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Abstract: The novel coronavirus (COVID-19) pandemic still has a significant impact on the world-
wide population’s health and well-being. Effective patient screening, including radiological ex-
amination employing chest radiography as one of the main screening modalities, is an important
step in the battle against the disease. Indeed, the earliest studies on COVID-19 found that patients
infected with COVID-19 present with characteristic anomalies in chest radiography. In this paper,
we introduce COVID-ConvNet, a deep convolutional neural network (DCNN) design suitable for
detecting COVID-19 symptoms from chest X-ray (CXR) scans. The proposed deep learning (DL)
model was trained and evaluated using 21,165 CXR images from the COVID-19 Database, a publicly
available dataset. The experimental results demonstrate that our COVID-ConvNet model has a
high prediction accuracy at 97.43% and outperforms recent related works by up to 5.9% in terms of
prediction accuracy.
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1. Introduction

The most recent viral pandemic, COVID-19, arose in the Chinese city of Wuhan [1,2].
Because the outbreak surged across the globe and infected millions of individuals, the
WHO declared it a worldwide pandemic, and the number of affected people continues to
rise daily. As of 22 September 2022, over 610 million coronavirus cases worldwide, as well
as 6.5 million deaths, had been reported [3]. The COVID-19 virus primarily spreads through
respiratory droplets when an infected person coughs, sneezes, talks, or breathes [4]. Symp-
toms of COVID-19 can range from mild to severe and can include fever, cough, shortness of
breath, and loss of taste or smell [5]. The COVID-19 pandemic has had a significant impact
on public health, economies, and social systems around the world. Many countries have
implemented measures such as lockdowns, travel restrictions, and vaccination campaigns
to control the spread of the virus [6]. The pandemic has also highlighted the importance of
public health infrastructure, scientific research, and global cooperation in responding to
infectious diseases. Figure 1 shows how the COVID-19 virus spreads to human lungs and
causes pneumonia, resulting in serious harm.

Currently, no treatment directly interacts with this new type of coronavirus. Many
medley medicines, comprised mainly of varying concentrations of ethanol, hydrogen
peroxide, and isopropyl alcohol, have been developed by certain firms in response to
the unique virus. The WHO has confirmed and approved the use of these treatments
worldwide [7].

The evolution of computer vision diagnostic tools for the treatment of COVID-19
would give medical professionals an automated “second reading”, helping in the critical
diagnosis of COVID-19 infected patients and improving the decision-making process
to cope with this widespread illness. Radiological examination, including chest X-rays
and computed tomography (CT) scans, has played an important role in the screening
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and diagnosis of COVID-19 [8]. Chest X-rays are often used as a first-line imaging tool
in the initial screening of suspected COVID-19 patients, while CT scans are typically
reserved for more severe cases or for patients with inconclusive chest X-ray results [9].
Radiological examination can also help monitor the progression of the disease and assess
the effectiveness of treatment [10]. Radiologists and other medical professionals may
indeed find it challenging to differentiate between pneumonia caused by COVID-19 and
other kinds of viral and bacterial pneumonia based only on diagnostic imaging. X-ray
imaging is an easy and affordable technique for identifying lung and COVID-19 infections.
In X-ray scans, opacities or patchy infiltrates, similar to other viral pneumonia symptoms,
are frequently detected in COVID-19-infected patients. However, on X-ray images, earlier
stages of COVID-19 do not seem to show any abnormalities. COVID-19 affects the mid and
upper or lower areas of the lungs and develops patchy infiltrations, typically with evidence
of consolidation, as the patient’s condition worsens.

Figure 1. Illustration of how COVID-19 affects human lungs.

All facets of modern life, including business, marketing, the military, communications,
engineering, and health, rely on innovative technology applications. The medical industry
requires the extensive use of new technologies, from precisely describing symptoms to
accurately diagnosing conditions and conducting examinations of patients [2]. The ability
of artificial intelligence (AI) and DL algorithms to accurately recognize COVID-19 might
be viewed as a supporting factor to improve conventional diagnostic approaches, such as
chest X-rays [11]. DL and CNN models have excelled in a large number of medical image
categorization applications [12].

Deep learning research on the use of chest X-rays to detect COVID-19 symptoms has
shown promising results. Several studies have used deep learning algorithms to develop
models that can accurately identify COVID-19 cases based on chest X-ray images. These
models typically use convolutional neural networks (CNNs) to extract features from chest
X-ray images and classify them as positive or negative for COVID-19. Some studies have
also used transfer learning, a technique that uses pre-trained CNNs to improve the accuracy
and efficiency of the model.

One potential limitation of these models is the lack of large, diverse datasets for
training and validation. This may limit the generalizability of the trained models and
can lead to overfitting, where the model performs well on the training data but poorly
on new, unseen data. In addition, some studies have reported high false-positive rates or
difficulties in distinguishing COVID-19 from other respiratory illnesses. Moreover, some
related works demand a large number of training parameters and complex computational
resources, making them challenging to implement in real-world scenarios, especially in the
healthcare industry. In our study, we overcome the limitations of previous studies by using
a large database that includes a significant number of chest X-ray scans (21,165 images)
to improve the accuracy and generalizability of the trained model by providing more
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diverse samples; this can help to reduce overfitting problems. Furthermore, complexity is
avoided by reducing the number of parameters and computational resources required by
the proposed CNN model without sacrificing accuracy.

In this article, our major contributions are the following:

1. We propose a deep learning approach, COVID-ConvNet, to help in the early diagnosis
of COVID-19 cases.

2. We employ conventional chest X-rays for the identification and diagnosis of COVID-19
while empirically evaluating the proposed deep learning image classifiers. Three
experimental classifications were performed with four, three, and two classes.

3. We compare the results of various DL models to show the COVID-19 classification
results and to demonstrate the superiority of the proposed model.

The rest of the paper is organized as follows. Section 2 reviews related works on
the detection of the COVID-19 virus based on machine learning (ML) methods. Section 3
describes our proposed method, COVID-ConvNet. Section 4 presents the experimental
results obtained using this method. Finally, Section 5 presents a conclusion of the article.

2. Related Works

This section relates recent works on the diagnosis of the COVID-19 virus, in which
applied ML and DL techniques are discussed.

In [13], Ohata et al. proposed a transfer learning model to train several previously
pre-trained DL models to precisely predict COVID-19 cases. Two datasets were used,
containing 194 X-ray images of both coronavirus-infected and healthy patients. Due to the
lack of publicly available images of COVID-19 patients, the transfer learning concept was
used for this task. CNNs were trained using a variety of architectures and integrated with
conventional machine learning approaches, including k-nearest neighbors, support-vector
machines (SVM), random forest, Bayes, and multilayer perceptrons (MLP). The results
showed that the MobileNet architecture with the SVM classifier employing a linear kernel
was the best classifier pair for one of the datasets.

Tabik et al. introduced a framework known as the COVID smart-data-based network
(COVID-SDNet) in [14], in addition to a dataset called COVIDGR-1.0. The COVIDGR-1.0
dataset has two categories: positive and negative. It contains 852 images, 426 of which are
positive and 426 of which are negative. The results showed that the COVID-SDNet model
achieved good and consistent results in the case of medium and high severity levels. Yet, it
showed low accuracy in mild and normal polymerase chain reaction (PCR)+ severity levels.
However, Ohata et al.’s method and COVID-SDNet are rather time-consuming [15].

Wang et al. put forward the COVID-Net model in [16], a CNN method designed
to detect COVID-19 infection based on X-ray images of human chests. A dataset from
five open-access data repositories called COVIDx was introduced, containing 13,975 CXR
scans from 13,870 cases. Based on the results, the COVIDx dataset has the most COVID-19-
positive patient cases of any open-access benchmark dataset. This dataset presents three
classes, i.e., normal, phenomena, and COVID-19. According to the evaluation results, the
confusion matrix reveals that the accuracy of the COVID-Net model for the detection of the
COVID-19 virus reaches 96%.

In [17], Hemdan et al. developed a new model called COVIDX-Net. The public dataset
of X-ray photos used in this study for identifying negative and positive COVID-19 cases
was reported by Rosebrock and Cohen and is available on the GitHub repository [18]. Their
dataset consists of 50 X-ray images, 25 of which are normal and 25 of which are COVID-19-
positive cases. VGG19, residual network (ResNetV2), InceptionV3, DenseNet121, Inception
ResNetV2, Xception, and MobileNetV2 form the foundation of the COVIDX-Net framework.
The results obtained confirmed that the DenseNet201 and VGG19 models achieved the
best performance scores of the deep learning classifiers, with an accuracy of 90%. The
COVID-Net and COVIDX-Net methods, on the other hand, suffered from overfitting and
were difficult to use in practical systems [15].
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Arias-Londoño et al. proposed in [19] a method for the automatic detection of
COVID-19 (AD-COVID19) employing a deep neural network (DNN) based on chest X-ray
images with a segmentation method. Their method for training the CNN was to use a total
of about 79,500 X-ray images, including more than 8500 COVID-19 case reports collected
from various sources. The automatic COVID-19 diagnosis tool distinguished between
groups of controls, pneumonia, and COVID-19. Three experiments were performed using
various preprocessing schemes to compare and evaluate the models developed by the
authors. The objective was to determine the way data preprocessing impacted the data
and enhanced its explanatory capacity on results. An important investigation of diverse
variability problems affecting the system and its impacts was also applied. The proposed
methodology achieved a prediction accuracy of 91.5%, with an average recall of 87.4% for
the worst and most coherent investigation that needed a prior automated segmentation of
the lung area.

In [20], Wang et al. used a previous residual learning method to accurately classify
COVID-19 infections. It is a basic model to diagnose COVID-19, built thanks to 3D chest
CT scans. Their algorithm can indeed predict whether a CT image exhibits pneumonia and
can distinguish between COVID-19-caused pneumonia and interstitial lung disease (ILD)
caused by other viruses. A couple of ResNet models based on branches were embedded
into a model architecture for end-to-end training by constructing a prior-attention residual
learning (PARL) block. The model was assessed using confusion matrices on an offline-
testing dataset of 600 photos (i.e., 200 images per class). The results depict that the suggested
approach can diagnose COVID-19 effectively. However, the proposed model has many
parameters, making it difficult to implement in practical applications, particularly in the
healthcare field [15].

In [21], Nikolaou et al. introduced a CNN model with a dense layer on top of a
pre-trained baseline convolutional network. According to the experimental data, for a
two-class classification problem that included COVID-19 and healthy lungs, this model
had a 95% accuracy rate, whereas for a three-class classification problem, which including
COVID-19-infected lungs, normal lungs, and other viral pneumonia, accuracy reached 93%.

Ismael et al. [22] proposed DL-based methods that aimed to classify COVID-19, as well
as normal chest X-ray scans; these methods included the fine-tuning of a pre-trained CNN,
deep feature extraction, and end-to-end training of a constructed CNN model. This study
employed 200 normal and 180 COVID-19 patients’ chest X-ray scans. The experimental
results indicated that, with an accuracy score of 94.7%, the ResNet50 model surpassed the
other pre-trained CNN models.

In [23], Narin et al. developed five pre-trained CNN-based models (i.e., ResNet101,
ResNet50, InceptionV3, ResNet152, and Inception-ResNetV2) to find symptoms of coron-
avirus pneumonia on chest X-ray scans. Categories included COVID-19, as well as normal,
viral, and bacterial pneumonia. Three datasets were used to perform the experiments. The
open-source GitHub repository contained 341 COVID-19 patients’ chest X-ray scans [18].
Additionally, The Kaggle dataset “Chest X-ray data (pneumonia)” includes 2772 bacte-
rial and 1493 viral pneumonia chest X-rays [24]. Furthermore, 2800 normal chest X-ray
scans from the “ChestX-ray8” dataset [25] were selected. Amongst the five tested models,
ResNet50 and ResNet101 showed the best accuracy, i.e., 96.1%.

In [26], Abbas et al. proposed a deep CNN model named “decompose, transfer, and
compose” to classify COVID-19 chest X-rays (DeTraC). Normal CXR images were collected
from the Japanese Society of Radiological Technology (JSRT) image data collection [27].
COVID-19 images, as well as severe acute respiratory syndrome (SARS) images, were
collected from the COVID-19 data collection [28]. Experimental results revealed that the
DeTraC model detected COVID-19 X-ray scans from healthy and SARS cases with a high
accuracy of 93.1%.

Jain et al. [29] trained deep-learning-based CNN models (i.e., ResNeXt, V3, and Xcep-
tion) with chest X-ray scans. A dataset of chest X-rays (COVID-19 & Pneumonia) [30] was



Diagnostics 2023, 13, 1675 5 of 17

used that included categorized X-ray images of COVID-19. Compared to the other models,
Xception reached the highest accuracy (i.e., 97.97%) for identifying chest X-ray scans.

In [31], Zouch et al. suggested a new method for automatically detecting COVID-19 in
tomographic images (CT scans) and radiographic pictures (chest X-rays). Their research
intended to develop an approach that could differentiate between COVID-19 and regular
occurrences. Two databases were used, i.e., one containing CT scans [32], and the other one
containing chest X-ray images [18]. The visual geometry group (VGG) and ResNet deep
learning models improved the detection system’s precision for this pandemic. The results
demonstrated that, for VGG19 and ResNet50, the proposed models reached an accuracy of
99.35 and 96.77% with all chest X-ray scans.

Kong et al. employed ResNet to separate effective image data to successfully categorize
chest X-ray pictures in [33]. Two publicly available datasets were used [18,24]. Patients with
pneumonia were divided into two categories for the study: patients with COVID-19 and
those with common pneumonia. The results showed that the suggested model performed
well in prediction. The ResNet model could recognize this binary categorization with a
98.0% average accuracy. The average accuracy for three-category categorization was 97.3%.

In [34], using machine vision approaches, Li et al. developed the Cov-Net CAD model
for accurate COVID-19 classification. It focuses mostly on powerful and comprehensive
feature-learning abilities. Two publicly available COVID-19 radiography datasets were
used, i.e., [35,36]. The experimental results highlighted that the proposed Cov-Net was
practical for the accurate recognition of COVID-19, with accuracy rates reaching 99.66% and
96.49% on issues involving three and four classes, respectively. Furthermore, the proposed
Cov-Net surpassed six other well-known computer vision approaches under identical
experimental conditions, demonstrating its excellence and competitiveness in developing
highly discriminative features.

Table 1 displays comparison of recent related works on detecting the COVID-19 virus.
The limitations of the recent related studies presented here are as follows:

• Both the training and testing of machine learning models were performed based on
small databases with only a few X-ray images. Therefore, these methods would need
more development before being applied.

• The number of multi-class datasets needs to be expanded so that models can effectively
judge chest X-rays and give a more precise categorization diagnosis.

• Some deep learning models to identify COVID-19 suffer from overfitting and require
a large network size. Furthermore, recent related efforts require many training param-
eters and complicated computer resources. As a result, they are difficult to deploy in
practical applications, particularly in the healthcare field.

Table 1. Comparison of recent related studies.

Ref. Authors Year Number of Datasets
Used

Type of Model
Inputs Number of Model Output Classes

[13] Ohata et al. 2020 Two CXR images Two (COVID-19, normal)

[14] Tabik et al. 2020 One CXR images Two (positive, negative)

[16] Wang et al. 2020 One (compiled from
five repositories) CXR images classes (normal, phenomena, COVID-19)

[17] Hemdan et al. 2020 One CXR images Two (positive, negative)

[19] Arias-Londoño
et al. 2020 One CXR images Three (pneumonia, control, COVID-19)
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Table 1. Cont.

Ref. Authors Year Number of Datasets
Used

Type of Model
Inputs Number of Model Output Classes

[20] Wang et al. 2020 One CT images Three (non-pneumonia, ILD, COVID-19)

[21] Nikolaou et al. 2021 One CXR images Two (COVID-19, normal),
Three (COVID-19, normal, viral pneumonia)

[22] Ismael et al. 2021 One CXR images Two (COVID-19, normal)

[23] Narin et al. 2021 Three CXR images Four (COVID-19, normal, viral pneumonia,
bacterial pneumonia)

[26] Abbas et al. 2021 Two CXR images Three (COVID-19, normal, SARS)

[29] Jain et al. 2021 One CXR images Three (COVID-19, normal, pneumonia)

[31] Zouch et al. 2022 Two CT and CXR images Two (COVID-19, normal)

[33] Kong et al. 2022 Two CXR images Two (normal, pneumonia)
Three (normal, pneumonia, COVID-19)

[34] Li et al. 2022 Two CXR images

Two (positive, negative),
Three (COVID-19, normal, viral pneumonia),
Four (COVID-19, normal, lung opacity, viral
pneumonia)

3. The Proposed Deep Learning Model

This section details the dataset used for training and testing, as well as the deep
learning model proposed.

3.1. Dataset

The COVID-19 Radiography dataset was used to train and assess the proposed tech-
nique. It was proposed by Rahman et al. and is freely available on Kaggle [37]. This dataset
was revised three times, and for this study, we obtained the most recent version of the
dataset. It contains 1345 images of viral pneumonia, 3616 chest X-ray images of COVID-19
infection, 10,192 chest X-ray images of normal cases, and 6012 scans of lung opacity, as
shown in Figure 2. The dataset comprises several sub-datasets, falling into four distinct
categories, i.e., COVID-19, lung opacity, normal, and viral pneumonia. Each class was
selected from a different sub-dataset, and the dataset was generated by integrating several
datasets. A total of 3616 images for the COVID-19 category were chosen from four different
databases. With 2473 CXR images, the BIMCV-COVID19+ dataset [38] from the Valencian
Region Medical Image Bank (BIMCV) significantly contributes to the existing set. It is one
of the most comprehensive, publicly available independent databases. Other datasets that
have COVID-19 data collections include the German Medical School dataset [39] (with
183 chest X-ray scans), SIRM, Kaggle, GitHub, and Twitter [40–43], which have 560 chest
X-ray images. In addition, another dataset with 400 combined chest X-ray scans is accessible
on GitHub [44]. Table 2 displays a description of the COVID-19 radiography DS in terms of
classes, number of CXR scans, and sources. Figure 3 displays a sample from each category
of the COVID-19 radiography classes.



Diagnostics 2023, 13, 1675 7 of 17

Figure 2. Classes and structure of the dataset.

Table 2. Description of COVID-19 Radiography dataset.

COVID-19 Radiography dataset [37]

Classes Number of
CXR scans Sources

COVID-19 3616

- BIMCV-COVID19+ dataset [38] (2473 CXR images).

- German medical school [39] (183 CXR images).

- SIRM, Github, Kaggle, Twitter [40–43] (560 CXR images).

- Github source [44] (400 CXR images).

Lung Opacity 6012 - Radiological Society of North America (RSNA) CXR
dataset [45] (6012 CXR images).

Normal 10,192
- RSNA [45] (8851 CXR images).

- Kaggle CXR Images (pneumonia) database [24] (1341
CXR images).

Viral
Pneumonia 1345 - The CXR Images (pneumonia) database [24] (1345 CXR

images).

Total number of CXR scans 21,165

Figure 3. Examples of samples of dataset.
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3.2. The Structure of the COVID-ConvNet Model

The proposed COVID-ConvNet has the ability to predict the health condition of a
patient’s lung based on the processed dataset (Figure 4). In this article, we propose the
performance of three experimental classifications with four classes (i.e., COVID-19, lung
opacity, normal, and viral pneumonia), three classes (i.e., COVID-19, normal, and viral
pneumonia), and two classes (i.e., COVID-19 and normal). As illustrated in Figure 5,
convolution layers with maximum pooling layers, flattened layers, and thick layers make
up the COVID-ConvNet model.

Chest X-Ray
(256× 256 pixels) 

COVID-ConvNet
Model
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Figure 4. The proposed COVID-ConvNet model.

MaxPooling2D

Flatten

Input: Images (100,100,3)

Conv2D

Dense

Dense

MaxPooling2D

Conv2D

MaxPooling2D

Conv2D

Image Resize

Selection Unit

Chest X-ray image

Predicted class

Figure 5. The structure of the proposed COVID-ConvNet model.

• Image resizing: The chest X-ray scans in the dataset had a size of 256 by 256 pixels. An
image resizing process was performed to reduce the image size to 100 by 100 pixels.

• Convolution layers: All convolution layers were employed with a kernel size of (3, 3).
In our study, the input shape of the CXR image was (100, 100, 3), where 100 denotes
the width and height, while 3 indicates the input image’s three color channels (RGB).
Rectified linear unit (ReLU), a piecewise linear function that returns a zero if the
input is negative and returns the unchanged input value otherwise, served as the
activation function of the convolution layers. ReLU is frequently employed as an
activation function in convolution layers as it overcomes the vanishing gradient
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challenge, enabling the model to recognize characteristics more quickly and attain a
high prediction performance. The filter size is 32 in the first convolution layer and
gradually increases in the subsequent layers.

• Max pooling layers: These layers were employed to compress features to minimize
calculation time [46]. We selected (2, 2) as the kernel size and stride in all of the
convolutional network’s max pooling layers.

• Flatten layer: This layer generates a one-dimensional array vector from all pixels along
the whole channels.

• Dense layers: The dense layer is a densely linked layer, entailing that every neuron of
the dense layer acquires data from all neurons in the preceding layer. The activation
function and units, which define the layer’s output size and element-wise activation in
the dense layer, respectively, were the parameters employed by the dense layer. There
were two dense layers at the end of our COVID-ConvNet model. The first one had a
ReLU activation function, whereas the second one had a softmax activation function.
The softmax activation function was utilized to forecast a multinomial probability
distribution at the output layer.

• Selection unit: This unit was used to determine the index of the predicted class.

Hyperparameters are the settings or configurations of a machine learning model that
are set prior to the training process. These settings can have a significant impact on the
performance of the model, and the choice of hyperparameters can be critical for achieving
good results. In our proposed COVID-ConvNet model, the following hyperparameters
were utilized:

• Number of filters: The first convolutional layer employed a filter size of 32 to extract
basic features from the input image. The subsequent convolutional layers had a
filter size of 64 to capture more complex features and patterns from the output of
the previous layer. This gradual increase in filter size allowed the network to learn
increasingly complex representations of the input image, leading to better performance
in classification tasks.

• Kernel size: The selected kernel size was (3, 3) for all the convolutional layers. This is
a common choice for image classification tasks, as it allows the network to capture a
range of features of different sizes. Additionally, using the same kernel size throughout
the network ensures that the learned features are consistent across all layers, which
can improve the network’s ability to generalize to new images.

• Stride: The stride in the given code was (2, 2) for all the max pooling layers. The stride
determines the step size used when sliding the filter over the input image. A stride
of (2, 2) means that the filter moves two pixels at a time in both the horizontal and
vertical directions. Using a stride of (2, 2) can help to reduce the size of the output
feature maps, which can help to reduce the computational cost of the network and
prevent overfitting.

• Learning rate: The default learning rate was used, which was 1/1000 or 0.001. The
learning rate is a hyperparameter that determines the step size used during the
gradient descent to update the weights of the neural network. It is used because it is a
reasonable starting point for many image classification tasks.

• Batch size: A batch size of 32 was used to determine the number of samples that are
processed in each iteration of the training process. A batch size of 32 is a common
choice for image classification tasks.

4. Experimental Analysis and Results

In this section, we present the experimental measures and results to demonstrate
our COVID-ConvNet model’s ability to recognize COVID-19 instances from chest
X-ray pictures.
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4.1. Performance Metrics

A confusion matrix, sometimes referred to as a contingency table [47], was developed
to evaluate the performance of a trained COVID-ConvNet model. A confusion matrix is
indeed an effective tool for determining the ratios of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN) [48]. TP stands for “the number of samples
projected and found to be positive”, while TN corresponds to “the number of samples
predicted and found to be negative”. FP classification happens when a machine learning
model classifies a sample as positive, but the target class appears to be negative. When
a sample is initially classified as negative but later proven positive, the classification is
FN [49]. Accuracy is defined as the ratio of the number of correctly categorized samples to
the total number of testing samples [50,51], as described in Equation (1). The ratio of true
positives to all positives is defined as precision (Equation (2)) [52,53]. Finally, the ratio of
true positives to the total number of true positives and false negatives is defined as recall
(Equation (3)). As indicated in Equation (4), the F-score is a combination of precision and
recall [54,55].

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F-score =
2TP

2TP + FP + FN
(4)

4.2. Performance Results

Data samples were separated into two sub-sets: a training set to develop the proposed
CNN model, and a testing set to assess models.The proportion of data allocated to the
testing set was 20%, and the remaining 80% of the data were allocated to the training set.
More specifically, the training and testing sets were composed of 16,932 and 4233 samples,
respectively. To split the dataset into training and testing sets, a random shuffle method
was used. This method is important to ensure that the data are not biased or ordered in
a specific way that may affect the performance of the deep learning model. By randomly
shuffling the data, we can reduce the risk of overfitting and ensure that the model is trained
on a representative sample of the data. We present in this section the results for four,
three, and two classes of classification for chest X-ray scans. To train and test the proposed
COVID-ConvNet, the Google Colab platform was used, providing an NVidia Tesla K80
GPU with a single-core 2.3 GHz Xeon Processor, 320 GB of disk space, and 16 GB of RAM.

4.2.1. Experiment 1: Four-Class Classification

In this section, we describe the results obtained for the four-class classification, i.e.,
COVID-19, lung opacity, normal, and viral pneumonia. Figure 6 illustrates the confusion
matrix of the trained CNN model. After training for 50 epochs, our model reached an
accuracy of 97.71%, 92.27%, 92.3%, and 99.57% on the testing subset for the COVID-19, lung
opacity, normal, and viral pneumonia classes, respectively. Table 3 displays the evaluation
values of the trained CNN with regard to accuracy, precision, recall, and F-score. As
the table indicates, the evaluation metrics have been computed for each class separately
according to Equations (1)–(4).
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Table 3. Evaluation values of the trained CNN model (four-class classification).

Class Accuracy (%) Precision (%) Recall (%) F-Score (%)

COVID-19 97.71 90 96 93

Lung opacity 92.27 85 88 87

Normal 92.3 94 90 92

Viral pneumonia 99.57 95 98 97

Viral

Pneumonia
NormalLung_OpacityCOVID-19

23534621COVID-19

1167107316Lung_Opacity

219001068Normal

255832
Viral

Pneumonia

Target Class

O
u
t
p
u
t
 
C
l
a
s
s

Figure 6. Confusion matrix (four-class classification).

4.2.2. Experiment 2: Three-Class Classification

In this section, we present the results of the three-class classification, i.e., COVID-19,
normal, and viral pneumonia lungs. The confusion matrix of the trained CNN model is
illustrated in Figure 7. Table 4 depicts the performance evaluation values for this experiment.
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Figure 7. Confusion matrix (three-class classification).
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Table 4. Evaluation values of the trained CNN model (three-class classification).

Class Accuracy (%) Precision (%) Recall (%) F-Score (%)

COVID-19 95.68 91 91 91

Normal 94.92 97 96 96

Viral pneumonia 98.52 88 96 91

Our COVID-ConvNet’s performance was further compared with Nikolaou et al.’s
CNN models [21] in terms of the overall accuracy of the prediction. Figure 8 compares
the COVID-19, normal, and viral pneumonia classification results. The results show that
our proposed deep learning model achieved a higher accuracy than Nikolaou et al.’s CNN
model with feature extraction by 3.66%, as well as higher results than their CNN model
with fine-tuning by 1.88%.
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Figure 8. Comparison results of three-class classification.

4.2.3. Experiment 3: Two-Class Classification

In this section, we present the results of the two-class classification problem (that is
to say, COVID-19 vs. normal lungs). Figure 9 illustrates the confusion matrix of our CNN
model, while Table 5 deals with the evaluation values.

Table 5. Evaluation values of the trained CNN model (two-class classification).

Class Accuracy (%) Precision (%) Recall (%) F-Score (%)

COVID-19 97.43 95 95 95

Normal 97.43 98 98 98
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Figure 9. Confusion matrix (Two-class classification).

Figure 10 represents a comparison of our results with Nikolaou et al.’s CNN models
for the two classes of COVID-19 and normal. The results obtained show that our model
outperformed Nikolaou et al.’s model with feature extraction by 5.9%, as well as their
model with fine-tuning by 2.5%.

91.53 91.53
94.93 94.9397.43 97.43

Covid-19 Normal

Chest X-Ray Classes

0

20

40

60

80

100

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

Nikolaou et al.'s CNN (With Feature Extraction)
Nikolaou et al.'s CNN (With Fine-Tuning)
Proposed COVID-ConvNet

Figure 10. Comparison of two-class classification results.

4.3. Considerations and Limitations of the COVID-ConvNet Model

While the use of the COVID-ConvNet model for COVID-19 screening and diagnosis
has the potential to improve the accuracy and speed of diagnoses, there are several practical
considerations and limitations that need to be considered. One practical consideration is
the cost and availability of the necessary technology and expertise required to implement
such a DL model in clinical settings. The use of the COVID-ConvNet model for COVID-19
screening would require access to high-performance computing resources and specialized
expertise in deep learning and medical imaging. Another limitation of using CXR scans for
COVID-19 detection is their lower sensitivity and specificity compared to other imaging
modalities, such as CT scans. CXR scans are often used as a first-line screening tool for
COVID-19 due to their lower cost and wider availability, but they may not always detect
early or mild cases of the disease.
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5. Conclusions and Future Work

As the COVID-19 pandemic continues to impact the world, the use of chest X-rays for
diagnosis has become increasingly important. Convolutional neural networks have shown
promising results in detecting COVID-19 from chest X-rays. In this article, we proposed
an automatic detection model for COVID-19 infection based on chest X-ray scans called
COVID-ConvNet. The Kaggle COVID-19 radiography dataset was selected to test and train
the proposed COVID-ConvNet model because it offers a large and diverse collection of chest
X-ray images (21,165 CXR scans) sourced from various repositories. Three experimental
classifications were performed using the Google Colab platform, with four, three, and two
classes. Experimental results showed that our deep learning model is superior to recent
related works, reaching an accuracy of 97.43%. Furthermore, it outperforms Nikolaou
et al.’s model with feature extraction and with fine-tuning in terms of prediction accuracy
by up to 5.9%. It encourages multidisciplinary researchers to develop powerful artificial
intelligence frameworks to combat the COVID-19 worldwide pandemic. The use of our
proposed COVID-ConvNet model in COVID-19 patient screening has several potential
implications. It can be applied in clinical practice for computer-aided diagnosis (CAD)
systems to assist radiologists in interpreting medical images. These systems can help to
improve the accuracy and speed of diagnoses, particularly in cases where the radiologist
may be inexperienced, where the diagnosis is difficult, or in areas with limited access to
PCR testing. Additionally, it can aid in the triage of patients, identifying those who require
immediate medical attention, and it can assist in the monitoring of disease progression
and response to treatment. In addition, combining CXR scans with other diagnostic tools
such as laboratory tests, clinical examinations, and medical history can help to improve the
accuracy of diagnoses and guide treatment decisions.

For future work, we aim to assess the performance of the COVID-ConvNet model
using larger and more diversified datasets with more COVID-19 examples. In addition,
feature engineering can be applied to enhance the performance of the deep learning model.
Another direction for future research could be exploring the use of transfer learning to
improve the performance of CNN models. Furthermore, we aim to investigate advanced
techniques that can further address the issue of data imbalance and enhance the perfor-
mance of our model. Specifically, we will explore methods such as data augmentation, class
weighting, and resampling to balance the dataset and mitigate the impact of class imbalance.
Another area for exploration could be the development of explainable AI techniques to
provide insights into the decision-making process of CNN models. Finally, it would be
valuable to investigate the generalizability of CNN models across different populations and
imaging equipment. Overall, continued research in this area will be crucial in improving
the accuracy and reliability of CNN-based COVID-19 detection from chest X-rays.
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Abbreviations
The following table gives a list of abbreviations used in our work:

AD-COVID19 Automatic detection of COVID-19
CAD Computer-aided diagnosis
COVID-19 Coronavirus disease 2019
CNN Convolutional neural network
COVID-ConvNet COVID-19 convolutional network
COVID-SDNet COVID-19-smart-data-based network
CT Computed tomography
CXR Chest X-ray
DeTraC Decompose, transfer, and compose
DNN Deep neural network
FN False negative
FP False positive
ILD Interstitial lung disease
JSRT The Japanese Society of Radiological Technology
MLP Multi-layer perceptron
PCR Polymerase chain reaction
PARL Prior-attention residual learning
ReLU Rectified linear unit
ResNet Residual network
RGB Red, green, and blue
RSNA Radiological Society of North America
SARS Severe acute respiratory syndrome
SVM Support vector machine
TN True negative
TP True positive
VGG Visual geometry group
WHO The World Health Organization
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22. Ismael, A.M.; Şengür, A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst. Appl. 2021,
164, 114054. [CrossRef]

23. Narin, A.; Kaya, C.; Pamuk, Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional
neural networks. Pattern Anal. Appl. 2021, 24, 1207–1220. [CrossRef] [PubMed]

24. Mooney, P. Chest X-ray Images (Pneumonia). Available online: https://www.kaggle.com/datasets/paultimothymooney/chest-
xray-pneumonia (accessed on 26 January 2023).

25. Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chestx-ray8: Hospital-scale chest X-ray database and benchmarks
on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106.

26. Abbas, A.; Abdelsamea, M.M.; Gaber, M.M. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional
neural network. Appl. Intell. 2021, 51, 854–864. [CrossRef] [PubMed]

27. Candemir, S.; Jaeger, S.; Palaniappan, K.; Musco, J.P.; Singh, R.K.; Xue, Z.; Karargyris, A.; Antani, S.; Thoma, G.; McDonald, C.J.
Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med. Imaging 2013,
33, 577–590. [CrossRef]

28. Cohen, J.P.; Morrison, P.; Dao, L. COVID-19 image data collection. arXiv 2020, arXiv:2003.11597.
29. Jain, R.; Gupta, M.; Taneja, S.; Hemanth, D.J. Deep learning based detection and analysis of COVID-19 on chest X-ray images.

Appl. Intell. 2021, 51, 1690–1700. [CrossRef]
30. Patel, P. Chest X-ray (COVID-19 & Pneumonia). Available online: https://www.kaggle.com/datasets/prashant268/chest-xray-c

ovid19-pneumonia (accessed on 26 January 2023).
31. Zouch, W.; Sagga, D.; Echtioui, A.; Khemakhem, R.; Ghorbel, M.; Mhiri, C.; Hamida, A.B. Detection of COVID-19 from CT and

chest X-ray images using deep learning models. Ann. Biomed. Eng. 2022, 50, 825–835. [CrossRef] [PubMed]
32. Jkooy. COVID-CT. Available online: https://github.com/UCSD-AI4H/COVID-CT/tree/master/Images-processed (accessed

on 1 February 2023 ).
33. Kong, L.; Cheng, J. Classification and detection of COVID-19 X-ray images based on DenseNet and VGG16 feature fusion. Biomed.

Signal Process. Control 2022, 77, 103772. [CrossRef]
34. Li, H.; Zeng, N.; Wu, P.; Clawson, K. Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray

images via machine vision. Expert Syst. Appl. 2022, 207, 118029. [CrossRef]
35. Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.;

Al Emadi, N.; et al. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676. [CrossRef]
36. Rahman, T.; Khandakar, A.; Qiblawey, Y.; Tahir, A.; Kiranyaz, S.; Kashem, S.B.A.; Islam, M.T.; Al Maadeed, S.; Zughaier, S.M.;

Khan, M.S.; et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.
Comput. Biol. Med. 2021, 132, 104319. [CrossRef] [PubMed]

37. Kaggle COVID-19 Radiography Database. Available online: https://www.kaggle.com/datasets/tawsifurrahman/covid19-radio
graphy-database (accessed on 1 January 2023).

38. BIMCV-COVID19, Datasets Related to COVID19’s Pathology Course. 2020. Available online: https://bimcv.cipf.es/bimcv-projec
ts/bimcv-covid19/#1590858128006-9e640421-6711 (accessed on 1 January 2023).

http://dx.doi.org/10.1109/ACCESS.2020.3016780
http://www.ncbi.nlm.nih.gov/pubmed/34931154
http://dx.doi.org/10.1109/JAS.2020.1003393
http://dx.doi.org/10.1109/JBHI.2020.3037127
http://dx.doi.org/10.1016/j.asoc.2022.109109
http://dx.doi.org/10.1038/s41598-020-76550-z
https://github.com/ieee8023/covid-chestxray-dataset
http://dx.doi.org/10.1109/ACCESS.2020.3044858
http://dx.doi.org/10.1109/TMI.2020.2994908
http://dx.doi.org/10.1007/s13755-021-00166-4
http://dx.doi.org/10.1016/j.eswa.2020.114054
http://dx.doi.org/10.1007/s10044-021-00984-y
http://www.ncbi.nlm.nih.gov/pubmed/33994847
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
http://dx.doi.org/10.1007/s10489-020-01829-7
http://www.ncbi.nlm.nih.gov/pubmed/34764548
http://dx.doi.org/10.1109/TMI.2013.2290491
http://dx.doi.org/10.1007/s10489-020-01902-1
https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia
http://dx.doi.org/10.1007/s10439-022-02958-5
http://www.ncbi.nlm.nih.gov/pubmed/35415768
https://github.com/UCSD-AI4H/COVID-CT/tree/master/Images-processed
http://dx.doi.org/10.1016/j.bspc.2022.103772
http://dx.doi.org/10.1016/j.eswa.2022.118029
http://dx.doi.org/10.1109/ACCESS.2020.3010287
http://dx.doi.org/10.1016/j.compbiomed.2021.104319
http://www.ncbi.nlm.nih.gov/pubmed/33799220
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/#1590858128006-9e640421-6711
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/#1590858128006-9e640421-6711


Diagnostics 2023, 13, 1675 17 of 17

39. COVID-19-Image-Repository. 2020. Available online: https://github.com/ml-workgroup/covid-19-image-repository/tree/mas
ter/png (accessed on 1 January 2023).

40. Chen, R.; Liang, W.; Jiang, M.; Guan, W.; Zhan, C.; Wang, T.; Tang, C.; Sang, L.; Liu, J.; Ni, Z.; et al. Risk factors of fatal outcome in
hospitalized subjects with coronavirus disease 2019 from a nationwide analysis in China. Chest 2020, 158, 97–105. [CrossRef]
[PubMed]

41. Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.; Tan, J.; Xu, Y.; Song, R.; et al. Neutrophil-to-lymphocyte ratio predicts
severe illness patients with 2019 novel coronavirus in the early stage. MedRxiv 2020. [CrossRef]

42. Weng, Z.; Chen, Q.; Li, S.; Li, H.; Zhang, Q.; Lu, S.; Wu, L.; Xiong, L.; Mi, B.; Liu, D.; et al. ANDC: An early warning score to
predict mortality risk for patients with Coronavirus Disease 2019. J. Transl. Med. 2020, 18, 1–10. [CrossRef] [PubMed]

43. Huang, I.; Pranata, R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis.
J. Intensive Care 2020, 8, 1–10. [CrossRef]

44. Armiro. COVID-CXNet. Available online: https://github.com/armiro/COVID-CXNet (accessed on 1 February 2023).
45. RSNA Pneumonia Detection Challenge. Available online: https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/da

ta (accessed on 22 April 2023).
46. Lin, C.J.; Yang, T.Y. A Fusion-Based Convolutional Fuzzy Neural Network for Lung Cancer Classification. Int. J. Fuzzy Syst. 2022,

25, 451–467. [CrossRef]
47. Chicco, D.; Starovoitov, V.; Jurman, G. The Benefits of the Matthews Correlation Coefficient (MCC) Over the Diagnostic Odds

Ratio (DOR) in Binary Classification Assessment. IEEE Access 2021, 9, 47112–47124. [CrossRef]
48. Bhatnagar, A.; Srivastava, S. A Robust Model for Churn Prediction using Supervised Machine Learning. In Proceedings of the

2019 IEEE 9th International Conference on Advanced Computing (IACC), Tiruchirappalli, India, 13–14 December 2019; pp. 45–49.
[CrossRef]

49. Hsu, C.Y.; Wang, S.; Qiao, Y. Intrusion detection by machine learning for multimedia platform. Multimed. Tools Appl. 2021,
80, 29643–29656. [CrossRef]

50. Rodrigues, J.d.C.; Rebouças Filho, P.P.; Peixoto, E., Jr.; Kumar, A.; de Albuquerque, V.H.C. Classification of EEG signals to detect
alcoholism using machine learning techniques. Pattern Recognit. Lett. 2019, 125, 140–149. [CrossRef]

51. Alablani, I.A.; Arafah, M.A. An SDN/ML-Based Adaptive Cell Selection Approach for HetNets: A Real-World Case Study in
London, UK. IEEE Access 2021, 9, 166932–166950. [CrossRef]

52. Porto, A.; Voje, K.L. ML-morph: A fast, accurate and general approach for automated detection and landmarking of biological
structures in images. Methods Ecol. Evol. 2020, 11, 500–512. [CrossRef]

53. Alablani, I.A.; Arafah, M.A. A2T-Boost: An Adaptive Cell Selection Approach for 5G/SDN-Based Vehicular Networks. IEEE
Access 2023, 11, 7085–7108. [CrossRef]

54. Lee, J.; Lee, U.; Kim, H. PASS: Reducing Redundant Notifications between a Smartphone and a Smartwatch for Energy Saving.
IEEE Trans. Mob. Comput. 2020, 19, 2656–2669. [CrossRef]

55. Alablani, I.A.; Arafah, M.A. Enhancing 5G small cell selection: A neural network and IoV-based approach. Sensors 2021, 21, 6361.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/ml-workgroup/covid-19-image-repository/tree/master/png
https://github.com/ml-workgroup/covid-19-image-repository/tree/master/png
http://dx.doi.org/10.1016/j.chest.2020.04.010
http://www.ncbi.nlm.nih.gov/pubmed/32304772
http://dx.doi.org/10.1101/2020.02.10.20021584
http://dx.doi.org/10.1186/s12967-020-02505-7
http://www.ncbi.nlm.nih.gov/pubmed/32867787
http://dx.doi.org/10.1186/s40560-020-00453-4
https://github.com/armiro/COVID-CXNet
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
http://dx.doi.org/10.1007/s40815-022-01399-5
http://dx.doi.org/10.1109/ACCESS.2021.3068614
http://dx.doi.org/10.1109/IACC48062.2019.8971494
http://dx.doi.org/10.1007/s11042-021-11100-x
http://dx.doi.org/10.1016/j.patrec.2019.04.019
http://dx.doi.org/10.1109/ACCESS.2021.3136129
http://dx.doi.org/10.1111/2041-210X.13373
http://dx.doi.org/10.1109/ACCESS.2023.3237851
http://dx.doi.org/10.1109/TMC.2019.2930506
http://dx.doi.org/10.3390/s21196361
http://www.ncbi.nlm.nih.gov/pubmed/34640683

	Introduction
	Related Works
	The Proposed Deep Learning Model
	Dataset
	The Structure of the COVID-ConvNet Model

	Experimental Analysis and Results
	Performance Metrics
	Performance Results
	Experiment 1: Four-Class Classification
	Experiment 2: Three-Class Classification
	Experiment 3: Two-Class Classification

	Considerations and Limitations of the COVID-ConvNet Model

	Conclusions and Future Work
	References

