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Abstract: Papillary thyroid carcinoma (PTC) is the most common pathological type of thyroid
cancer. PTC patients with extrathyroidal extension (ETE) are associated with poor prognoses. The
preoperative accurate prediction of ETE is crucial for helping the surgeon decide on the surgical plan.
This study aimed to establish a novel clinical-radiomics nomogram based on B-mode ultrasound
(BMUS) and contrast-enhanced ultrasound (CEUS) for the prediction of ETE in PTC. A total of
216 patients with PTC between January 2018 and June 2020 were collected and divided into the
training set (n = 152) and the validation set (n = 64). The least absolute shrinkage and selection
operator (LASSO) algorithm was applied for radiomics feature selection. Univariate analysis was
performed to find clinical risk factors for predicting ETE. The BMUS Radscore, CEUS Radscore,
clinical model, and clinical-radiomics model were established using multivariate backward stepwise
logistic regression (LR) based on BMUS radiomics features, CEUS radiomics features, clinical risk
factors, and the combination of those features, respectively. The diagnostic efficacy of the models
was assessed using receiver operating characteristic (ROC) curves and the DeLong test. The model
with the best performance was then selected to develop a nomogram. The results show that the
clinical-radiomics model, which is constructed by age, CEUS-reported ETE, BMUS Radscore, and
CEUS Radscore, showed the best diagnostic efficiency in both the training set (AUC = 0.843) and
validation set (AUC = 0.792). Moreover, a clinical-radiomics nomogram was established for easier
clinical practices. The Hosmer–Lemeshow test and the calibration curves demonstrated satisfactory
calibration. The decision curve analysis (DCA) showed that the clinical-radiomics nomogram had
substantial clinical benefits. The clinical-radiomics nomogram constructed from the dual-modal
ultrasound can be exploited as a promising tool for the pre-operative prediction of ETE in PTC.

Keywords: papillary thyroid carcinoma; extrathyroidal extension; radiomics; b-mode ultrasound;
contrast-enhanced ultrasound; nomogram

1. Introduction

Papillary thyroid carcinoma (PTC) is the most common pathological type of thyroid
cancer, and it has a good prognosis [1]; still, some PTCs develop aggressive biological behav-
iors such as lymph node metastasis (LNM) and extrathyroidal extension (ETE), which affect
the recurrence rate and survival [2,3]. Li et al. found that the risk of recurrence in patients
with ETE was 8.831 times higher than that in patients without ETE [4]. Ortiz et al. reported
a 10-year survival rate of 99.3% in PTC patients without ETE, while the 10-year survival rate
decreased to 63.2% in patients with ETE [5]. In addition, ETE is an important prognostic
factor for PTC. Many prognostic risk stratification systems for differentiated thyroid cancer
(DTC, PTC accounts for 85% of DTC [6]) use ETE as a prognostic indicator, such as the
GAMES (gender, age, metastasis, extrathyroidal extension, size) system [7] and MACIS
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(metastases, age, completeness of resection, invasion, and size) system [8]. Currently, the
histopathological result is still the “gold standard” for the diagnosis of ETE. According
to the eighth edition of the AJCC-TNM staging system, ETE for thyroid carcinomas was
divided into minimal and gross ETE. Minimal ETE is defined as the tumor invasion of the
perithyroid soft tissue, while gross ETE refers to invasion into strap muscles and major
neck structures (subcutaneous soft tissue, larynx, trachea, esophagus, recurrent laryngeal
nerve, the prevertebral fascia, or it encases the carotid artery or mediastinal vessels) [9–11].
Surgery is the most effective means of routinely treating PTC. Many thyroid cancer scholars
recommend that the appropriate decision for PTC patients at low risk is to perform an
ipsilateral lobectomy, which will reduce postoperative complications such as recurrent la-
ryngeal nerve injuries and hypoparathyroidism [12,13]. However, according to the National
Comprehensive Cancer Network (NCCN) guidelines (Version 2.2022), ETE is considered to
be a surgical indication for total thyroidectomy [14]. Therefore, the preoperative evaluation
of ETE is crucial for helping the surgeon decide on the surgical plan.

The imaging methods used to evaluate ETE include magnetic resonance imaging
(MRI), computed tomography (CT), and ultrasound (US). Compared with MRI and CT, US
examination has become the preferred imaging method for preoperative thyroid tumor
screening and prognosis assessments due to its advantages as follows: low cost, no ionizing
radiation, real-time, and high resolution [15]. Contrast-enhanced ultrasound (CEUS) is a
new technology that is widely used in clinical practice in recent years [16], which provides
more reference information about microvascular perfusion for the evaluation of ETE [17].
Some studies have used some signs of conventional US and CEUS to evaluate ETE, such as
the degree of contact between the thyroid tumor and capsule, and the disruption of capsule
continuity [18–22]. However, these signs are subjective. In addition, ultrasound cannot
reliably detect microscopic ETE, which can only be determined by postoperative pathology;
thus, the sensitivity is relatively low [23].

Radiomics can excavate massive features that cannot be observed by the naked eye
from medical images for the quantitative analysis of diseases [24–27]. It has been gradually
applied in the research of various tumors, including tumor diagnosis, prognosis predic-
tion, and gene analysis. Several studies have demonstrated the value of radiomics when
applied in the differentiation of benign and malignant thyroid nodules [28–30] and the
aggressiveness assessment of thyroid tumors [31–35]. For the preoperative prediction of
ETE, Wang et al. constructed a US radiomics-based nomogram, which has a high predictive
value [36]. However, compared with only using BMUS images, the addition of CEUS
images can provide information on tumor vascularity and perfusion. Our previous studies
have found that dual-modal US-based radiomics analyses can be used to distinguish benign
from malignant thyroid nodules and also demonstrated that CEUS image-based radiomics
analysis is promising in the study of PTC [28]. However, no previous studies have used
CEUS-based radiomics to predict ETE in PTC patients. Therefore, this study attempted to
explore the value of dual-modal radiomics features (radiomics features based on BMUS
and CEUS images) and clinical risk factors in the pre-operative prediction of ETE. Then, we
constructed a clinical-radiomics nomogram, and it is expected to be an effective clinical
tool for the pre-operative prediction of ETE and assistance in the clinical treatment decision
of PTC patients.

2. Materials and Methods
2.1. Patients

The protocol for this retrospective study was approved by the Institutional Review
Board of the Third Xiangya Hospital of Central South University. The requirement for
obtaining written informed consent from the patients was waived by the review board.
Between January 2018 and June 2020, 216 patients in our hospital were retrospectively
included. The study inclusion criteria were as follows: (1) BMUS and CEUS examinations
were performed within 2 weeks before surgery; (2) postoperative histopathology confirmed
the diagnosis of PTC and provided information on the ETE or non-ETE outcome; (3) a
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single unilateral lesion. The study exclusion criteria were as follows: (1) low-quality US
images; (2) patients who received prior thyroidectomy; (3) incomplete clinical information
and US image data. Using the postoperative histopathological results of the tumor as the
gold standard, patients were classified into non-ETE and ETE groups.

2.2. BMUS and CEUS Examination

A GE LOGIQ E9 color Doppler ultrasonic instrument with a 9 L linear array probe
was used to perform the US examination. The patient was placed in a supine position with
full exposure of the neck. The radiologist performed a BMUS examination of the thyroid
gland, identified the target nodule, and stored its maximum long-axis section image. After
dissolving the freeze-dried SonoVue powder in 5 mL of normal saline, a suspension was
formed after shaking and was prepared for use. After the maximum long-axis section of
the target tumor was displayed; the probe was fixed; the machine was switched to CEUS
mode; the mechanical index, focus, and gain were adjusted appropriately. A bolus injection
of 2.4 mL of SonoVue contrast agent was administered through the cubital vein, followed
immediately by the administration of 5 mL of normal saline. At the same time, the timing
function and image storage were switched on, and the enhancement degree and capsule
continuity of the thyroid nodules were observed. A frame of images corresponding to the
peak time of CEUS was selected and stored for subsequent ROI delineation. Finally, BMUS
images and CEUS images were exported in Dicom format.

2.3. Clinicoradiological Data Acquisition

Demographic characteristics including gender and age were obtained from the medical
record system. Radiological features including site, size, internal echogenicity, aspect ratio,
margins, calcifications, the enhancement degree, and US-reported ETE were determined
and recorded by a radiologist with at least 15 years of experience while performing pre-
operative ultrasound examinations. In BMUS images, tumors were considered to have
BMUS-reported ETE (positive) when one or more of the following two features were
observed: (1) >25% of the perimeter of the lesion was in contact with the thyroid capsule
on BMUS; (2) discontinued capsule of the contact between the tumor and the thyroid gland
on BMUS. In CEUS images, tumors were regarded as CEUS-reported ETE (positive) when
there was a discontinued capsule enhancement of the contact between the tumor and the
thyroid gland or an enhancement extending beyond the capsule.

2.4. Image Segmentation and Feature Extraction

The tumor region was segmented using ITK-SNAP software (version 3.8.0; http:
//www.itksnap.org/, accessed on 2 January 2021), and the radiologist manually delineated
the border of the lesion and finally confirmed the region of interest (ROI), which included
the entire area of the lesion as much as possible. BMUS images and CEUS images were
used for ROI segmentation (Figure 1). The radiomics module of the 3D-Slicer software
(version 4.11.20210226, https://www.slicer.org/, accessed on 1 October 2021) was used
for radiomics feature extraction. All images were preprocessed before feature extraction,
and this included resampling to a voxel size of 1 mm × 1 mm × 1 mm and image dis-
cretization with a fixed bin width of 25. In total, 837 radiomics features were extracted
from each ROI, including 6 types of features: first-order features, gray-level dependence
matrix (GLDM), gray-level co-occurrence matrix (GLCM), gray-level run length matrix
(GLRLM), gray-level size zone matrix (GLSZM), and neighborhood gray-tone difference
matrix (NGTDM). These features were extracted from the original image and the wavelet-
transformed image, respectively. An interclass correlation coefficient (ICC) was used to
assess inter-observer repeatability. Two radiologists (reader1 and reader2) performed
ROI segmentation on the images of thirty randomly selected patients, and an ICC > 0.75
indicated good repeatability of radiomics feature extraction. One radiologist (reader1)
completed all image segmentation.

http://www.itksnap.org/
http://www.itksnap.org/
https://www.slicer.org/
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Figure 1. Examples of ROI segmentation on BMUS images and CEUS images. (a) BMUS image of the
thyroid tumor. (b) Tumor ROI (red area) segmentation based on BMUS image. (c) CEUS image of
the thyroid tumor. (d) Tumor ROI (red area) segmentation based on CEUS image. ROI, regions of
interest; BMUS, B-mode ultrasound; CEUS, contrast-enhanced ultrasound.

2.5. Feature Selection and Model Construction

The total cases were divided into a training set and a validation set at a 7:3 ratio using
a stratified random sampling method. Prior to feature selection, all radiomics features
were normalized using the z-score normalization method. In the training set, only features
with ICC > 0.75 were used for subsequent analysis. Then, the least absolute shrinkage and
selection operator (LASSO) algorithm was used to further feature dimensionality reduction
by ten-fold cross-validation. Finally, the optimal feature combination was selected by
backward stepwise multivariate logistic regression analyses with the Akaike information
criterion (AIC) to construct a model for calculating the radiomics score. The BMUS Rad-
score and CEUS Radscore were constructed based on BMUS images and CEUS images,
respectively, by the above feature selection and model construction method.

Based on the training set, we first performed a univariate analysis of clinical factors
(including demographic characteristics and radiological features) between the ETE and
non-ETE groups. The statistically significant variables (p < 0.05) in univariate analysis were
further analyzed using backward stepwise multivariate logistic regression to construct a
clinical model.

The clinical risk factors with p-values < 0.05 in univariate analysis and two Radscores
were included as candidate variables in backward stepwise multivariate logistic regression
analysis to establish a clinical-radiomics model.

2.6. Model Comparison and Nomogram Development

We drew the receiver operating characteristic (ROC) curve and the area under the
curve (AUC), and the DeLong test was used to evaluate and compare the predictive
performance of the four models. A nomogram was then plotted to visualize the model
with optimal performance for the ETE prediction of PTC. The Hosmer–Lemeshow test and
calibration curves were used to evaluate the goodness of fit of the nomogram. The clinical
utility of the nomogram was clarified by decision curve analysis (DCA).
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2.7. Statistical Analysis

R software (version 4.1.3, https://www.r-project.org/, accessed on 1 November 2021)
was used to load the corresponding functions or packages to complete the statistical analysis.
Measurement data that fit the normal distribution were expressed as mean± standard
deviation, the measurement data that did not fit the normal distribution were expressed as
medians (interquartile range), and the statistical significance of the difference between the
two groups was determined by the t-test or Mann–Whitney U test. Enumeration data were
expressed as n (%), and the chi-square test or Fisher’s exact test was used for comparisons
between the two groups. p < 0.05 was considered statistically significant.

3. Results
3.1. Clinico-Pathological Information

A study workflow diagram is shown in Figure 2. A total of 216 patients with PTC
were included in this study. Pathological results showed that 70 patients had ETE and
146 patients had no ETE. These patients were divided into the training group (n = 152)
and the validation group (n = 64) according to the random stratified sampling method.
There were no statistically significant differences with respect to gender, age, site, tu-
mor size, echogenicity, aspect ratio, margins, microcalcifications, enhancement degree,
BMUS-reported ETE, and CEUS-reported ETE between the training and validation groups
(all p > 0.05), as shown in Table 1, showing a balanced distribution of baseline patient
characteristics between the training and validation sets. The positive rates of ETE were
33.6% and 29.7% in the training and validation groups, respectively, with no statistically
significant difference (p = 0.579). The univariate analysis results of clinical parameters,
BMUS Radscore, and CEUS Radscore in the training set and validation set are shown
in Table 2.
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Table 1. Baseline patient characteristics in the training and validation sets.

Characteristics Training Set (n = 152) Validation Set (n = 64) p-Value

Extrathyroidal extension 0.579
Negative 101 (66.4) 45 (70.3)
Positive 51 (33.6) 19 (29.7)

Age 0.622
<55 years 124 (81.6) 54 (84.4)
≥55 years 28 (18.4) 10 (15.6)

Gender 0.919
Female 113 (74.3) 48 (75.0)
Male 39 (25.7) 16 (25.0)

Primary site 0.537
Left lobe 66 (43.4) 31 (48.4)

Right lobe 76 (50.0) 31 (48.4)
Isthmus 10 (6.6) 2 (3.1)

Tumor size 0.266
≤10 mm 100 (65.8) 37 (57.8)
>10 mm 52 (34.2) 27 (42.2)

Echogenicity 0.120
Iso/hyperechoic 6 (3.9) 5 (7.8)

Hypoechoic 53 (34.9) 29 (45.3)
Marked hypoechoic 93 (61.2) 30 (46.9)

Aspect ratio > 1 0.381
Absent 95 (62.5) 44 (68.8)
Present 57 (37.5) 20 (31.2)
Margin 0.133
Smooth 6 (3.9) 7 (10.9)

Ill-defined 20 (13.2) 9 (14.1)
Irregular 126 (82.9) 48 (75.0)

Microcalcification 0.222
Absent 43 (28.3) 13 (20.3)
Present 109 (71.7) 51 (79.7)

Enhancement degree 0.974
Hyper-enhancement 7 (4.6) 3 (4.7)

Iso-enhancement 33 (21.7) 13 (20.3)
Hypo-enhancement 112 (73.7) 48 (75)
BMUS-reported ETE 0.886

Negative 80 (52.6) 33 (51.6)
Positive 72 (47.4) 31 (48.4)

CEUS-reported ETE 0.523
Negative 110 (72.4) 49 (76.6)
Positive 42 (27.6) 15 (23.4)

BMUS Radscore, 0.438
Median (interquartile range) −1.01 (−1.29, −0.48) −0.90 (−1.30, −0.35)

CEUS Radscore, 0.317
Median (interquartile range) −0.84 (−1.68, −0.11) −0.64 (−1.29, −0.03)

BMUS, B-mode ultrasound. ETE, extrathyroidal extension. CEUS, contrast-enhanced ultrasound.

Table 2. Associations between extrathyroidal extension and patient characteristics in the training and
validation sets.

Characteristics
Training Set Validation Set

ETE− ETE+ p-Value ETE− ETE+ p-Value

Age 0.003 0.466
<55 years 89 (88.1) 35 (68.6) 39 (86.7) 15 (78.9)
≥55 years 12 (11.9) 16 (31.4) 6 (13.3) 4 (21.1)

Gender 0.252 0.530
Female 78 (77.2) 35 (68.6) 35 (77.8) 13 (68.4)
Male 23 (22.8) 16 (31.4) 10 (22.2) 6 (31.6)

Primary site 0.338 1.000
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Table 2. Cont.

Characteristics
Training Set Validation Set

ETE− ETE+ p-Value ETE− ETE+ p-Value

Left lobe 42 (41.6) 24 (47.1) 22 (48.9) 9 (47.4)
Right lobe 54 (53.5) 22 (43.1) 21 (46.7) 10 (52.6)
Isthmus 5 (5.0) 5 (9.8) 2 (4.4) 0 (0.0)

Tumor size 0.002 0.006
>10 mm 75 (74.3) 25 (49) 31 (68.9) 6 (31.6)
≤10 mm 26 (25.7) 26 (51) 14 (31.1) 13 (68.4)

Echogenicity 0.527 0.271
Iso/hyperechoic 5 (5.0) 1 (2.0) 3 (6.7) 2 (10.5)

Hypoechoic 37 (36.6) 16 (31.4) 18 (40) 11 (57.9)
Marked hypoechoic 59 (58.4) 34 (66.7) 24 (53.3) 6 (31.6)

Aspect ratio > 1 0.690 0.531
Absent 62 (61.4) 33 (64.7) 32 (71.1) 12 (63.2)
Present 39 (38.6) 18 (35.3) 13 (28.9) 7 (36.8)
Margin 0.467 0.108
Smooth 4 (4.0) 2 (3.9) 3 (6.7) 4 (21.1)

Ill-defined 11 (10.9) 9 (17.6) 5 (11.1) 4 (21.1)
Irregular 86 (85.1) 40 (78.4) 37 (82.2) 11 (57.9)

Microcalcification 0.355 0.739
Absent 31 (30.7) 12 (23.5) 10 (22.2) 3 (15.8)
Present 70 (69.3) 39 (76.5) 35 (77.8) 16 (84.2)

Enhancement degree 0.230 0.298
Hyper-enhancement 5 (5.0) 2 (3.9) 2 (4.4) 1 (5.3)

Iso-enhancement 26 (25.7) 7 (13.7) 7 (15.6) 6 (31.6)
Hypo-enhancement 70 (69.3) 42 (82.4) 36 (80) 12 (63.2)
BMUS-reported ETE 0.019 0.038

Negative 60 (59.4) 20 (39.2) 27 (60.0) 6 (31.6)
Positive 41 (40.6) 31 (60.8) 18 (40.0) 13 (68.4)

CEUS-reported ETE <0.001 0.117
Negative 88 (87.1) 22 (43.1) 37 (82.2) 12 (63.2)
Positive 13 (12.9) 29 (56.9) 8 (17.8) 7 (36.8)

BMUS Radscore <0.001 0.004
Median (interquartile

range) −1.11 (−1.31, −0.85) −0.56 (−1.13, 0.05) −0.97 (−1.31, −0.61) −0.36 (−0.93, 0.45)

CEUS Radscore <0.001 0.003
Median (interquartile

range) −1.28 (−2.00, −0.48) −0.23 (−0.83, 0.52) −0.97 (−1.79, −0.28) −0.09 (−0.60, 0.21)

BMUS, B-mode ultrasound. ETE, extrathyroidal extension. CEUS, contrast-enhanced ultrasound.

3.2. Radiomics Scores

In total, 837 radiomics features were extracted from the ROI on the BMUS and CEUS
images, respectively, and 774 BMUS and 783 CEUS radiomics features with ICC > 0.75 were
retained. After the two-step dimensionality reduction via the Lasso algorithm (Figure 3)
and backward stepwise logistic regression (Table 3), one BMUS feature was screened
out and accordingly used to construct the BMUS radiomics model. The BMUS Radscore
was calculated by summing the selected BMUS features weighted by their coefficients.
Similarly, three CEUS features were selected via LASSO regression (Figure 3) and backward
stepwise logistic regression (Table 3) for the CEUS radiomics model’s construction and
CEUS Radscore calculation. The calculation formulas of the BMUS Radscore and the CEUS
Radscore are shown below.

BMUS Radscore = −0.7010 + 0.9476 × original_ngtdm_Busyness

CEUS Radscore = −0.8609 + 0.6282 × wavelet.LHL_glszm_SmallAreaEmphasis − 0.6996 ×
wavelet.HLL_gldm_DependenceVariance + 0.5294 × wavelet.HLL_ngtdm_Complexity
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Figure 3. BMUS and CEUS radiomics feature selection by LASSO regression. (a,c) LASSO coeffi-
cient profiles of radiomics features. Each colored line represents the coefficient of an individual
feature. (b,d) Selection of tuning parameters (lambda value) in the LASSO model using 10-fold
cross-validation by the minimum criteria. Red dots indicate average deviance values for each model
with a given λ, and vertical bars through the red dots show the upper and lower values of the
deviances. The dotted vertical lines were drawn at the optimal λ value based on the minimum criteria
and 1 standard error of the minimum criteria. BMUS, B-mode ultrasound. CEUS, contrast-enhanced
ultrasound. LASSO, least absolute shrinkage and selection operator.

The ROC curves are plotted in Figure 4. For predicting ETE, in the training set, the
AUC of the BMUS Radscore was 0.704, with sensitivity and specificity values of 0.627 and
0.782, respectively; in contrast, in the validation set, the AUC was 0.731, with sensitivity and
specificity values of 0.632 and 0.689, respectively. In the training set, the AUC of the CEUS
Radscore was 0.768, with sensitivity and specificity values of 0.922 and 0.495, respectively;
in contrast, in the validation set, the AUC was 0.739 with sensitivity and specificity values
of 0.947 and 0.333, respectively (Table 4).
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Table 3. Four prediction models based on stepwise multivariate analyses for the prediction of ETE.

Characteristics Odds Ratio (95%CI) p-Value

BMUS radiomics model
original_ngtdm_Busyness 2.58 (1.60, 4.15) <0.001

CEUS radiomics model
wavelet.LHL_glszm_SmallAreaEmphasis 1.87 (1.14, 3.08) 0.013
wavelet.HLL_gldm_DependenceVariance 0.50 (0.31, 0.79) 0.003

wavelet.HLL_ngtdm_Complexity 1.70 (1.11, 2.61) 0.015
Clinical model

Age (≥55 years vs. <55 years) 4.00 (1.52, 10.50) 0.005
Tumor size (>10 mm vs. ≤10 mm) 2.08 (0.90, 4.81) 0.087

CEUS-reported ETE (positive vs. negative) 7.42 (3.14, 17.56) <0.001
Clinical-radiomics model

Age (≥55 years vs. <55 years) 3.89 (1.45, 10.49) 0.007
CEUS-reported ETE (positive vs. negative) 4.70 (1.84, 11.99) 0.001

BMUS Radscore 1.72 (0.98, 3.01) 0.058
CEUS Radscore 1.75 (1.09, 2.80) 0.020

CI, confidence interval. BMUS, B-mode ultrasound. CEUS, contrast-enhanced ultrasound. ETE, extrathyroidal extension.
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3.3. Clinical Model

In the training set, univariate analysis revealed statistically significant differences with
respect to age, tumor size, BMUS-reported ETE, and CEUS-reported ETE between non-ETE
and ETE groups (all p < 0.05), as shown in Table 2. Age, tumor size, BMUS-reported
ETE, and CEUS-reported ETE were then introduced into the backward stepwise mul-
tivariate logistic regression analysis in order to build the clinical model (Table 3). The
AUCs of the clinical models in the training and validation sets were 0.793 and 0.718,
respectively (Table 4).
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Table 4. Performance of four models in the training and validation sets.

Group Model AUC
(95% CI)

p Value (vs.
Combined Model) Sensitivity Specificity Cutoff Value

Training set

BMUS radiomics 0.704
(0.610–0.799) <0.001 0.627 0.782 0.305

CEUS radiomics 0.768
(0.694–0.843) 0.009 0.922 0.495 0.213

Clinical 0.793
(0.715–0.871) 0.004 0.745 0.782 0.307

Clinical-radiomics 0.843
(0.773–0.913) - 0.765 0.832 0.356

Validation set

BMUS radiomics 0.731
(0.595–0.867) 0.343 0.632 0.689 0.305

CEUS radiomics 0.739
(0.617–0.861) 0.419 0.947 0.333 0.213

Clinical 0.718
(0.588–0.847) 0.044 0.526 0.711 0.307

Clinical-radiomics 0.792
(0.674–0.910) - 0.789 0.778 0.356

CI, confidence interval. AUC, area under the curve. BMUS, B-mode ultrasound. CEUS, contrast-enhanced ultrasound.

3.4. Clinical-Radiomics Model

The clinical risk factors, along with the two Radscores, were integrated to construct
a clinical-radiomics model. According to the results of univariate analyses and multi-
variate stepwise logistic regression in the training set, age, CEUS-reported ETE, BMUS
Radscore, and CEUS Radscore were finally included as indicators for constructing the
combined model (Table 3). The clinical-radiomics model showed the highest predictive
ability for the ETE of PTC in the training and validation sets with AUCs of 0.843 and 0.792,
respectively (Table 4); therefore, it was identified as the best model. The AUC value of
the clinical-radiomics model was significantly higher than that of the clinical model, both
with respect to the training set (p = 0.004) and the validation set (p = 0.044). In addition,
the clinical-radiomics model outperformed the BMUS Radscore (p < 0.001) and the CEUS
Radscore (p = 0.009) in the training set. However, the performance of the clinical-radiomics
model did not differ from that of the BMUS Radscore (p = 0.343) and CEUS Radscore
(p = 0.419) in the validation set. The nomogram for visualizing the clinical-radiomics model
is shown in Figure 5. The calibration curve analysis (Figure 6) and Hosmer–Lemeshow test
for the clinical-radiomics model indicated proper agreement between the actual observed
and predicted probabilities in the training set (p = 0.6466; Figure 6a) and the validation set
(p = 0.2250; Figure 6b). Decision curve analysis was used to compare the clinical benefits
of four prediction models, and we discovered that when the threshold probability was
22%-76%, the clinical-radiomics model was more beneficial than the clinical model and
radiomics scores (Figure 7).
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4. Discussion

In this study, BMUS and CEUS radiomics analyses were introduced for predicting ETE
in PTC. Based on BMUS radiomics features, CEUS radiomics features, clinical risk factors,
and a combination of them, we developed four prediction models for the preoperative
prediction of ETE in PTC patients, which were subsequently validated and compared. We
found that the clinical-radiomics model combining BMUS, CEUS radiomics features, and
clinical risk factors had the best predictive efficacy (AUC of 0.843 in the training set and
0.792 in the validation set), and this was significantly better than the efficacy of the clinical
model. The clinical-radiomics model provides an innovative solution for the pre-operative
and personalized prediction of ETE.

Among eleven clinical factors, age and CEUS-reported ETE were found to be inde-
pendent predictors of ETE in PTC. ETE usually occurs in PTC patients that are older than
55 years [37], and this also supports the finding in this study that the incidence of ETE
was higher in older patients (age ≥ 55 years) than in younger patients (age < 55 years). In
addition, imaging evaluation is essential for diagnosing ETE in patients with PTC. Ultra-
sound is the imaging examination of choice for evaluating thyroid nodules as it can clearly
demonstrate the extent of contact between tumors and the adjacent thyroid capsule. In this
study, radiologists predicted ETE based on BMUS and CEUS images. Both BMUS-reported
ETE and CEUS-reported ETE were significantly associated with ETE in the univariate
analysis, but interestingly, the BMUS-reported ETE did not enter the final clinical-radiomics
model. We discovered that the more sufficient discriminatory power of CEUS-reported
ETE weakened the weight of the BMUS-reported ETE. Previous studies have reported that
CEUS has a higher diagnostic value for detecting ETE than BMUS [20,21], which is in line
with our findings. We analyzed that the reasons for this may be that CEUS can show the
blood supply difference between normal thyroid tissues and PTC, and it may also be more
advantageous in showing the microvascularity of the thyroid capsule; thus, it is beneficial
in showing the lesion’s outline and interruptions in capsule continuity. However, CEUS
still has certain limitations. The interpretation of ultrasound images is highly subjective
and dependent on the skill and experience of the radiologist. Therefore, there is a need for
a more objective and accurate tool to help optimize the pre-operative prediction of ETE
statuses in patients with PTC.
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Radiomics is an emerging method of imaging analysis. The biological behavior and
molecular biology associated with cancer are usually known via biopsies, which are inva-
sive; in contrast, radiomics can be exploited as a rapid, cost-effective, and non-invasive
imaging biomarker [38–40], and it may offer a promising alternative to biopsies for assess-
ing tumors, such as those observed in breast cancer [41,42], thyroid cancer [43], and prostate
cancer [44]. In addition, radiomics can overcome the subjectivity of traditional image diag-
noses and provide quantitative imaging features [45–47], opening up a new tumor-imaging
landscape [48]. Previous studies have shown that radiomics can be used to predict the ETE
in PTC. Wang et al. established a US-based radiomics nomogram with radiomics features
from BMUS images for the pre-operative prediction of ETE [36]. Both Chen et al. [49] and
Yu et al. [50] reported that the CT-based radiomics nomogram significantly improved the
pre-operative prediction of ETE. Xu et al. [51] found that iodine-map-based radiomics
demonstrated better performance than that based on conventional CT images in predict-
ing ETE. The iodine-map-based radiomics score complemented the clinical risk factors
in predicting the ETE in PTC, and the clinical-radiomics nomogram outperformed the
clinical model. Both He et al. [52] and Wei et al. [53] constructed radiomics models based
on multiparametric MRI in pre-operatively predicting the ETE in patients with PTC. In the
study of He et al., the combination of features from biparametric MRI images for analysis
was limited by the small sample size (only 60 patients). Ran et al. collected T2WI, ADC,
and contrast-enhanced T1-weighted (CE-T1WI) images from 132 patients with PTC. The
established multiparametric MRI-based radiomics model contained 16 features, most of
which were from T2WI images (seven features), and the most highly weighted feature
was also from T2WI images, indicating that T2WI images provided more information.
Additionally, the combination of multi-sequence MRI features provides more informa-
tion than individually using a single sequence. This also provides insight and reference
for our study: we can obtain more tumor information from more ultrasound images of
different modalities.

Compared to the above radiomics investigations on similar topics, our study had
some differences and improvements. We focused on the clinical value of radiomics features
from ultrasound imaging in the prediction of ETE in PTC. Additionally, unlike previous
ultrasound radiomics studies using only BMUS images [36], we constructed radiomics
scores based on different ultrasound images (BMUS and CEUS images). Both BMUS Rad-
score and CEUS Radscore were associated with ETE in univariate analyses. After stepwise
multivariate logistic regression, CEUS Radscore remained an independent predictor of
ETE, and BMUS Radscore also entered the final model according to the backward stepwise
selection with the AIC. CEUS Radscore had a higher odds ratio and higher AUC than BMUS
Radscore, indicating that CEUS images may play more important roles in predicting ETE
and provide additional information related to tumor perfusion compared to BMUS images.
This is similar to the results of previously enhanced image-based radiomics research [51],
which may correlate with increased tumor perfusion due to angiogenesis in aggressive tu-
mors, and tumor heterogeneity in blood perfusions was highlighted by enhanced imaging,
suggesting that tumors with strong vascular heterogeneity are more likely to develop ETE.
We found the final selected features in BMUS Radcore and CEUS Radscore were all texture
features. These textural features are associated with texture heterogeneity [54], which may
correspond to the heterogeneity of tumor tissues and the vascular supply. PTC with ETE
showed higher tumor heterogeneity.

Medical imaging-based clinical predictive models are a focus of research in precision
medicine. They use multi-factor modeling to estimate the probability of a certain clinical
event or a certain clinical outcome, including diagnoses and prognostic assessments [55].
Logistic regression or Cox regression are common methods for developing predictive mod-
els, but the regression formulas are not intuitive enough for clinical replication. Nomograms
are graphic illustrations of statistically predictive models and are used for estimating indi-
vidual patients’ specific risks [56–58]. Nomograms combining clinical risk factors and the
radiomics score have been widely used to solve practical clinical problems. Our findings are



Diagnostics 2023, 13, 1734 14 of 17

consistent with many previous studies showing that the combination of clinical risk factors
and radiomics improves a model’s performance, producing robust results [59–62]. In this
study, a clinical-radiomics nomogram was constructed by integrating age, CEUS-reported
ETE, BMUS Radscore, and CEUS Radscore. We found that the diagnostic performance
of the nomogram model in predicting ETE was better than the radiomics score of a sin-
gle ultrasound modality, indicating that the clinical-radiomics nomogram based on the
dual-modal ultrasound contains more comprehensive and accurate tumor-related informa-
tion. In addition, the clinical-radiomics nomogram had a significantly better AUC than the
clinical model (p-value < 0.05 in both the training set and validation set), and its sensitivity
and specificity were better than those of the clinical model, demonstrating that the addition
of dual-modal ultrasound radiomics indicators improved the diagnostic performance.

This study has several limitations. First, this study is a single-center retrospective study
with a relatively limited sample size; thus, further validation in prospective multicenter
studies with large samples is needed in the future. Second, a single static image at the peak
time of CEUS was selected for CEUS radiomics, and this study provides good confidence in
the feasibility of CEUS images for radiomics analyses. However, the information contained
in a single image may not be comprehensive enough, and further research on methods for
obtaining more valuable information from CEUS videos is necessary in the future. Third, in
terms of the CEUS enhancement degree, Chen et al. observed that invasive PTCs (presenting
ETE or cervical lymph node metastasis) were more likely to exhibit hyperenhancement [20];
however, Liu et al. reported that there is no significant difference in the enhancement
degree between the ETE and non-ETE groups [63]. Our study found that the enhancement
degree was not associated with ETE, but our sample size was limited by a small number
of hyper-enhancement samples, and the discrimination of the CEUS enhancement degree
was influenced by personal experience. Currently, there is limited research assessing ETE
by using the CEUS enhancement degree alone, which is controversial, and further studies
with larger sample sizes are needed. Fourth, combining multiple imaging modalities (such
as ultrasound, CT, and MRI), or combining multiple regions (such as intratumoral and
peritumoral regions) for radiomics analyses may effectively expand the feature pool to yield
more valuable diagnostic information and may be beneficial in improving the accuracy of
diagnosing the disease.

5. Conclusions

We propose a clinical-radiomics nomogram integrating dual-modal ultrasound ra-
diomics features and clinical risk factors. The nomogram supplements the traditional
clinical strategy and can be exploited as a non-invasive pre-operative predictive tool for
ETE in PTC patients.
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