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Abstract: Three-dimensional (3D)-image-based anatomical analysis of rotator cuff tear patients has
been proposed as a way to improve repair prognosis analysis to reduce the incidence of postoperative
retear. However, for application in clinics, an efficient and robust method for the segmentation
of anatomy from MRI is required. We present the use of a deep learning network for automatic
segmentation of the humerus, scapula, and rotator cuff muscles with integrated automatic result
verification. Trained on N = 111 and tested on N = 60 diagnostic T1-weighted MRI of 76 rotator cuff
tear patients acquired from 19 centers, a nnU-Net segmented the anatomy with an average Dice
coefficient of 0.91 & 0.06. For the automatic identification of inaccurate segmentations during the
inference procedure, the nnU-Net framework was adapted to allow for the estimation of label-specific
network uncertainty directly from its subnetworks. The average Dice coefficient of segmentation
results from the subnetworks identified labels requiring segmentation correction with an average
sensitivity of 1.0 and a specificity of 0.94. The presented automatic methods facilitate the use of 3D
diagnosis in clinical routine by eliminating the need for time-consuming manual segmentation and
slice-by-slice segmentation verification.

Keywords: shoulder; rotator cuff; deep learning; MRI; automatic segmentation; segmentation
accuracy prediction

1. Introduction

Acute or chronic rotator cuff tendon tears (RCTs) affect almost 10% of the general adult
population [1] and are associated with pain and decreased shoulder function [2]. After
the failure of conservative treatment, surgical rotator cuff repair (RCR), in which the torn
tendon is reattached to the bone via sutures and/or bone anchors, is the preferred treatment
option. Repair is associated with significant short- and long-term improvements in pain,
function, and strength [3,4]. However, not all patients benefit from a repair procedure.
The retearing of the tendon following repair presents a considerable problem, affecting
20-50% of all repairs [3,5]. In cases of structural and clinical failure, an additional more
invasive treatment alternative such as tendon transfer or reverse shoulder arthroplasty may
be indicated.

For the preoperative identification of patients predisposed to RCR failure, several
image-based diagnostic factors parameterizing the bony morphology and tissue quality of
the rotator cuff muscles and tendons have been identified as predictors for repair outcome
success [6-9]. To enable measurement in clinical routine, these factors are assessed on
single slices of RCT diagnostic magnetic resonance images (MRIs) [10] or on supplementary
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radiographs [8,9]. However, two-dimensional (2D) analysis of the anatomy on selected rep-
resentative slices may be misrepresentative of the overall anatomy, and analyses performed
on radiographs may suffer from projection error [11,12]. More holistic three-dimensional
(3D) anatomical analysis, utilizing 3D models from the segmentation of computed tomog-
raphy (CT) or MRI, has been performed in smaller studies [13-15], but the requirement of
time-consuming manual slice-by-slice segmentation of the anatomy in the image data has
prevented any wider application.

To improve the efficiency and accuracy of anatomical analysis of the rotator cuff,
the use of deep-learning-based algorithms for the automatic segmentation of anatomical
structures from 3D image data has been described. Medina et al. and Ro et al. reported
the use of U-net, a deep learning network architecture for semantic segmentation [16], to
automatically segment the rotator cuff muscles on a single 2D slice (Y-view) of T1-weighted
MRI for automatic fat fraction analysis [17,18]. In 3D, Godoy et al. reported the use of
U-net for automatic segmentation of the pectoralis major muscle on T1-weighted MRI to
automatically evaluate its major cross-sectional area [19]. Most recently, Riem et al. utilized
U-net for automatic segmentation and 3D fat fraction analysis of the rotator cuff muscles
from clinical diagnostic sagittal T1-weighted MRI scans [20]. They reported mean and
standard deviation segmentation accuracy of 0.92 & 0.14; however, the method was trained
and tested on data from only two centers, and only segmentation of the sagittal MRI was
performed, inhibiting the analysis of the muscle volume and the fat fraction in the entire
muscle due to the restricted field of view (FOV). The 3D automatic segmentation of MRI
images presents challenges related to high variances in image orientation, resolution, and
signal intensity and contrast due to the use of different coils, magnetic field strengths, and
vendor-specific image processing techniques. The intraarticular injection of contrast agent
for RCT diagnosis [21] further adds to image intensity variance. For the general application
of a segmentation network in the analysis of the rotator cuff in multicenter clinical trials or
clinical diagnosis, a model that can exploit the information from all available MRI views
and which is validated on heterogeneous data acquired from multiple centers is required.

However, the verification of a segmentation network on all possible variances in
anatomy and image quality is infeasible, and thus, even in the case of high accuracy and
robustness, deep learning networks can generate anatomy segmentations with insufficient
accuracy for effective clinical analysis. This uncertainty in network performance results
in the need for expert manual verification of each segmentation result, slice by slice,
during application.

To reduce the burden of manual verification, methods for the automatic estimation of
segmentation accuracy based on the epistemic uncertainty of deep learning segmentation
networks have recently been proposed. Roy et al. correlated structure-wise aggregated
uncertainties with the overlap between the automatic and manual ground-truth segmenta-
tion [22]. The uncertainty estimate was based on comparisons of multiple segmentations
generated by the application of random dropout during network test times. More recently,
Jungo et al. achieved improved results from segmentation uncertainty calculated from
segmentations generated from auxiliary networks trained with different subsets of train-
ing samples [23,24]. However, the advantage of combining these two methods via the
application of dropout on the auxiliary trained networks has not yet been studied, and the
efficiency of these methods applied to the segmentation of musculoskeletal structures in
MRI has yet to be reported.

First introduced by Isensee et al. in 2021, nnU-Net, a fully automated framework
for the semantic segmentation of biomedical images, has been gaining popularity due to
reported high-accuracy segmentation in various tasks [25] without the need for task-specific
tuning. The nnU-Net framework maximizes segmentation accuracy during test time via
the ensemble of results of multiple, differently trained networks. We hypothesize that the
variance in the predictions of the nnU-Net subnetworks can be used for the automatic
detection of inaccurate segmentations directly, eliminating the need for additional auxiliary
networks for automatic accuracy verification.
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To enable widespread accurate and efficient 3D measurements of RCT diagnostic
factors, we propose a fully automatic algorithm for 3D segmentation of the shoulder
joint from diagnostic MRI with integrated automatic segmentation error checking. We
present the use of nnU-Net for shoulder anatomy segmentation from diagnostic MRI
from all planes (axial, sagittal, and transversal), verified on heterogeneous data acquired
in multiple centers. For efficient accuracy verification, we present a study of automatic
uncertainty-based label-specific error checking, utilizing multiple segmentations generated
from both the nnU-Net subnetworks and dropout during inference, integrated directly into
the nnU-net framework.

2. Materials and Methods

Networks for the automatic segmentation of rotator cuff anatomy and for automatic
segmentation error detection were trained on routine RCT diagnostic MRI and verified on
unseen data acquired from multiple centers. This study was conducted in accordance with
the Declaration of Helsinki and approved by the Institutional Review Board of the ethical
commission of Bern (no.: 2021-00326).

2.1. Anatomy Segmentation
2.1.1. Data

Retrospective MR arthrography data (N = 171) from patients with posterosuperior
rotator cuff tears seen between 2017 and 2021 at the Orthopedic outpatient clinic of Son-
nenhof, Bern, Switzerland, were collected and coded. Despite all patients being seen at
the same clinic, the MRI data were acquired from 9 different institutions during routine
diagnosis, resulting in a significant degree of variability in slice thicknesses and in-plane
resolution (Table 1). The data were randomly divided into training and test datasets.
The training dataset consisted of N = 111, T1-weighted MRI of 37 shoulders, obtained
from 7 institutions, and acquired in coronal (N = 37), sagittal (N = 37), and transversal
(N = 37) orientations (Table 1). The test dataset consisted of N = 60, T1-weighted MRI
of 39 shoulders, obtained from 9 institutions, and acquired in coronal (N = 20), sagittal
(N =20), and transversal (N = 20) orientations (Table 1 and Figure 1).

Table 1. Demographic and MRI data characteristics of the training and test datasets.

Magnetic field strength no. (%)

Characteristic Training Dataset Test Dataset
Image datasets, no. 111 T1-MRI 60 T1-MRI
Shoulders (Patients), no. 37 (37) 39 (38)
Age (years; mean = std) 57 £13 57 £10
Female sex, no. (%) 16 (43) 13 (33)
Left side, no. (%) 15 (41) 14 (36)
37 coronal 20 coronal
Anatomical orientation, no. 37 sagittal 20 sagittal
37 transversal 20 transversal
Institutions, no. 7 9
o 35 (95) Siemens 32 (82) Siemens
Vendor no. (%) 2 (5) Philipps 7 (18) Philipps
21 (57) 1.5 Tesla 14 (36) 1.5 Tesla

16 (43) 3.0 Tesla 25 (64) 3.0 Tesla
In-plane resolution (mm) 0.2-0.5 0.2-0.5
Slice thickness (mm) 2.5-4.0 2.5-4.0
Spacing between slices (mm) 3.3-4.6 2.75-4.8

Manual semantic segmentation of the rotator cuff anatomy, including the humerus,
scapula, and rotator cuff muscles—supraspinatus (SSP), infraspinatus (ISP), subscapularis
(85C), and teres minor (TM)—was performed by an expert in the complete FOV of the
MRI data.
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Figure 1. For the calibration of the error detection algorithm (a), different inference settings were
applied on the calibration network during test time. The original nnU-Net (highlighted in red) was
augmented (highlighted in blue) to generate inference segmentations (P1.n) from each subnetwork
during test time. Predictions with and without test time augmentation (TTA) were tested. The best
accuracy prediction metric was evaluated by analyzing the correlation between the metric values and
the Dice coefficient between ground-truth (GT) and ensemble inference results (Pengemple)- Inference
segmentations requiring extensive manual correction (Dice falls below the correction threshold) were
categorized as failed. The optimal label-specific thresholds of the accuracy prediction metric for
automatic goodness classification were calibrated. During application of the error detection algorithm
(b), the best accuracy prediction metric and label-specific thresholds are applied to the segmentation
network during test time. For evaluation of the algorithm, the sensitivity and specificity of the
automatically generated error detection were calculated (c).

2.1.2. Segmentation Network Training

A nnU-Net was trained for automatic segmentation of the shoulder anatomy. The
automatic internal procedures provided by nnU-Net, such as data fingerprinting for a data-
specific network setup, pre-processing techniques, and automatic 5-fold cross validation
procedure, were applied. The 2D and 3D networks were trained for 150 epochs on all MRI
orientations together. During the training process, the label-wise accuracy of the automatic
segmentation of the 2D and 3D networks as well as the ensemble result of these networks
were calculated as the mean Dice coefficient relative to the manual ground truth.

2.1.3. Segmentation Network Verification

The segmentation accuracy of the best performing network was verified on the unseen
test data. Test time augmentation (TTA) and ensemble of the results from the different
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networks trained during 5-fold cross validation training procedure were applied to maxi-
mize the network performance. The Dice coefficient between automatic segmentation and
manual ground truth was calculated for each label.

2.2. Inference Accuracy Prediction

For automatic prediction of the segmentation accuracy, network uncertainty was
estimated as the agreement of auxiliary segmentations. The performance of various un-
certainty metrics in predicting segmentation accuracy from a varying number of auxiliary
segmentations was investigated and used to calibrate thresholds of the uncertainty metrics.
The sensitivity and specificity of the best performing method in detecting segmentations
with insufficient accuracy, generated by the previously described segmentation network,
were then determined.

2.2.1. Auxiliary Predictions for Uncertainty Calculation

Auxiliary segmentations were generated from the nnU-Net subnetworks and from
the application of dropout during the inference process. The nnU-Net framework was
augmented to generate the segmentation prediction (P;) of each of the N = 5 subnetworks
trained during the 5-fold cross validation process by applying the argmax operator to the
softmax output (Figure 1). In addition, a Bayesian neural network was approximated to
generate stochastic network samples by applying test time dropout (I'TD) [26] to each of
the five subnetworks. The nnU-Net framework was modified to allow activation of dropout
layers during the inference process, thereby allowing for the generation of a greater number
(N =10, 15, 20) of auxiliary inference segmentations (P,). TTD probabilities (p = 0.05, 0.15,
0.25) were applied: (a) to the whole network and (b) only to the encoder path, including
the network’s bottleneck.

2.2.2. Accuracy Prediction Metrics

To estimate the label-specific prediction accuracy of each label (I) of a given prediction
(P), the disagreement of the auxiliary subnetwork predictions (P,) was measured using
seven different metrics: (1) intersection over union of the auxiliary predictions (Iol);
(2) intersection over the final inference prediction (IoP;); (3) the IoU; and (4) the IoP; repre-
sented as Dice coefficients; (5) the average (DCA;) and (6) the median (DCM,;) of the Dice
coefficients calculated between each of the auxiliary predictions and the final prediction; and
(7) the coefficient of variation in the label volume (CV;) between all auxiliary predictions

Tol, = : ~ - 1)

o < A=00B= 00 (1 =0) "
DCuy = T ot ©

DCA; = Mean(Dice(P; =1,P =1)) )
DCM,; = Median(Dice(P; =1,P =1)) (6)

CV; = %, with mean (y; ) and standard deviation (07 ) of the label volumes.  (7)
/
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2.2.3. Inference Accuracy Prediction Performance

To evaluate the performance of the inference accuracy prediction using the described
metrics and to calibrate thresholds for the detection of inaccurate segmentations, an addi-
tional, less robust calibration network was trained to intentionally increase the variation
in segmentation accuracies (Figure 1a). The 3D nnU-Net was trained for 150 epochs on
a randomly chosen subset of N = 60 MRIs (20 shoulders) from the training set (coronal,
N = 20; sagittal, N = 20; transversal, N = 20 (Figure 2)). The trained network was then
applied without post-processing to the remaining 51 MRIs (17 shoulders; coronal, N = 17;
sagittal, N = 17; transversal, N = 17) to generate inference segmentations. These segmen-
tations were visually inspected and manually corrected, if required, by an expert. The
label-specific extent of manual correction was quantified as the Dice coefficient between the
raw prediction result and corrected segmentation for each label. The extent of correction
was used as the measure for inference segmentation accuracy (rather than a comparison to
the independent manual ground-truth segmentation) as it better represents the results of
the manual correction process that occurs during practical application of segmentation net-
works. The performance of each accuracy prediction metric was evaluated as the coefficient
of determination (R?) between the metric value and the extent of required segmentation for
each label (I) for each of the combinations of auxiliary subnetwork predictions. The five
best performing metrics and the corresponding auxiliary subnetwork prediction methods
were identified.

Training of Testing performance of
Shoulder segmentation network segmentation network
segmentation el - Y A )
performance ietwork Traingeg, T1-MRI (N=111) [Test,e,, T1-MRI (N=60)|
Calibrating of the goodness classification algorithm:
Training of 1. Identification of best performing metric
calibration network 2. Determination of optimal label-specific thresholds
Inference Calibrati f - T - 2
alibration -
accuracy s— I Traing,p, (N=60) | Testeaip (N=51) |
prediction
. * -fs-|
Segmentation | [ Train,e, T1-MRI(N=111) Testueg TI-MRI(N=60)[¢] * (1SR

L)
Testing performance of
goodness classification

Figure 2. The training and test datasets were used to train and test the segmentation network. A
subset of the training dataset was used to train the calibration network, while the remaining data
were used to find the best performing inference accuracy prediction metric and the optimal threshold
for goodness classification. The test dataset plus three additional T1-fs-MRIs were used to test the
goodness classification when applied to the output of the segmentation network.

2.2.4. Segmentation Goodness Classification

In this study, the segmentation goodness classification was defined by considering the
extent of necessary manual correction of the final ensemble prediction. Thresholds on the
Dice coefficient between the raw prediction result and corrected segmentation were defined
as 97.5% for bones and 92.5% for muscles. To identify the optimal label-specific thresholds
on the prediction metric values for automatic segmentation goodness classification, the gen-
eral Youden index [27] was calculated with a greater weight on sensitivity (relative loss = 2)
for the top-five performing prediction metrics and the corresponding auxiliary subnetwork
prediction methods. The sensitivities and specificities of the five predictive measures for
categorizing inaccurate and accurate segmentations were calculated.

2.2.5. Performance Testing of Goodness Classification

The performance of the best performing auxiliary subnetwork prediction method
and segmentation goodness categorization thresholds found with the calibration network
were tested on the 3D segmentation network trained with the complete training dataset
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(Figure 1b). To assess the performance of the error detection method on data with large
variance, additional N = 3 fat-suppressed T1-weighted MRI (T1-fs-MRI) along all directions
(coronal, N = 1; sagittal, N = 1; transversal, N = 1) were added to the test dataset, resulting
in a complete performance test dataset of N = 63 image volumes. Inference results were
manually corrected (if required, as determined by an expert clinician) and classified as
insufficiently accurate if the extent of manual correction exceeded the thresholds previously
defined during calibration. The performances of the automatic classification of segmenta-
tion goodness for each label were compared to the classification defined by the extent of
manual correction.

3. Results
3.1. Anatomy Segmentation

The performances of the 2D and 3D ensemble networks during five-fold cross valida-
tion training are given in Table 2. Overall, the ensemble of the 2D and 3D networks did not
improve the performance of the network compared to the 3D network.

Table 2.  Automatic shoulder segmentation accuracy per structure in Dice coefficient
(mean =+ standard deviation) compared to manual segmentation, for the 2D and 3D network and
the ensemble of these networks for the humerus, scapula, supraspinatus (SSP), subscapularis (SSC),
infraspinatus (ISP), teres minor (TM).

Network Humerus Scapula SSP SSC ISP ™ Overall
2D 0.96 £ 0.03 0.91 £ 0.05 0.90 £ 0.06 0.90 £ 0.09 0.89 £ 0.06 0.83 £ 0.09 0.90 £ 0.08
3D 0.97 £ 0.02 0.92 +0.05 0.92 £ 0.06 0.91 + 0.07 0.91 £ 0.05 0.86 + 0.07 0.91 £0.06

Ensemble 0.96 £ 0.02 0.92 £ 0.05 0.91 £0.05 0.91 £ 0.08 0.91 £ 0.05 0.85 £ 0.08 0.91 £ 0.07

On the unseen test dataset, the 3D network achieved mean and standard deviation
segmentation accuracies of humerus, 0.992 &+ 0.01; scapula, 0.978 £ 0.01; SSP, 0.981 £ 0.01;
SSC, 0.974 £ 0.02; ISP, 0.974 + 0.02; and TM, 0.94 £ 0.11. The automatic 3D segmentation
result overlaid on the input MRI of a case with average segmentation accuracy is shown in
Figure 3.

(a) Coronal (b) Sagittal (c) Transversal

supraspinatus e ) v scapula

subscapularis

2D Slice

subscapularis:
teres minor

subscapularis

3D Model

Figure 3. T1-MRI along all planes from the same patient, on which average segmentation accuracy was
achieved. Top row: T1-weighted MRI with overlaid automatic segmentation results. Bottom row: 3D
visualization of the automatic segmentation. (a) coronal plane, (b) sagittal plane, (c) transversal plane.
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3.2. Inference Accuracy Prediction

The coefficient of determination (R?) of each uncertainty metric applied to the aux-
iliary segmentations generated from the subnetworks with different dropout settings, in
predicting the segmentation accuracy of the 3D calibration network, is depicted in Figure 4.
In general, higher dropout probabilities (p) decreased the metric performance, as well as
dropout activated in the whole network compared to activation only in the encoder and
bottleneck. Overall, the best performances were achieved using the individual predictions
(Py) from the five subnetworks without dropout. In general, TTA slightly increased the per-
formance, especially for networks where dropout was applied, with, however, an inference
deceleration of a factor of eight. The DCM with TTA achieved the highest R? value of 0.61,
followed by the DCA with and without TTA, with R? values of 0.60. The DCA with the
lowest dropout probability of 0.05, N = 10 and 15 predictions, with TTD in the encoder and
bottleneck and with TTA achieved the next best results with an R? value of 0.57.

DCA DCM DCiop  DCioy IoP IoU cv
0.6 ++ Te
+ ++
- -+
s s [ ) + i
B i x it
0.5 " * x “
% % g
| | ] |}
sad CIHRRE X | H Dropout
[ 1) ®s=o & - a
0.4 z . el 5 + e 10
R AF 5 N® 15
® 2 = g x
¢ x <
g e | 20
=03 & x : . +
[ | ]
. L, $ .. 0.05
* a 2 x p M 0.15
0.2 : . . * Bl 025
B " x .
3 x % e X
o T . i dropout
0.1 . = . .® L] % no dropou
$ < % E
& H g H
0.0
TIA VXVXVX | VXV XV X | VXVXVX | VXXX | VXVXVX | VXV XV X | VXY XV X
D @encoder  vvvv  (VVVY VWYY VWYY WY WY vy
T @decoder  vvXX  |VVXX |VVXX |[VVXX  [VVYXX[VYXX [ VVXX

Figure 4. Coefficient of determination (R?) for the different inference accuracy prediction metrics
applied to 51 segmentations. N—number of predictions with dropout, p—dropout probability,
TTA—test time augmentation, TTD—test time dropout, DCA—average Dice, DCM—median Dice,
DCj,p—IoP represented as Dice, DCj,;;—IoU represented as Dice, loP—intersection over prediction,
IoU—intersection over union, CV—coefficient of variation.

All of the top-five subnetwork and metric combinations detected insufficiently accurate
inference segmentations, with a sensitivity of 1.0. The DCA without TTA and without TTD
achieved the highest average specificity of 0.83 (Table 3).

Table 3. Achieved specificity of detecting insufficiently accurate segmentation by the top-five infer-
ence accuracy prediction metrics. All metrics achieved a sensitivity of 1.0.

Label DCM DCA DCA DCA TTA DCA TTA
TTA no TTA TTA N=10,p=0.05 N=15p=0.05

Humerus 0.98 1.00 1.00 1.00 1.00
Scapula 041 0.76 0.57 0.54 0.54
Supraspinatus 091 0.93 0.98 0.98 0.98
Subscapularis 0.92 0.94 0.94 0.96 0.98
Infraspinatus 0.84 0.84 0.84 0.84 0.82
Teres minor 0.59 0.50 0.53 0.50 0.53

Average 0.77 0.83 0.81 0.80 0.81
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3.3. Performance Testing of Goodness Classification

Due to the overall high performance of the segmentation network, only four (1.1%)
labels in the T1-weighted MRI in the test dataset were segmented with insufficient accuracy.
Including the T1-fat-suppressed weighted MRI, a total of 4.7% of the labels were segmented
with insufficient accuracy. As shown in Table 4, the DCA metric and the defined label-
specific thresholds allowed all cases with insufficient accuracy to be detected with an
overall specificity of 0.94.

Table 4. Performance of the DCA metric without TTA without TTD with label-specific threshold to
detect insufficiently accurate segmentations on the T1- and T1-fs-weighted MRI of the test set.

Label Sensitivity Specificity TP TN FP FN  Threshold
Humerus 1.00 1.00 3 60 0 0 0.97
Scapula 1.00 0.98 3 59 1 0 0.94
Supraspinatus 1.00 0.97 2 59 2 0 0.92
Subscapularis 1.00 0.97 3 58 2 0 0.91
Infraspinatus 1.00 0.98 4 58 1 0 0.93
Teres Minor 1.00 0.72 3 43 17 0 0.94

The insufficiently accurate segmentations on the T1-weighted MRI originated from
two patients (Figure 5). In the coronal and sagittal MRI of a patient with a TM with high
fatty infiltration (Pat 1 in Figure 5), the algorithm failed in segmenting the TM accurately.
The sagittal MRI of another patient (Pat 2 in Figure 5) showed prominent image artifacts,
leading to failed segmentations of the SSC, the ISP, and the TM. The fat-suppressed T1-
weighted MRI along all planes showed poor segmentations of the bones, SSC, and ISP
(Pat 3 in Figure 5).

Pat 1: Pat 1: Pat 2: Pat 3: Pat 3:
Fatty Teres Minor Fatty Teres Minor Image artifacts T1 fat-supressed MRl T1 fat-supressed MRI
coronal sagittal sagittal coronal transversal

Prediction Overlay MR Slice

Correction Overlay

Figure 5. Examples of insufficiently accurate segmentations on the T1-weighted MRI. Top row:
original MRI, middle row: overlay of the MRI and the automatic segmentation, bottom row: overlay
of the MRI and the corrected segmentation. Humerus (red), scapula (green), supraspinatus (dark
blue), subscapularis (yellow), infraspinatus (cyan), teres minor (magenta).
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4. Discussion

Despite significant research on the causes of rotator cuff repair failure and the clinical
use of prognostic factors for patient selection, failure rates remain high. Research on
better predictive models is ongoing but still limited by the variability in and inaccuracy of
manually performed 2D-image-based measurements [28]. Patient-specific 3D models of
the shoulder would allow for automatic 3D analysis of rotator cuff reparability, the possible
identification of novel 3D predictive factors, and the inclusion of 3D metrics in predictive
model analysis. In this work, we present, for the first time, a network for fully automatic 3D
semantic segmentation of bony structures (humerus and scapula) as well as the rotator cuff
muscles on T1-weighted MRI along all planes from rotator cuff tear patients. The presented
segmentation network demonstrated high accuracy on anisotropic diagnostic MRI images
from different centers with a high variety of slice thicknesses and in-plane resolutions. The
accuracy of the automatic bone segmentation was found to be comparable to other reports
of 3D automatic bone segmentation from MRI, such as the use of a convolutional network
for the segmentation of the pelvis and femur presented by Zeng et al. [29]. On the rotator
cuff muscles, the segmentation network presented herein, when applied to multicenter
data of all image planes, achieved similar segmentation accuracies to those reported by
Riem et al. [20].

In this work, to achieve automatic error detection without additional expensive cal-
culations, we augmented the well-established nnU-Net framework with the integration
of a label-wise method for detecting inference segmentations with insufficient accuracy.
From a large range of inference segmentation accuracy prediction metrics, the average
Dice coefficient (DCA) of the segmentations from the differently trained networks without
using TTA demonstrated the best performance with an average sensitivity and specificity of
1.0 and 0.94, respectively. This result adds further evidence to the finding of Jungo et al. [24]
that estimating the network uncertainty by comparison of segmentations generated by
differently trained networks achieves the best results overall. The application of TTA or
TTD did not further improve the precision of the inference accuracy predictors.

Overall, the coefficients of determination of the accuracy prediction metrics and the
Dice coefficient presented herein are lower compared to those presented by Roy et al. [22].
However, in this work, the values of the inference performance prediction metrics were
compared to the Dice coefficients between the predicted and the manually corrected
inference segmentation rather than the Dice coefficients between the predicted and original
manual segmentation. Consequently, in this work, the maximal Dice coefficient of 1.0,
which represented any segmentation that was completely accepted by the expert without
the need for correction, was sometimes achieved. While we believe this measure is more
representative of the state-of-the-art manual error verification process applied in clinical
practice, it results in nonuniformly distributed Dice coefficients and lowers the coefficients
of determination between the Dice and the presented inference performance predictors.

The goodness classification of the inference segmentation is a further crucial step to-
ward the application of such inference performance prediction algorithms to large datasets
and large clinical trials, as well as for the successful integration of methods into software
for clinical diagnosis. In this work, inference segmentations with insufficient accuracy were
defined as those exceeding a certain extent of manual correction (the amount of disagree-
ment in the automatic segmentation results by an expert user). Ideally, accuracy thresholds
should consider the sensitivity of the 3D clinical metric to the segmentation accuracy and
the required final clinical metric precision. In this study, a higher accuracy acceptance
threshold was selected for bone than for muscle for two reasons: (1) previous reports have
suggested that the network would perform with slightly higher accuracy on bones than on
muscle and (2) clinical measures of bone morphology would require landmark detection on
the 3D bone surface and, thus, may be more sensitive to segmentation error than measures
performed on the entire muscle, such as muscle volume and fat fraction measures. In
the future, we recommend that accuracy acceptance thresholds alternatively be defined
based on the studied effect of the final clinical metric calculated based on the segmentation.



Diagnostics 2023, 13, 1668

110f13

Additionally, location-specific uncertainty measurements could be used to provide precise
performance predictions to eliminate unnecessary time spent correcting areas insignificant
for the calculation of the final clinical metric.

With the use of a high-accuracy segmentation algorithm, such as the one presented
herein, the majority of cases can be segmented completely automatically without man-
ual correction or intervention. Inaccurate segmentations are accurately detected via the
proposed automatic error-checking algorithm, providing users with high confidence in
the use of the resulting 3D anatomical models for further clinical analysis while reducing
labor-intensive, manual slice-by-slice monitoring of each inference result. Cases detected
as insufficiently accurate would currently still require manual slice-by-slice verification
and voxel-wise correction. In future work, pixel-wise or regional uncertainty metrics
could be used to develop semiautomatic correction techniques [30]. Corrections based on
the results of auxiliary networks could be suggested to the user, reducing the need for
voxel-wise correction.

The algorithms presented herein were designed and tested on standard T1-weighted
MRI sequences, which are commonly acquired for the diagnosis of rotator cuff tears. When
applied to MRI sequences underrepresented in the training dataset, the network was
more likely to segment the muscles with insufficient accuracy. While these erroneous
predictions were recognized by the proposed error detection algorithm, we recommend
also training networks with other MRI sequences, such as proton-density- or T2-weighted
MR, if segmentation of the shoulder structures from these MRI sequences is required.

The proposed automatic error-checking methods could additionally be applied in the
automatic segmentation of other anatomical structures; however, for optimized perfor-
mance on these structures, we recommend the re-evaluation of the prediction metrics and
the recalibration of label-specific thresholds. For use in further research, the code of the
augmented nnU-Net used within this study was made publicly available on GitHub.

In the future, the proposed shoulder anatomy segmentation methods will be used
as the basis for the 3D analysis of the anatomy of rotator cuff patients. For example, in a
multicenter study of arthroscopic rotator cuff repair [28], the algorithms have been applied
to study the predictive value of 3D-image-based anatomical metrics, such as whole muscle
and regional fat fraction, muscle volume, and 3D bone morphology metrics, for repair
outcome. For use in future research, the presented segmentation network with integrated
error detection will be made available upon request to the corresponding author.

5. Conclusions

The automatic and accurate segmentation of the shoulder joint in MRI of rotator cuff
tear patients has the potential to allow efficient 3D patient-specific anatomy analysis for
improved rotator cuff repair prognosis evaluation. In this work, the first fully automatic
and accurate deep learning algorithm for semantic segmentation of the humerus, scapula,
and rotator cuff muscles on multicenter MRI with automatic error detection was presented.
It is hoped that this implementation will enable the widespread use of automatic 3D
rotator cuff analysis, thereby eliminating errors associated with 2D measures and allowing
for a more accurate and holistic patient-specific analysis of the rotator cuff anatomy for
treatment optimization.
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