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Abstract: In vivo corneal confocal microscopy (IVCM) is a non-invasive ophthalmic imaging tech-
nique that provides images of the cornea at the cellular level. Despite the uses in ocular surface
pathologies, in the last decades IVCM has been used to provide more knowledge in refractive surgery
wound healing, in neuropathies diagnosis, etc. The observation of the corneal cells, both normal
and inflammatory, and the possibility of quantification of the corneal nerve density with manual or
automated tools, makes IVCM have a significant potential to improve the diagnosis and prognosis in
several systemic and corneal conditions.
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1. Introduction

In vivo corneal confocal microscopy (IVCM) is a noninvasive imaging technique of the
human corneal structure in vivo. IVCM provides wide depth and high resolution, allowing
a corneal evaluation at the cellular level [1]. Thanks to the corneal confocal microscopy,
all layers of the cornea may be precisely visualized and analyzed. To obtain the corneal
confocal microscopy images, IVCM uses punctual illumination in such a way that it is
possible to discard all light that does not come from the focal plane. The IVCM main
feature is that it collects and detects the light emitted by fluorescent molecules located in
the same plane of three-dimensional space [2]. Given the fact that the light source used
is a laser (collimated radiation in which the beam remains lineal when propagating), the
illumination of the samples is very specific and with a high and stable intensity. This allows
for subcellular microscopic resolutions to be achieved [2].

Currently, three IVCM devices are commercially available, but only two use the
scanning system: The Slit Scanning Confocal Microscope (SSCM): a fixed laser beam is
used, and the preparation is tracked using a motorized stage on the microscope. The
Laser Scanning Confocal Microscope (LSCM): the scanning is carried out by moving
the laser beam, thanks to galvanometric mirrors that allow the laser beam’s point of
incidence on the eye to be modified. There is only one brand that designs the LSCM, it
is the Heidelberg Retina Tomograph II or III with the Rostock Corneal Module (RCM)
(Heidelberg Engineering, GmBH, Germany). This is the IVCM that is usually employed
due to the high contrast images it provides.

In Table 1 are explained some of the IVCM devices available and their main characteristics.
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Table 1. Main characteristics of the available in vivo corneal confocal microscopes.

TSCM SSCM LSCM

Light source Mercury and Xenon Halogen Helium and Neon laser

Source intensity High Weak High (limited)

Source wavelength 400–700 nm 370–510 nm 670 nm (red)

Illumination and
light detection

Rotating Nipkow disk (64,000 holes
20–60 microns in diameter) Two conjugate slits Two scanning mirrors and

one scanner

Laser beam Permanent Permanent Mobile

Scanning Tracking using a motorized stage Tracking using a motorized
stage Moving the laser beam in the eye

TSCM: Tandem scanning confocal microscope; SSCM: Slit scanning confocal microscope; LSCM: Laser Scanning
Confocal Microscope.

2. Normal Cornea Observed with Confocal Microscopy

Thanks to the fact that the light source of IVCM used is a laser (collimated radiation
in which the beam remains lineal when propagating), the illumination of the samples is
very specific and with a high and stable intensity. This allows subcellular microscopic
resolutions to be achieved [1]. One of the main applications of IVCM is the study of live
samples over a time sequence. In this way, we can obtain a film that allows us to observe the
behavior of a biological system or structure over time. The corneal cells and their nucleus
can be analyzed thanks to the magnification and resolution of IVCM [3].

2.1. Corneal Epithelium

Superficial epithelial cells are 20–30 µm long and about 5 µm wide. They are observed
as polygonal cells of different sizes and reflectivity with the confocal microscopy. They
show a visible nucleus surrounded by a dark band. Winged cells are also observed, and
show lower reflectivity. They also show variations in size and have bright borders and
nuclei but do not show the dark ring that the superficial epithelial cells’ nuclei have [3,4].
Basal epithelial cells have a 10–15 µm diameter. They form a regular mosaic with dark cell
bodies and bright borders (Figure 1) [3,5].
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2.2. Sub-Basal Nerves

Sub-basal corneal nerves are observed as sharp white lines showing homogeneous
reflectivity (Figure 2) [6,7].
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Figure 2. Sub-basal corneal nerves of a human cornea observed with corneal confocal microscopy,
using the HRT II.

2.3. Bowman’s Layer

It is observed as a homogeneous and amorphous layer. It is considered an acellular
layer formed by bundles of collagen fibers, but by confocal microscopy Langerhans cells
have been observed at this level. These cells appear as corpuscular particles with an approx-
imate diameter of 15 µm. Three different morphologies have been observed: individual cell
bodies with processes, cells with a dendritic appearance and cells organized in a network
by means of dendritic interdigitations [8].

2.4. Corneal Stroma

With corneal confocal microscopy we can easily observe the nucleus of keratocytes.
On the other hand, the cell bodies, keratocyte processes and stromal collagen are not
visible with confocal corneal microscopy. In the anterior stroma, a well-defined oval-round
nucleus with different orientations is observed on a dark background. In the middle stroma,
keratocytes are observed with a more regular oval shape. In the posterior stroma, they
appear more elongated and axis-shaped [3].

2.5. Descemet Membrane

Descemet membrane can be observed with IVCM in aged patients. In young subjects
it is not observed. It is shown as an acellular layer between the posterior stroma and the
endothelium [3].

2.6. Endothelium

We observe the endothelial cells as a regular matrix of hexagonal cells with bright cell
bodies and dark borders. IVCM can be used to quantify the endothelial density [9].

In Table 2 we summarize the morphology and reflectivity of each normal corneal cells,
seen with IVCM.

Table 2. Normal corneal cells morphology with IVCM.

Corneal Cells Morphology Reflectivity

Superficial epithelial cells Polygonal, with different sizes Hyperreflective nucleus surrounded by dark band

Winged epithelial cells Polygonal, with different sizes Hyperreflective without visible nucleus

Basal epithelial cells Polygonal. Mosaic shape Dark cell bodies with bright borders
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Table 2. Cont.

Corneal Cells Morphology Reflectivity

Stromal cells (keratocytes) Oval Hyperreflective

Dendritic cells Dendritic shape in active status.
Oval shape in nonactive status Hyperreflective

Nerve plexus Lineal Hyperreflective

Endothelial cells Hexagonal shape Bright cell bodies with dark borders

3. Some Applications of IVCM Images

IVCM is an imaging technology that allows for 800× magnification and direct visu-
alization of cell structures. The IVCM available offers four microns of axial resolutions
and one to two microns of lateral resolution. It has been widely used for imaging the
ocular surface in both the diagnosis and treatment of corneal pathologies, dystrophies,
refractive surgery follow-up and in small fiber neuropathies. The imaging procedure is
relatively simple and it takes no more than 5 min, approximately. There is a learning curve
to properly perform the technique, usually not longer than 1 week of intensive training.

We will discuss some of the main clinical uses of IVCM.

3.1. Corneal Laser Refractive Surgery
3.1.1. Corneal Wound Healing

IVCM has been used to know how refractive surgery affects the cornea wound healing
and nerve regeneration. With IVCM, the corneal cells and corneal nerve plexus can be
shown, and measure their changes after the ablation. After corneal refractive surgery,
there is healing in corneal epithelium and stroma. Corneal wound healing is a process
regulated by the interaction between epithelial and stromal cells, tear film and corneal nerve
fibers [10,11]. Usually, the corneal wound healing response starts with epithelial injury. In
corneal refractive surgery, the epithelial damage may be caused either by the microkeratome
(MK), alcohol exposure or mechanical scraping in surface ablation procedures or the
femtosecond laser. Following this damage, the epithelial cells release several cytokines
that contribute to and stimulate the wound healing of the corneal process [11,12]. After
the epithelial damage, cytokines are secreted by keratocytes in order to modulate the
differentiation, migration and proliferation of epithelial cells to repair the stroma [13]. The
keratocyte density can be measured with IVCM because they appear with an oval shape
and a bright nucleus. The number of keratocytes undergoing apoptosis may be different
according to the refractive procedure performed, and this fact has been demonstrated by
IVCM studies [11,14,15]. In non-operated corneas, the keratocytes distribution along the
corneal stroma has been studied, and there is higher keratocyte density in anterior stroma,
followed by a decrease in keratocyte density in deeper layers [16]. The keratocyte depletion
that occurs in the upper layers is more pronounced after surface ablation procedures
than in laser in situ keratomileusis (LASIK). This may be due to how in flap procedures
the corneal epithelium is preserved. Studies performed with IVCM have shown that in
eyes that undergo surface ablation refractive surgeries, there is depletion of keratocytes
under the ablated zone; this density decreases in a time period of 5 years, and there is an
approximate loss of 5% of keratocyte density per year [17]. Corneas treated with LASIK also
show a continuous decrease in the density of keratocytes. In surface ablation procedures,
sub epithelial haze may occurs between 3 and 6 months postoperatively, and decreases
thereafter [16,18]. Sub epithelial haze seems to be more common when there is a curvature
change between the ablated area and nearby tissue, such as in high myopic errors, hyperopic
corrections higher or equal to 4 diopters and in high astigmatic corrections [13,19]. The first
option in corneal haze treatment is prevention with pharmacological agents that modulate
wound healing response, such as Mitomycin C (MMC). MMC is topically administered
intraoperatively, to avoid and minimize myofibroblast activation. MMC has an antimitotic
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effect and the keratocytes are the target of the MMC anti-haze mechanism, since this drug
inhibits their activation, proliferation and differentiation into myofibroblasts [14,20,21].
The antimitotic effect of this drug led to the fear of a possible long-term depletion of
the keratocyte population [22,23]. Keratocytes are visible with IVCM because of their
hyperreflective nucleus and their oval shape (Figure 3), and there are several studies that
confirm the IVCM is a useful tool to know how this drug affects corneal cells. It seems that
after laser-assisted subepithelial keratectomy (LASEK) there is an initial cellular depletion
in the stromal bed and a tendency towards normalization of the keratocyte density in
different layers of the cornea, leading to a normal total corneal cell density 15 months
and 3 years postoperatively. After a corneal injury, there is an apoptosis of keratocytes,
followed by a repopulation around the wounded tissue; that theory would explain the
increase in the keratocyte density found in deeper layers. However, it seems that a lower
keratocyte density in the stromal bed is maintained over time, which could be caused by
the extracellular matrix remodeling and the resulting fibrotic scar occurring at this level
(Figures 3 and 4) [14].

Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 

5 years, and there is an approximate loss of 5% of keratocyte density per year [17]. Cor-

neas treated with LASIK also show a continuous decrease in the density of keratocytes. In 

surface ablation procedures, sub epithelial haze may occurs between 3 and 6 months 

postoperatively, and decreases thereafter [16,18]. Sub epithelial haze seems to be more 

common when there is a curvature change between the ablated area and nearby tissue, 

such as in high myopic errors, hyperopic corrections higher or equal to 4 diopters and in 

high astigmatic corrections [13,19]. The first option in corneal haze treatment is preven-

tion with pharmacological agents that modulate wound healing response, such as Mi-

tomycin C (MMC). MMC is topically administered intraoperatively, to avoid and mini-

mize myofibroblast activation. MMC has an antimitotic effect and the keratocytes are the 

target of the MMC anti-haze mechanism, since this drug inhibits their activation, prolif-

eration and differentiation into myofibroblasts [14,20,21]. The antimitotic effect of this 

drug led to the fear of a possible long-term depletion of the keratocyte population [22,23]. 

Keratocytes are visible with IVCM because of their hyperreflective nucleus and their oval 

shape (Figure 3), and there are several studies that confirm the IVCM is a useful tool to 

know how this drug affects corneal cells. It seems that after laser-assisted subepithelial 

keratectomy (LASEK) there is an initial cellular depletion in the stromal bed and a ten-

dency towards normalization of the keratocyte density in different layers of the cornea, 

leading to a normal total corneal cell density 15 months and 3 years postoperatively. Af-

ter a corneal injury, there is an apoptosis of keratocytes, followed by a repopulation 

around the wounded tissue; that theory would explain the increase in the keratocyte 

density found in deeper layers. However, it seems that a lower keratocyte density in the 

stromal bed is maintained over time, which could be caused by the extracellular matrix 

remodeling and the resulting fibrotic scar occurring at this level (Figures 3 and 4) [14]. 

 

Figure 3. Corneal stroma of a human cornea observed with the confocal corneal microscopy HRTII. 

 

Figure 4. Postoperative haze after laser-assisted subepithelial keratectomy (LASEK). 

Figure 3. Corneal stroma of a human cornea observed with the confocal corneal microscopy HRTII.

Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 

5 years, and there is an approximate loss of 5% of keratocyte density per year [17]. Cor-

neas treated with LASIK also show a continuous decrease in the density of keratocytes. In 

surface ablation procedures, sub epithelial haze may occurs between 3 and 6 months 

postoperatively, and decreases thereafter [16,18]. Sub epithelial haze seems to be more 

common when there is a curvature change between the ablated area and nearby tissue, 

such as in high myopic errors, hyperopic corrections higher or equal to 4 diopters and in 

high astigmatic corrections [13,19]. The first option in corneal haze treatment is preven-

tion with pharmacological agents that modulate wound healing response, such as Mi-

tomycin C (MMC). MMC is topically administered intraoperatively, to avoid and mini-

mize myofibroblast activation. MMC has an antimitotic effect and the keratocytes are the 

target of the MMC anti-haze mechanism, since this drug inhibits their activation, prolif-

eration and differentiation into myofibroblasts [14,20,21]. The antimitotic effect of this 

drug led to the fear of a possible long-term depletion of the keratocyte population [22,23]. 

Keratocytes are visible with IVCM because of their hyperreflective nucleus and their oval 

shape (Figure 3), and there are several studies that confirm the IVCM is a useful tool to 

know how this drug affects corneal cells. It seems that after laser-assisted subepithelial 

keratectomy (LASEK) there is an initial cellular depletion in the stromal bed and a ten-

dency towards normalization of the keratocyte density in different layers of the cornea, 

leading to a normal total corneal cell density 15 months and 3 years postoperatively. Af-

ter a corneal injury, there is an apoptosis of keratocytes, followed by a repopulation 

around the wounded tissue; that theory would explain the increase in the keratocyte 

density found in deeper layers. However, it seems that a lower keratocyte density in the 

stromal bed is maintained over time, which could be caused by the extracellular matrix 

remodeling and the resulting fibrotic scar occurring at this level (Figures 3 and 4) [14]. 

 

Figure 3. Corneal stroma of a human cornea observed with the confocal corneal microscopy HRTII. 

 

Figure 4. Postoperative haze after laser-assisted subepithelial keratectomy (LASEK). Figure 4. Postoperative haze after laser-assisted subepithelial keratectomy (LASEK).

The introduction of femtosecond lasers (FS) has increased the predictability during the
creation of the stromal flap for LASIK [24]. The study of the response in vivo of the human
cornea to the use of FS or MK to obtain the flap, or the interface characteristics [25–27]
has been possible due to IVCM, and the possibility that this technique offers for the direct
observation of the corneal cells [28].

When a higher energy level of FS is used, this seems to induce a higher inflammatory
response due to a more keratocyte proliferation and necrosis, compared with the MK.
However, with low energy levels of FS, the differences in cell death and inflammation are
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not significant when compared to an MK, as has been demonstrated with IVCM. Thanks to
IVCM we now know that when an FS is used, the higher keratocyte replication rate occurs
on the flap edge [15].

3.1.2. Nerve Regeneration after Refractive Surgery

The cornea is the most innervated tissue in the human body. Corneal nerves, in
addition to sensory function, are responsible for maintaining the functional structure of the
ocular surface. They do this by releasing trophic substances that forward corneal epithelial
homeostasis and activation of brainstem circuits that activate reflex tear production and
blinking [29]. LASIK creates a corneal flap with an MK or FS followed by stromal ablation
with an excimer laser. The IVCM allows a direct visualization of the corneal sub-basal
nerve plexus in vivo, and thus the process of nerve fiber bundle regeneration after LASIK
can be analyzed (Figure 5) [30,31]. After LASIK, some axons of the sub-basal plexus are
axotomized at the borders of the flap [13]. Regardless of the refractive procedure, there is a
corneal nerve disruption, and this interrupts the corneo-lacrimal function. The receptors
situated in corneal terminal nerves transmit impulses needed to secrete tears, and in
their absence, the lacrimal production decreases, causing alterations in the ocular surface
and dry eye symptoms [17,23,24]. Corneal nerve disruption, therefore, produces ocular
dryness and an altered corneal sensitivity. Additionally, the axotomy of the corneal nerves
triggers a response for axon fragmentation, the removal of the debris and the release of
inflammatory mediators, such as histamine and serotonin [25]. All of these events lead to a
regenerative state, in which a transient nerve plexus arises until complete axonal restoration
is concluded. During the process of nerve regeneration, nerve sprouts can evoke sensations
of burning [26].
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Figure 5. Sub-basal nerve plexus in LASIK patient. In red is marked a main corneal nerve, and in
pink are marked secondary corneal nerves with ramifications.

Until at least 10 years after LASIK, the sub-basal nerve plexus does not fully recover
its normal pattern. This has been shown with IVCM. Some sub-basal nerve morphology
parameters such as nerve length, tortuosity and reflectivity returned to preoperative levels.
Main nerve density and nerve branch density continued to be significantly lower compared
to the control group (unoperated corneas) during a mean follow-up of 13.4 years after
LASIK surgery [31].

3.1.3. Ocular Surface Pathologies

Development of IVCM made it feasible to investigate and quantify some of the ocular
surface diseases, such as contact lens wear [32], keratitis [33], etc. In all these pathologies, with
the use of the IVCM can be observed the characteristic morphology of several pathogens.

One of the most important applications of IVCM is to help in the diagnosis of a
potentially severe ocular surface disease, such as Acanthamoeba keratitis (AK). AK is an
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infectious keratitis that represents a clinical challenge. Delays in diagnosis due to the
challenging, masquerading presentation of AK are evident, and thus AK is one of the most
aggressive corneal infections. The Acanthamoeba resistance to some drugs requires novel
treatment approaches. The diagnosis of AK begins with the clinical suspicion [34]. IVCM
can be effectively used to improve the diagnostic accuracy. The Acanthamoeba organisms
have a characteristic morphology, and the use of IVCM plays an important role in the
early diagnosis. The sensitivity of IVCM to help in AK diagnosis is about to 59.0 to 100%,
depending mainly on the examiner expertise [35–37]. The Acanthamoeba organisms have
specific morphological features that support the diagnosis. The most common features are:
hyperreflective bodies with a round shape with double wall which can be found isolated
or in clusters, and a target bright cyst with a dark center or ring-shaped signs [35,36]. The
IVCM showing deeper diffusion and increased cyst density [38,39] are associated with a
worse prognosis. In addition to its role in the diagnosis of AK, IVCM can also be used to
assess for treatment response and examine for residual disease [40]. Figure 6 shows IVCM
images of AK.
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Figure 6. Laser confocal microscopic images of Acanthamoeba cysts. In image (A), the cysts show
a highly reflective nucleus surrounded by a low-refractile ring wall (white arrows). The central
structure is regular and round with uniform reflection. In image (B) we also see a hyperreflective scar
(black arrow).

3.1.4. Dry Eye Disease (DED)

DED is characterized by tear film instability, visual disturbance, inflammation and
damage of the ocular surface [41–43]. Recent research has shown that inflammation plays a
key role in the pathogenesis of DED [42,44], particularly in DED associated with Sjogren
syndrome (SS) and thus leads to a diffuse ocular surface damage [44,45].

There is increasing evidence suggesting that dendritic cells (DCs), which are equipped
to induce T-cell activation and inflammatory cascade, are crucial in the DED pathogen-
esis [46–48]. With the help of IVCM, the density and morphology of DCs in DED have
been identified, and thus a better insight to the pathogenesis of the clinical manifestations
has been provided. [44,45]. In patients with DED and SS, it has been demonstrated there
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is an increased number of DCs in the central cornea [44,45]. In addition to quantity, DC
morphology changes (such as size, dendrites number and length) are other biomarkers
of the corneal response to inflammation and auto immunity phenomena (Figure 7) [49].
Some studies have revealed a decreased nerve density and a relatively high reflectivity,
tortuosity and a substantial reduction in the corneal nerve fiber length, nerve fiber density,
nerve fiber width, total nerve branch density and nerve fiber area in DED patients with
ocular pain [43,44].

Diagnostics 2023, 13, x FOR PEER REVIEW 8 of 15 
 

 

3.1.4. Dry Eye Disease (DED) 

DED is characterized by tear film instability, visual disturbance, inflammation and 

damage of the ocular surface [41–43]. Recent research has shown that inflammation plays 

a key role in the pathogenesis of DED [42,44], particularly in DED associated with 

Sjogren syndrome (SS) and thus leads to a diffuse ocular surface damage [44,45].  

There is increasing evidence suggesting that dendritic cells (DCs), which are 

equipped to induce T-cell activation and inflammatory cascade, are crucial in the DED 

pathogenesis [46–48]. With the help of IVCM, the density and morphology of DCs in 

DED have been identified, and thus a better insight to the pathogenesis of the clinical 

manifestations has been provided. [44,45]. In patients with DED and SS, it has been 

demonstrated there is an increased number of DCs in the central cornea [44,45]. In addi-

tion to quantity, DC morphology changes (such as size, dendrites number and length) are 

other biomarkers of the corneal response to inflammation and auto immunity phenom-

ena (Figure 7) [49]. Some studies have revealed a decreased nerve density and a relatively 

high reflectivity, tortuosity and a substantial reduction in the corneal nerve fiber length, 

nerve fiber density, nerve fiber width, total nerve branch density and nerve fiber area in 

DED patients with ocular pain [43,44]. 

 

Figure 7. Image of IVCM of dendritic cells. In white circles are shown some of the active DCs. 

3.2. Small Fiber Neuropathies 

Small fiber neuropathy (SFN) is a neurological condition characterized by a selective 

alteration of small semi-unmyelinated nerve fibers such as A delta and unmyelinated C 

fibers. The symptoms of SFN are: dry eye, dry mouth, orthostatic dizziness, heart palpi-

tations, intestinal disturbance, etc. This may be associated with other diseases such as fi-

bromyalgia and diabetic neuropathy. Peripheral neuropathies in which small nerve fi-

bers are affected have traditionally been diagnosed by skin biopsies [50,51]. IVCM pro-

vides a wide depth of focus and high resolution, allowing corneal evaluation at the cel-

lular level. For this reason, IVCM is a very useful tool for identifying small nerve fiber 

damage in various peripheral neuropathies [52–55]. In small fiber neuropathies, the cor-

neal nerve fiber length, fiber density and fiber width observed with IVCM are decreased, 

and there is an increase in DC density and area in comparison with patients without pa-

thologies [55–58]. 

The sensitivity and specificity of IVCM to detect SFN, has been well demonstrated 

by numerous studies [55–58]. IVCM has good reproducibility, and is a useful diagnostic 

tool for screening some peripheral neuropathies such as diabetic neuropathy [59–61].  

  

Figure 7. Image of IVCM of dendritic cells. In white circles are shown some of the active DCs.

3.2. Small Fiber Neuropathies

Small fiber neuropathy (SFN) is a neurological condition characterized by a selective
alteration of small semi-unmyelinated nerve fibers such as A delta and unmyelinated
C fibers. The symptoms of SFN are: dry eye, dry mouth, orthostatic dizziness, heart
palpitations, intestinal disturbance, etc. This may be associated with other diseases such as
fibromyalgia and diabetic neuropathy. Peripheral neuropathies in which small nerve fibers
are affected have traditionally been diagnosed by skin biopsies [50,51]. IVCM provides a
wide depth of focus and high resolution, allowing corneal evaluation at the cellular level.
For this reason, IVCM is a very useful tool for identifying small nerve fiber damage in
various peripheral neuropathies [52–55]. In small fiber neuropathies, the corneal nerve fiber
length, fiber density and fiber width observed with IVCM are decreased, and there is an
increase in DC density and area in comparison with patients without pathologies [55–58].

The sensitivity and specificity of IVCM to detect SFN, has been well demonstrated by
numerous studies [55–58]. IVCM has good reproducibility, and is a useful diagnostic tool
for screening some peripheral neuropathies such as diabetic neuropathy [59–61].

3.3. Diabetic Neuropathy

Diabetic peripheral neuropathy (DPN) is the most common diabetic complication.
About 50% of diabetic patients develop DPN [62]. While symptoms and neurological
deficits have a direct impact in patients, their objective assessment is difficult. Using intra-
epidermal biopsy, the nerve fiber density and the small fibers can be assessed objectively,
in an invasive way. The use of IVCM allows for a noninvasive clinical assessment of the
corneal nerves, and thus has had a marked increase in recent years [63]. In the last decade,
multiple studies conducted on diabetic patients have provided evidence suggesting that
morphological changes in the sub-basal nerve plexus strongly correlate with peripheral
nerve damage and, thus, with DPN [64]. Diabetic neuropathies represent a heterogeneous
group of disorders classified into generalized symmetric polyneuropathies including focal,
multifocal and coexisting chronic inflammatory demyelinating polyneuropathy, according
to the affected part of the nervous system [65]. Thus, IVCM is currently considered a reliable,
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reproducible and quantitative diagnostic method useful for the screening, diagnosis and
monitoring of DN, due to the possibility this technology offers for directly observing the
corneal nerves [66].

3.4. Neuroborreliosis in Lyme Disease

Neurologic Lyme disease is caused by bacteria of the Borreliaceae family. Lyme disease
has different stages, and in the late stages of the disease, patients with Lyme may have
chronic neurologic symptoms such as SFN. IVCM is a non-invasive method designed to
evaluate the human cornea in vivo, including the corneal cells and the sub-basal nerve
plexus, that can be easily visualized and analyzed [67]. Lyme disease is divided into three
phases according to its development, each of them with specific symptoms: The first phase
is localized early disease characterized by erythema migrans. It usually appears days
or weeks after the tick bite. Sometimes, the erythema can be accompanied by flu-like
symptoms [68]. The second phase is early disseminated disease. In this phase, manifes-
tations such as: Lyme neuroborreliosis, cardiac events or ocular disorders may appear.
The third phase is late disease. In this phase, manifestations such as Articular symptoms,
chronic neurological involvement, chronic Lyme neuroborreliosis and chronic atrophic
acrodermatitis occur. IVCM shows some corneal findings that support the diagnosis of
SFN in the context of neuroborreliosis by Borrelia miyamotoi in the third phase of the disease.
These findings have a sensitivity and specificity comparable to the study of the density
of nerve fibers in intraepidermal in skin biopsies, with the clear advantage of being a
non-invasive technique. Thus, corneal confocal microscopy could be a very useful tool for
the diagnosis and follow-up of patients with Lyme neuroborreliosis and other SFN diseases
(Figure 8) [59,69,70].
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4. COVID-19

The COVID-19 disease is caused by the coronavirus SARS-CoV-2. The main clinical
manifestation of coronavirus disease (COVID-19) involves the respiratory tract, breathing,
neurological symptoms such as loss of taste and smell, headaches, tiredness, brain fog, loss
of sensation and neuropathic pain [71]. The mechanism by which SARS-CoV-2 attacks the
nervous system is still unknown, although it seems that both the innate immune response
and the adaptive immunity are involved [71]. Some recently published studies associate
this condition with SFN and peripheral neuropathy. Peripheral neuropathy and autonomic
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involvement are characterized by a selective alteration of small semi-demyelinated nerve
fibers, as A delta and demyelinated C fibers. This condition could also be associated with
other diseases such as fibromyalgia, diabetic neuropathy and even Alzheimer’s [50,52,72].

Corneal nerves are suitable for SARS-CoV-2 infection due to their neuroreceptors.
Severe COVID-19 infection is associated with systemic neuropathic symptoms and gener-
alized sensory dysfunction in patients with diabetes, including loss of sensation, altered
tissue homeostasis and the generation of epithelial ulcers [73,74]. Neuropathological stud-
ies have shown SARS-CoV-2 in the cerebrum, cerebellum, cranial nerves, olfactory bulb
and olfactory epithelium, with associated microglial activation and lymphoid inflamma-
tion. After plasma exchange, an improvement in neuropathy has been observed [75–77].
The cornea, as one of the most innervated tissues in human body [78], receives heteroge-
neous sensory nerves from the ophthalmic branch of the trigeminal nerve. In addition
to these sensory fibers, the cornea also receives some autonomic sympathetic nervous
fibers, which originate in the cell bodies of the upper cervical ganglion [79–81], and some
autonomous parasympathetic nervous fibers (from the ciliary ganglion). IVCM is a useful
tool to examine the integrity of the peripheral nervous system, even in neurodegenerative
diseases [82]. In patients after SARS-CoV-2 infection, microneuromas have been identified
in the sub-basal nerve plexus and stromal nerves. In fact, the microneuromas could be the
consequence of nerve damage, and thus a sign of nerve regeneration. Additionally, some
neuromas have been seen using IVCM as hyperreflective bulbs at the end of the nerves
in these patients (Figure 9) [83]. There are some studies that showed fewer corneal nerve
fibers and an increase in DCs in patients with active COVID-19 [84] and in long COVID-19
patients, 3–4 months after the infection [85].
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5. Dementia

Recently, there has been an increased interest in non-invasive corneal nerve imaging
analysis in neurodegenerative diseases affecting the central nervous system (CNS) [82,86,87].
The cornea, particularly the corneal basal epithelium, is populated by immune cells, known
as dendritic cells [88]. In addition to its immune function bridging innate and adaptive
immune responses, they are also responsible of corneal nerve homeostasis [89,90]. Several
studies have demonstrated that corneal DC populations (visible using IVCM in humans) are
morphologically altered early in dementia, before the onset of corneal nerve degeneration.

In people with mild cognitive impairment, various morphological differences in
corneal dendritic cells have been described [82]. These differences are evident in the central
and middle peripheral cornea, and occur in the absence of sensory nerve degeneration. The
larger corneal DC field area in cognitively impaired eyes is consistent with an activated
cell state in immunological conditions. These conclusions provide a rationale for the use
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of IVCM to evaluate the corneal epithelial dendritic cells, due to its diagnostic accuracy
as a marker of Alzheimer’s disease that can be used in large populations with cognitive
impairment [72].

As a conclusion, with this review we believe that IVCM is a useful tool that may help
the clinician in the diagnosis, treatment and follow-up of many ocular conditions, and also
several diseases that involve the central and/or peripheral nervous system.

Author Contributions: Conceptualization, P.C., M.A.T., M.A.G.-V. and J.L.H.V.; methodology, P.C.,
M.A.T., M.A.G.-V. and J.L.H.V.; formal analysis, P.C., M.A.T., M.A.G.-V. and J.L.H.V.; writing—original
draft preparation, P.C., M.A.T., M.A.G.-V. and J.L.H.V.; writing—review and editing, P.C., M.A.T.,
M.A.G.-V. and J.L.H.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available on request
from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.
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