dyed_lifted_polyps 93.8 94.5 94.2 95 98.5

dyed_resection_margins 94.2 95 95.4 92.7 99.1
esophagitis 96.9 96.5 95.9 96.5 98.8

normal_cecum 98.2 99 99.1 97.1 99.5
normal_pylorus 95.3 95 95.4 95.5 98.6
normal_z_line 94.9 94 93.8 95.4 98.8

polyps 92.8 87.5 88.4 89.7 99.4
ulcerative_colitis 93.2 92 92.1 91.5 98.9

Average ratio 94.91 94.20 94.29 94.20 98.95

A confusion matrix is the gold standard for presenting system performance mea-
sures. This section shows the performance of hybrid CNN–FFNN networks for classifying
endoscopy images of the Kvasir-ROI gastroenterology dataset. Figure 6 shows the per-
formance of the GoogLeNet–FFNN, MobileNet–FFNN, and DenseNet121–FFNN hybrid
networks through confusion matrices. The hybrid GoogLeNet–FFNN achieved accuracy
for each type in the Kvasir gastroenterology dataset as follows: for dyed-lifted-polyps,
92.5%; for dyed resection margins, 92.5%; for esophagitis, 94%, for normal cecum, 98.5%;
for normal pylorus, 96.5%; for normal z-line, 92.5%, for polyps, 93%; for ulcerative colitis,
91%. The hybrid MobileNet–FFNN achieved accuracy for each type in the Kvasir gas-
troenterology dataset as follows: for dyed-lifted-polyps, 94.5%; for dyed resection margins,
93%; for esophagitis, 98.5%; for normal cecum, 97%; for normal pylorus, 95%; for normal
z-line, 93.5%; for polyps, 92%; for ulcerative colitis, 92%. The hybrid DenseNet121–FFNN
achieved accuracy for each type in the Kvasir gastroenterology dataset as follows: for
dyed-lifted-polyps, 93%; for dyed resection margins, 94.5%; for esophagitis, 97%; for nor-
mal cecum, 99%; for normal pylorus, 95.5%; for normal z-line, 96%; for polyps, 94%; for
ulcerative colitis, 89%.

This section shows the performance of hybrid CNN–XGBoost and CNN–XGBoost
networks for classifying endoscopy images from the Kvasir-ROI gastroenterology dataset.
Figure 7 shows the performance of the GoogLeNet–XGBoost, MobileNet–XGBoost,
and DenseNet121–XGBoost hybrid networks through the confusion matrix. The hybrid
GoogLeNet–XGBoost achieved accuracy for each type in the Kvasir gastroenterology
dataset as follows: for dyed lifted polyps, 93%; for dyed resection margins, 96%; for
esophagitis, 96%; for normal cecum, 97.5%; for normal pylorus, 95.5%; for normal z-line,
93%, for polyps, 90.5%, for ulcerative colitis, 92.5%. The hybrid MobileNet–XGBoost
achieved accuracy for each type in the Kvasir gastroenterology dataset as follows: for
dyed-lifted-polyps, 93.5%; for dyed resection margins, 91.5%; for esophagitis, 94%; for
normal cecum, 96%; for normal pylorus, 97.5%; for normal z-line, 94%; for polyps, 91%; for
ulcerative colitis, 93%. The hybrid DenseNet121–XGBoost achieved accuracy for each type
in the Kvasir gastroenterology dataset as follows: for dyed lifted polyps, 94.5%; for dyed
resection margins, 95%; for esophagitis, 96.5%; for normal cecum, 99%; for normal pylorus,
95%; for normal z-line, 94%; for polyps, 87.5%; for ulcerative colitis, 92%.
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Figure 6. Confusion matrices displaying CNN–FFNN hybrid systems’ performance based on ROIs
using the GVF algorithm for endoscopy image analysis of the Kvasir dataset to discriminate gastroin-
testinal diseases: (a) GoogLeNet–FFNN, (b) MobileNet–FFNN, and (c) DenseNet121–FFNN.

4.6. Results of Hybrid Methodology Based on Fused Deep Learning Features

The section summarizes the results of the hybrid methodology between the CNN mod-
els (GoogLeNet, MobileNet, and DenseNet121) and the FFNN or XGBoost networks based
on integrating the features of the CNN models for endoscopy image classification of the
Kvasir-ROI gastroenterology dataset. The hybrid methodology aims to optimize the images,
segment the affected regions and isolate them from the healthy ones, and extract the feature
map through the convolutional layers of the CNN models. The features of the CNN models
are sequentially combined as follows: GoogLeNet–MobileNet, MobileNet–DenseNet121,
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GoogLeNet–DenseNet121, and GoogLeNet–MobileNet–DenseNet121. The features of
the hybrid CNN models were then fed into PCA to reduce the features, save the most
important features, and delete the unnecessary and redundant features. FFNN and XG-
Boost receive and breakdown the most important features during the training and testing
phases. The CNN-FFNN and CNN-XGBoost, based on features of CNN fusion, analyze en-
doscopy images of gastroenterology and accurately distinguish between gastroenterological
disease types.

Figure 7. Confusion matrices displaying CNN–XGBoost hybrid systems’ performances based on ROIs
using the GVF algorithm for endoscopy image analysis of the Kvasir dataset to discriminate gastroin-
testinal diseases: (a) GoogLeNet–XGBoost, (b) MobileNet–XGBoost, and (c) DenseNet121–XGBoost.
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Table 5 presents the performance of the hybrid CNN–FFNN based on features of CNN
fusion for endoscopy image classification of the Kvasir-ROI gastroenterology dataset. The
GoogLeNet–MobileNet–FFNN achieved an AUC of 94.49%, accuracy of 96.06%, sensitivity
of 95.75%, precision of 96.09%, and specificity of 99.33%. The MobileNet–DenseNet121–FFNN
achieved an AUC of 96.4%, accuracy of 95.8%, sensitivity of 95.64%, precision of 95.84%, and
specificity of 99.28%. The GoogLeNet–DenseNet121–FFNN achieved an AUC of 97.21%,
accuracy of 96.5%, sensitivity of 96.29%, precision of 96.53%, and specificity of 99.29%.
The GoogLeNet–MobileNet–DenseNet121–FFNN achieved an AUC of 97.08%, accuracy of
96.9%, sensitivity of 96.68%, precision of 96.9%, and specificity of 99.3%.

Table 5. Results of CNN–FFNN hybrid system based on feature CNN fused for endoscopy image
analysis of the Kvasir dataset to discriminate gastrointestinal diseases.

Fusion
Features Classifier Type of Disease AUC % Accuracy % Sensitivity % Precision % Specificity %

G
oo

gL
eN

et
–

M
ob

ile
N

et

FFNN

dyed_lifted_polyps 95.9 96 96.2 94.6 99.2
dyed_resection_margins 94.2 94.5 94.4 95 99.4

esophagitis 98.7 99 98.6 97.5 99.8
normal_cecum 99.1 99.5 99.1 96.6 98.8

normal_pylorus 96.4 95.5 94.6 97 99.5
normal_z_line 96.7 95.5 94.9 96 98.6

polyps 96.1 95.5 95.4 94.1 99.4
ulcerative_colitis 94.8 93 92.8 97.9 99.9

Average ratio 96.49 96.06 95.75 96.09 99.33

M
ob

ile
N

et
–

D
en

se
N

et
12

1

FFNN

dyed_lifted_polyps 96.2 95.5 95.2 95.5 98.5
dyed_resection_margins 95.7 95 94.8 95 99.2

esophagitis 98.5 98.5 98.4 98 99.9
normal_cecum 98.1 97.5 97.1 98.5 99.6

normal_pylorus 96.4 96.5 95.8 93.7 98.7
normal_z_line 95.9 95 95.4 97.4 99.8

polyps 94.1 93 93.2 92.1 99.1
ulcerative_colitis 96.3 95.5 95.2 96.5 99.4

Average ratio 96.40 95.80 95.64 95.84 99.28

G
oo

gL
eN

et
–

D
en

se
N

et
12

1

FFNN

dyed_lifted_polyps 96.2 95 95.2 96 98.5
dyed_resection_margins 97.9 97.5 97.1 94.7 99.2

esophagitis 96.8 97 96.8 98.5 99.8
normal_cecum 99.1 99.5 99.3 97.5 99.7

normal_pylorus 97.2 96 95.9 97.5 99.5
normal_z_line 98.4 97.5 96.6 95.1 99.2

polyps 95.6 94 94.3 94.4 98.6
ulcerative_colitis 96.5 95.5 95.1 98.5 99.8

Average ratio 97.21 96.50 96.29 96.53 99.29

G
oo

gL
eN

et
–M

ob
ile

N
et

–D
en

se
N

et
12

1

FFNN

dyed_lifted_polyps 97.8 97 97.2 96.5 99.2
dyed_resection_margins 98.2 97.5 97.4 94.7 98.7

esophagitis 97.1 96.5 95.8 97.5 99.5
normal_cecum 98.9 99 99.1 98.5 99.7

normal_pylorus 97.5 97 96.6 96.5 98.8
normal_z_line 95.1 95.5 94.8 95.5 99.1

polyps 96.2 97 96.9 97 99.6
ulcerative_colitis 95.8 95.5 95.6 99 99.8

Average ratio 97.08 96.90 96.68 96.90 99.30

Table 6 presents the performance of the hybrid CNN–XGBoost based on features
of CNN fusion for endoscopy image classification of the Kvasir-ROI gastroenterology
dataset as follows: The GoogLeNet–MobileNet–XGBoost achieved an AUC of 96.6%,
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accuracy of 96.8%, sensitivity of 96.43%, precision of 96.78%, and specificity of 99.4%.
The MobileNet–DenseNet121–XGBoost achieved an AUC of 95.5%, accuracy of 95.9%,
sensitivity of 95.78%, precision of 95.9%, and specificity of 99.23%. The GoogLeNet–
DenseNet121–XGBoost achieved an AUC of 95.8%, accuracy of 95.3%, sensitivity of 95.15%,
precision of 95.26%, and specificity of 99.15%. The GoogLeNet–MobileNet–DenseNet121–
XGBoost achieved an AUC of 97.54%, accuracy of 97.25%, sensitivity of 96.86%, precision
of 97.25%, and specificity of 99.48%.

Table 6. Results of CNN–XGBoost hybrid system based on feature CNN fused for endoscopy image
analysis of the Kvasir dataset to discriminate gastrointestinal diseases.

Fusion
Features Classifier Type of Disease AUC % Accuracy % Sensitivity % Precision % Specificity %

G
oo

gL
eN

et
–M

ob
ile

N
et

XGBoost

dyed_lifted_polyps 95.1 94.5 94.2 97.4 99.5
dyed_resection_margins 97.8 98 98.1 97.5 99.8

esophagitis 96.8 97.5 96.7 96.1 98.5
normal_cecum 95.7 96 96.4 97.5 100

normal_pylorus 96.2 97.5 97.3 98.5 99.6
normal_z_line 98.8 98.5 97.8 97 99.8

polyps 97.2 97.5 96.5 94.7 98.8
ulcerative_colitis 95.2 94.5 94.4 95.5 99.2

Average ratio 96.60 96.80 96.43 96.78 99.40

M
ob

ile
N

et
–

D
en

se
N

et
12

1

XGBoost

dyed_lifted_polyps 93.2 94.5 93.8 95 99.2
dyed_resection_margins 95.1 96 96.2 93.7 98.7

esophagitis 98.1 97 96.9 99 99.6
normal_cecum 97.2 98.5 98.4 96.1 98.9

normal_pylorus 93.8 94.5 93.7 96.4 99.4
normal_z_line 96.8 98 97.7 94.7 98.8

polyps 95.6 93.5 94.1 95.4 99.4
ulcerative_colitis 94.2 95 95.4 96.9 99.8

Average ratio 95.5 95.9 95.78 95.9 99.23

G
oo

gL
eN

et
–

D
en

se
N

et
12

1

XGBoost

dyed_lifted_polyps 94.2 94 94.2 94 99.4
dyed_resection_margins 93.9 93 93.4 90.7 98.8

esophagitis 99.4 99 98.7 97.5 99.6
normal_cecum 97.8 98 97.6 97.5 100

normal_pylorus 95.4 94.5 94.3 95.5 98.5
normal_z_line 95.9 95.5 94.9 96 99.2

polyps 96.1 95.5 95.3 95.5 99.4
ulcerative_colitis 93.7 92.5 92.8 95.4 98.3

Average ratio 95.80 95.30 95.15 95.26 99.15

G
oo
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et
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ob
ile

N
et

–D
en

se
N

et
12

1

XGBoost

dyed_lifted_polyps 94.6 95 94.6 97.4 99.5
dyed_resection_margins 98.6 98.5 97.8 97 99.7

esophagitis 98.4 98.5 98.2 97 99.6
normal_cecum 97.1 96.5 95.9 98.5 100

normal_pylorus 98.1 97.5 97.4 98.5 99.7
normal_z_line 99.2 98.5 98.2 97.5 99.9

polyps 98.7 97.5 97.3 95.6 98.8
ulcerative_colitis 95.6 96 95.5 96.5 98.6

Average ratio 97.54 97.25 96.86 97.25 99.48

This section shows the performance of hybrid CNN–FFNN and CNN–XGBoost based
on features of CNN fusion for classifying endoscopy images from the Kvasir-ROI gas-
troenterology dataset. Figure 8 shows the performance of the CNN–FFNN based on the
features of CNN fusion through the confusion matrix. The hybrid GoogLeNet–MobileNet–
FFNN achieved accuracy for each type in the Kvasir gastroenterology dataset as follows:
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for dyed lifted polyps, 96%; for dyed resection margins, 94.5%; for esophagitis, 99%; for
normal cecum, 99.5%; for normal pylorus, 95.5%; for normal z-line, 95.5%; for polyps,
95.5%; for ulcerative colitis, 93%. The hybrid MobileNet–DenseNet121–FFNN achieved
accuracy for each type in the Kvasir gastroenterology dataset as follows: for dyed lifted
polyps, 95.5%; for dyed resection margins, 95%; for esophagitis, 98.5%; for normal cecum,
97.5%; for normal pylorus, 96.5%; for normal z-line, 95%; for polyps, 93%; for ulcerative
colitis, 95.5%. The hybrid GoogLeNet–DenseNet121–FFNN achieved accuracy for each
type in the Kvasir gastroenterology dataset as follows: for dyed lifted polyps, 95%; for
dyed resection margin, 97.5%; for esophagitis, 97%; for normal cecum, 99.5%; for normal
pylorus, 96%; for normal z-line, 97.5%; for polyps, 94%; for ulcerative colitis, 95.5%. The
hybrid GoogLeNet–MobileNet–DenseNet121–FFNN achieved accuracy for each type in the
Kvasir gastroenterology dataset as follows: for dyed lifted polyps, 97%; for dyed resection
margins, 97.5%; for esophagitis, 96.5%; for normal cecum, 99%; for normal pylorus, 97%;
for normal z-line, 95.5%; for polyps, 97%; for ulcerative colitis, 95.5%.

It is noted from Figure 9 that there are cases where the system failed and misclassified
the images as follows: First, for the class “dyed-lifted-polyps”, 192 images were classified
correctly, whereas the failure cases in this class were 6 images that were classified as “dyed-
resection-margins” and 2 images that were classified as “polyps”. Second, for the class
“dyed-resection-margins”, 189 images were classified correctly, whereas the failure cases in
this class were 4 images that were classified as “dyed-lifted-polyps”, 2 images that were
classified as “normal-pylorus”, 1 image that was classified as “normal-z-line”, 2 images
that were classified as “polyps”, and 2 images that were classified as “ulcerative-colitis”.
Thirdly, for the “esophagitis” class 198 images were classified correctly, whereas the failure
cases in this class were 2 images classified as “normal-z-line”. Fourth, for the “normal-
cecum” class, 199 images were classified correctly, whereas the failure case in this class
was one image that was classified as “ulcerative-colitis”. Fifth, for the “normal-pylorus
class”, 191 images were classified correctly, whereas the failure cases in this class were
4 images that were classified as “dyed-lifted-polyps” and 5 images that were classified as
“normal-z-line”. Sixth, for the “normal-z-line class”, 191 images were classified correctly,
whereas the failure cases in this class were 2 images classified as “dyed-resection-margins”,
5 images classified as “esophagitis”, and 2 images classified as “normal-pylorus”. Seventh,
for the “polyps” class, 191 images were classified correctly, whereas the failure cases in
this class were 3 images classified as “dyed-lifted-polyps”, 1 image classified as “dyed-
resection-margins”, 2 images classified as “normal-cecum”, 2 images classified as “normal-
pylorus”, and 1 image classified as “ulcerative-colitis”. Eighth, for the “ulcerative-colitis”
class, 186 images were classified correctly, whereas the failure cases in this class were
1 image classified as “dyed-resection-margins”, 5 images classified as “normal-cecum”, and
8 images classified as “polyps”.

Figure 8 shows the performance of the CNN–XGBoost based on features of CNN fusion
through the confusion matrix. The hybrid GoogLeNet–MobileNet–XGBoost achieved
accuracy for each type in the Kvasir gastroenterology dataset as follows: for dyed lifted
polyps, 94.5%; for dyed resection margins, 98%; for esophagitis, 97.5%; for normal cecum,
100%; for normal pylorus, 96%; for normal z-line, 97.5%; for polyps, 98.5%; for ulcerative
colitis, 97.5%. The hybrid MobileNet–DenseNet121–XGBoost achieved accuracy for each
type in the Kvasir gastroenterology dataset as follows: for dyed lifted polyps, 94.5%;
for dyed resection margins, 96%; for esophagitis, 97%; for normal cecum, 98.5%; for
normal-pylorus, 94.5%; for normal z-line, 98%; for polyps, 93.5%; for ulcerative colitis,
95%. The hybrid GoogLeNet–DenseNet121–XGBoost achieved accuracy for each type
in the Kvasir gastroenterology dataset as follows: for dyed lifted polyps, 94%; for dyed
resection margins, 93%; for esophagitis, 99%; for normal cecum, 98%; for normal pylorus,
94.5%; for normal z-line, 95.5%; for polyps, 95.5%; for ulcerative colitis, 92.5%. The hybrid
GoogLeNet–MobileNet–DenseNet121–XGBoost achieved accuracy for each type in the
Kvasir gastroenterology dataset as follows: for dyed lifted polyps, 95%; for dyed resection
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margins, 98.5%; for esophagitis, 98.5%; for normal cecum, 96.5%; for normal pylorus, 97.5%;
for normal z-line, 98.5%; for polyps, 97.5%; for ulcerative colitis, 96%.

Figure 8. Confusion matrices displaying CNN–FFNN hybrid systems’ performances based on ROIs
and feature CNN fused for the endoscopy image analysis of the Kvasir dataset to discriminate
gastrointestinal diseases: (a) GoogLeNet–MobileNet–FFNN, (b) MobileNet–DenseNet121–FFNN,
(c) GoogLeNet–DenseNet121–FFNN, and (d) GoogLeNet–MobileNet–DenseNet121–FFNN.
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Figure 9. Confusion matrices displaying CNN–XGBoost hybrid systems’ performances based on ROIs
and feature CNN fused for the endoscopy image analysis of the Kvasir dataset to discriminate gas-
trointestinal diseases: (a) GoogLeNet–MobileNet–XGBoost, (b) MobileNet–DenseNet121–XGBoost,
(c) GoogLeNet–DenseNet121–XGBoost, and (d) GoogLeNet–MobileNet–DenseNet121–XGBoost.

5. Discussion of the Performance of the Proposed Methodologies

The gastrointestinal tract suffers from many diseases, such as infections, ulcers, benign
tumors, and malignant tumors, which lead to its inability to carry out its tasks well. Addi-
tionally, malignant tumors threaten human life and lead to death if discovered late. Polyps
may develop into malignancy if not treated and removed early. Manual diagnosis faces
many challenges, such as distinguishing between malignant and benign tumors in the early
stages and distinguishing between infections and ulcers. Computer-assisted automated
diagnostic systems help differentiate between different types of gastrointestinal diseases.

In this study, several hybrid systems (CNN–FFNN and CNN–XGBoost) were devel-
oped based on the GVF segmentation algorithm and fused CNN features.
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The first methodology was to diagnose endoscopy images from the Kvasir gastroen-
terology dataset using pre-trained GoogLeNet, MobileNet, and DenseNet121 models,
which reached accuracies of 88.2%, 86.4%, and 85.3%, respectively.

The second methodology for diagnosing endoscopy images from the Kvasir gas-
troenterology dataset was by using pre-trained GoogLeNet, MobileNet, and DenseNet121
models based on the GVF segmentation algorithm and reached accuracies of 90.8%, 91.5%,
and 90.1%, respectively.

The third methodology for analyzing endoscopy images for the early diagnosis of
gastrointestinal diseases was by hybrid systems (CNN–FFNN and CNN–XGBoost) based
on the GVF segmentation algorithm. The GoogLeNet–FFNN, MobileNet–FFNN, and
DenseNet121–FFNN hybrid systems achieved accuracies of 93.8%, 94.4%, and 94.8%,
respectively, whereas the hybrid systems GoogLeNet–XGBoost, MobileNet–XGBoost, and
DenseNet121–XGBoost achieved accuracies of 94.3%, 93.8%, and 94.2%, respectively.

The fourth methodology for the early diagnosis of gastrointestinal diseases was
by hybrid systems (CNN–FFNN and CNN–XGBoost) based on the GVF segmentation
algorithm and fused CNN features. The hybrid systems GoogLeNet–MobileNet–FFNN,
MobileNet–DenseNet121–FFNN, GoogLeNet–DenseNet121–FFNN, and GoogLeNet–
MobileNet–DenseNet121–FFNN reached accuracies of 96.06%, 95.8%, 96.5%, and 96.9%,
respectively, whereas the hybrid systems GoogLeNet–MobileNet–XGBoost, MobileNet–
DenseNet121–XGBoost, GoogLeNet–DenseNet121–XGBoost, and GoogLeNet–MobileNet–
DenseNet121–XGBoost reached accuracies of 96.8%, 95.9%, 95.3%, and 97.25%, respectively.

Table 7 and Figure 10 present the results of all proposed methodologies for analyzing
endoscopy images for gastroenterology from the Kvasir dataset. The table summarizes the
overall accuracy and accuracies for each class in the Kvasir dataset that each methodology
yielded. Endoscopic images from the Kvasir gastroenterology dataset were diagnosed using
pre-trained GoogLeNet, MobileNet, and DenseNet121 models, which achieved good, but
not superior, results. The results of the pre-trained models were improved through the GVF
segmentation algorithm, where the images were enhanced and the infected regions were
segmented and isolated from the healthy ones. Thus, the pre-trained models received the
Kvasir-ROI dataset and an improvement in the results was noted. A hybrid CNN–FFNN
or CNN–XGBoost methodology was applied based on the GVF segmentation algorithm,
and the results improved significantly. To achieve superior results for the classification of
the Kvasir gastroenterology dataset, a hybrid CNN–FFNN or CNN–XGBoost methodology
was applied based on the GVF segmentation algorithm and fused CNN features.

The table shows the results for each class across each system and the improvement of the
results for each category was as follows: For the class “dyed_lifted_polyps”, the GoogLeNet
model achieved an accuracy of 79%, whereas the accuracy was improved to 95.5% by
the MobileNet–DenseNet121–FFNN model. For the class “dyed_resection_margins”, the
DenseNet121 model achieved an accuracy of 75.5%, whereas the accuracy was improved to
98.5% by the GoogLeNet–MobileNet–DenseNet121–XGBoost model. For the class “esophagi-
tis”, the DenseNet121 model achieved an accuracy of 70.5%, whereas the accuracy was
improved to 98.5% by three hybrid models. For the “normal_cecum” class, the MobileNet
model achieved an accuracy of 91.5%, whereas the accuracy was improved to 99.5% by
the GoogLeNet–MobileNet–FFNN model. For the “normal_pylorus” class, the MobileNet
model achieved an accuracy of 86%, whereas the accuracy was improved to 97.5% by the
GoogLeNet–MobileNet–DenseNet121–XGBoost model. For the “normal_z_line” class, the
DenseNet121 model achieved an accuracy of 76%, whereas the accuracy was improved
to 98.5% by the GoogLeNet–MobileNet–XGBoost model. For the “polyps” class, the
GoogLeNet model achieved an accuracy of 79%, whereas the accuracy was improved to
98.5% by the GoogLeNet–MobileNet–XGBoost model. For the “ulcerative_colitis” class,
the MobileNet model achieved an accuracy of 82.5%, whereas the accuracy was improved
to 95.5% by three hybrid models.
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Table 7. Results of proposed methodologies for analyzing endoscopy images for early diagnosis of
gastroenterological status from the Kvasir dataset.

Techniques Features
Dyed
Lifted
Polyps

Dyed
Resection
Margins

Esophagitis Normal
Cecum

Normal
Pylorus

Normal z
Line Polyps Ulcerative

Colitis Accuracy

pre-
trained

GoogLeNet 79 91.5 83.5 98.5 98.5 81 79 94.5 88.2
MobileNet 91 87 90.5 91.5 86 81.5 81.5 82.5

DenseNet121 73.5 75.5 78 93 99 79 92 92 83.5

Based on
GVF

GoogLeNet 89.5 81 93.5 93.5 95.5 94.5 87.5 91.5 90.8
MobileNet 90 87 96 95 94 91 90 89 91.5

DenseNet121 92.5 97.5 70.5 96.5 97 76 96.5 94 90.1

H
yb

ri
d

FFNN
GoogLeNet 92.5 92.5 94 98.5 96.5 92.5 93 91 93.8
MobileNet 94.5 93 98.5 97 95 93.5 92 92 94.4

DenseNet121 93 94.5 97 99 95.5 96 94 89 94.8

H
yb

ri
d

XGBoost
GoogLeNet 93 96 96 97.5 95.5 93 90.5 92.5 94.3
MobileNet 93.5 91.5 94 96 97.5 94 91 93 93.8

DenseNet121 94.5 95 96.5 99 95 94 87.5 92 94.2

H
yb

ri
d

FFNN

GoogLeNet–
MobileNet 96 94.5 99 99.5 95.5 95.5 95.5 93 96.1

MobileNet–
DenseNet121 95.5 95 98.5 97.5 96.5 95 93 95.5 95.8

GoogLeNet–
DenseNet121 95 97.5 97 99.5 96 97.5 94 95.5 96.5

GoogLeNet–
MobileNet–
DenseNet121

97 97.5 96.5 99 97 95.5 97 95.5 96.9

H
yb

ri
d

XGBoost

GoogLeNet–
MobileNet 94.5 98 97.5 96 97.5 98.5 97.5 94.5 96.8

MobileNet–
DenseNet121 94.5 96 97 98.5 94.5 98 93.5 95 95.9

GoogLeNet–
DenseNet121 94 93 99 98 94.5 95.5 95.5 92.5 95.3

GoogLeNet–
MobileNet–
DenseNet121

95 98.5 98.5 96.5 97.5 98.5 97.5 96 97.3

 
 Figure 10. Performance display of all proposed methodologies for analyzing 
endoscopy images for diagnosing gastroenterological status. 
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Figure 10. Performance display of all proposed methodologies for analyzing endoscopy images for
diagnosing gastroenterological status.
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It is concluded that the proposed systems are superior to the previous studies by all
measures of accuracy, sensitivity, AUC, and specificity thanks to the use of the method of
combining CNN features.

Through the results, the following can be concluded: The results of the CNN models
based on the GVF algorithm were better than feeding in the images directly without
applying the GVF algorithm. The technical results of a hybrid between CNN models
(GoogLeNet, MobileNet, and DenseNet121) and FFNN and XGBoost improved the results
more than applying CNN models. Finally, it is noted that the performance of the FFNN
and XGBoost networks with the hybrid features of the CNN models is clearly better than
the previous methods.

6. Conclusions

It is difficult to distinguish between the types of diseases of gastrointestinal tract and
the presence of anatomical landmarks, pathological findings, and polyp removal, especially
in the early stages. Therefore, many methodologies have been developed to help doctors
and specialists diagnose disease from endoscopy images of gastrointestinal tract. The
Kvasir dataset was classified by three pre-trained CNN models. In the second methodology,
endoscopy images were optimized, and the affected areas were segmented and classified
by three pre-trained CNN models. The third methodology analyzed endoscopy images
from the Kvasir dataset by a hybrid CNN–FFNN or CNN–XGBoost methodology based on
the GVF segmentation algorithm. The fourth methodology analyzed endoscopy images
from the Kvasir dataset by a hybrid CNN–FFNN or CNN–XGBoost methodology based on
the GVF segmentation algorithm and fused CNN features. The GoogLeNet–MobileNet–
DenseNet121–XGBoost hybrid methodology based on the GVF algorithm achieved an AUC
of 97.54%, accuracy of 97.25%, sensitivity of 96.86%, precision of 97.25%, and specificity
of 99.48%.

These systems can be generalized to help doctors and endoscopy specialists in the
early diagnosis of tumors of the gastrointestinal tract in order for the patient to receive
appropriate treatment.

The most important limitation we encountered was the similarity in the biological
characteristics between some types of gastrointestinal diseases, which were overcome by
combining the features of the CNN models.

The future work is to extract the handcrafted features, combine them with combined
CNN features, and generalize them to the proposed systems on a new dataset.

Additionally, in future work PCA will be used before and after combining the features
and comparing the results.
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