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Abstract: Middle East respiratory syndrome coronavirus (MERS-CoV) is caused by a well-known
coronavirus first identified in a hospitalized patient in the Kingdom of Saudi Arabia. MERS-CoV is a
serious pathogen affecting both human and camel health globally, with camels being known carriers
of viruses that spread to humans. In this work, MERS-CoV genomic sequences were retrieved and
analyzed by multiple sequence alignment to design and predict siRNAs with online software. The
siRNAs were designed from the orf1ab region of the virus genome because of its high sequence
conservation and vital role in virus replication. The designed siRNAs were used for experimental
evaluation in selected cell lines: Vero cells, HEK-293-T, and Huh-7. Virus inhibition was assessed
according to the cycle threshold value during a quantitative real-time polymerase chain reaction.
Out of 462 potential siRNAs, we filtered out 21 based on specific selection criteria without off-target
effect. The selected siRNAs did not show any cellular toxicity in the tested cell lines at various
concentrations. Based on our results, it was obvious that the combined use of siRNAs exhibited a
reduction in MERS-CoV replication in the Vero, HEK-293-T, and Huh-7 cell lines, with the highest
efficacy displayed in the Vero cells.

Keywords: MERS-CoV; in silico prediction; siRNAs; Vero cells; HEK-293-T; Huh-7 cells

1. Introduction

Coronaviruses are serious pathogens responsible for respiratory diseases in mammals.
In 2012, a new coronavirus was identified in an infected butcher in the Kingdom of Saudi
Arabia, who developed a respiratory illness and died 11 days after hospital admission [1].
Based on the genomic and pathogenic character of the virus, it was ultimately designated
as Middle East respiratory syndrome coronavirus (MERS-CoV), which was the sixth known
pathogenic human coronavirus after SARS to infect both animals and humans. Since
then, MERS-CoV has been reported in 27 countries, with 2583 cases and 889 deaths (https:
//www.who.int/, last accessed on 2 June 2022), becoming a global issue for human and
camel health [1–3]. Camels are considered MERS-CoV reservoirs and the primary source
of human infection. Additionally, camel workers are an intermediary source of viral
transmission to other communities. However, it has been observed that most MERS-
CoV patients have no camel contact, making the source of the infection uncertain. The
possible role of camels in disease transmission to humans has been investigated in various
locations [1–4]. The most common symptoms include fever and shortness of breath, but
more serious cases develop multiorgan failure [5,6].

The MERS-CoV belongs to the family Coronaviridae. The size of the viral genome is
approximately 25–32 kb. MERS-CoV falls under lineage C betacoronaviruses (βCoVs).
To date, only four coronavirus groups have been reported—designated as Alpha, Beta,
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Gamma, and Delta—and they have high genetic diversity, which favors the emergence
of new strains [7]. Genetic analyses have concluded that MERS-CoV emerged after the
exchange of genetic materials from bats or camels to humans [8]. Currently, no USFDA-
approved vaccines or potential therapy has been reported for MERS-CoV, but various
approaches are being used to develop vaccines and antivirals. Oligonucleotide-based
antiviral therapies using siRNA, shRNA, and miRNA are being evaluated. Long noncoding
RNAs (lncRNAs) against cancers [9,10], bacterial infections [11], fungal infections [12,13],
parasitic infections [14,15], viral infections [16]. Several potential RNA interference-based
(RNAi) drugs have recently been reported [17]. Additionally, as an adaptive immune
system, CRISPR-Cas is currently used to treat many diseases caused by viruses and bacte-
ria [18]. The details of CRISPR technology and its effective uses against viral infections have
recently been reviewed and reported [19–22]. The computational prediction of siRNAs
and their in vitro evaluation against respiratory viruses have also been reported [23–29].
Additionally, oligonucleotide-based (miRNA and siRNA) antiviral therapies are being eval-
uated in clinical trials [30] against many different viruses, including the Flock House virus
(FHV) [31], dengue virus [32], hepatitis C virus (HCV) [33], influenza virus [34,35], hepatitis
B virus (HBV) [36], human papillomavirus (HPV) [37], SARS coronavirus (SARS-CoV) [38],
and MERS-CoV [28,29].

This present work gains significance because of the lack of antiviral therapy or vac-
cines for MERS-CoV, and the generated data will provide valuable information about the
advancement and further use of oligonucleotide-based antivirals as an alternative therapy.
The main objectives of this work were to design potential siRNAs by using a computational
approach and to experimentally evaluate the reduction of viral load in Vero, HEK-293-
T, and Huh-7 cell lines. Based on the results, a significant reduction in viral RNA was
observed after using the combined siRNAs.

2. Materials and Methods
2.1. Sequence Analysis and siRNAs Selection

The MERS-CoV genomic sequences were retrieved from GenBank (KF958702, KT368879)
and aligned by using BioEdit software (Version 7.2). The orf1ab region was identified as a
potential target during siRNA design. The siRNAs were designed and selected by siDirect
(Version 2.0) [25,26,28,29,39,40].

2.2. Secondary Structure Prediction of siRNAs

An online bioinformatics tool (RNAfold server—http://rna.tbi.univie.ac.at accessed
on 1 May 2022) was used to predict the secondary structure of the siRNAs. We have
provided figures of the predicted siRNAs in our manuscript.

2.3. Cell Culture, Virus Propagation, and Virus Titering

Dulbecco’s modified Eagle’s medium (DMEM) was used to grow the cells at 37 ◦C.
The growth and quantification of MERS-CoV infection as well as viral RNA products of
replication were performed by using standard published protocols [4,41]. The siRNAs
were delivered by Lipofectamine 2000 (Invitrogen, Waltham, MA, USA) to the grown cells
(1 × 104) with 60–80% confluency. All the experiments were performed in triplicate. The
antiviral potency of the siRNAs was accessed 48 h post-transfection. We selected these three
cell lines (Vero, HEK-293-T, and Huh-7) based on their differential cell line susceptibility,
replicative capacity, better cell growth and multiplication, and their cytopathic effects in
in vitro assays [42–44].

2.4. siRNA Transfection and Cytotoxicity Assay

The siRNAs were delivered to the grown cells by using reverse transfection with Lipo-
fectamine 2000 (Invitrogen, Waltham, MA, USA) following the manufacturer’s instructions.
The cells were procured from ATCC® and further grown in a standard culture plate at
defined conditions in DMEM. The standard siRNA dilutions were prepared at various

http://rna.tbi.univie.ac.at


Diagnostics 2023, 13, 151 3 of 15

concentrations (50, 25, 10, and 5 nM) from 50 µM stock solutions by adding 100 µL of
Opti-MEM and Lipofectamine 2000 and further incubated at room temperature for 30 min.
The complex mixture was delivered slowly to the grown cells, which were allowed to grow
further for 24 h at 37 ◦C. The cellular toxicity of the siRNAs in different cell lines was
analyzed by using an MTT assay kit (Invitrogen) following the manufacturer’s instructions.
The absorbance was measured at 570 nm using a SpectraMax i3x imaging cytometer, and
the standard formula was applied for the cytotoxicity calculation. The detailed protocol for
the cytotoxicity assay has been described previously [29].

2.5. Evaluation of Virus Replication Inhibition by qRT-PCR

To evaluate the inhibitory effect of siRNAs against MERS-CoV experimentally, we
used multiple combinations of siRNAs with various doses (50, 25, 10, and 5 nM) on selected
grown cells. In our earlier study, we evaluated the siRNAs at various concentrations ranging
from 0.1, 0.5, 1.0, 2.5, 5.0, 10, 25, and 50 nM. Here, the concentrations of siRNAs (50, 25,
10, and 5 nM) were chosen because they produced better results than other concentrations
in our previous study [29,45]. The grown cells were siRNA-transfected for 48 h and then
inoculated with MERS-CoV at a multiplicity of infection (MOI) of 0.01, following the
published protocol from our lab [1]. The inoculated cell lines were allowed to grow in
appropriate conditions, and the cytopathic effect in all cell lines was observed daily for
72 h. The cell supernatant and lysate were separated from all the tested samples. Grown
cells without siRNA transfection and without virus infection were used as a negative
control, and the cells with virus infection were used as a positive control in triplicate. The
purification of viral RNA was performed by using a commercial QIAamp Viral RNA Mini
Kit (Qiagen, Germantown, MD, USA). The inhibition of virus replication was measured
by determining the cycle threshold (Ct) value during real-time polymerase chain reaction
(qPCR). The idea behind using the supernatant and lysate from the cell lines was to access
the differences in Ct value among the tested cells, as some cells are still attached to the
surface of culture plates; therefore, it is expected that there will be variation among the
Ct values of the cell lines. The RNA was subjected to qPCR using MERS-CoV-specific
primers [1]. The Ct value was used to analyze the inhibitory effect of each siRNA in both
cell supernatant as well as cell lysate at various concentrations (50, 25, 10, and 5 nM).

3. Results
3.1. Sequence Analysis and Prediction of siRNAs

The multiple sequence alignment results showed high conservation at various loca-
tions among the human and camel isolates. The conserved region of the ORF1ab gene is
presented in Figure 1. In this experiment, we selected only 21 out of 462 siRNAs, which
were generated by siDirect software (Version 2.0) without any off-targets or similarities with
any human mRNA sequences following the basic criteria. Table 1 provides the sequence,
minimum free energy, and position of the designed siRNAs.
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Figure 1. Multiple sequence alignment and homology of the MERS-CoV genome isolated from hu-
mans and camels. The figure shows good homology with very few variations in the viral genome. 

  

Figure 1. Multiple sequence alignment and homology of the MERS-CoV genome isolated from
humans and camels. The figure shows good homology with very few variations in the viral genome.
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Table 1. List of designed and filtered siRNAs from the orf1ab region (KF958702).

S.No.
Position of

siRNA in the
Genome

(Start–End)
Target Sequence Predicted RNA Oligo

Sequences (5′→3′)

Minimum Free
Energy (MFE

(kcal/mol) and
Frequency of

Thermodynamic
Ensemble (%)

1 791–813 agcaatctatttttactattaat UAAUAGUAAAAAUAGAUUGCU
CAAUCUAUUUUUACUAUUAAU −17.96, 65.21

2 1615–1637 atggataatgctattaatgttgg AACAUUAAUAGCAUUAUCCAU
GGAUAAUGCUAUUAAUGUUGG −21.80, 77.37

3 1910–1932 gcgactttatgtctacaattatt UAAUUGUAGACAUAAAGUCGC
GACUUUAUGUCUACAAUUAUU −22.02, 69.74

4 4018–4040 gacactttagatgatatcttaca UAAGAUAUCAUCUAAAGUGUC
CACUUUAGAUGAUAUCUUACA −22.62, 69.54

5 5597–5619 atgctattagtttgagttttaat UAAAACUCAAACUAAUAGCAU
GCUAUUAGUUUGAGUUUUAAU −21.51, 83.64

6 5598–5620 tgctattagtttgagttttaata UUAAAACUCAAACUAAUAGCA
CUAUUAGUUUGAGUUUUAAUA −19.74, 57.91

7 5819–5841 gagctagtttgcgtcaaattttt AAAUUUGACGCAAACUAGCUC
GCUAGUUUGCGUCAAAUUUUU −24.28, 53.63

8 9495–9517 ctctaatatctttgttattaaca UUAAUAACAAAGAUAUUAGAG
CUAAUAUCUUUGUUAUUAACA −17.97, 54.45

9 9533–9555 ctcttagaaactctttaactaat UAGUUAAAGAGUUUCUAAGAG
CUUAGAAACUCUUUAACUAAU −22.37, 64.54

10 13,605–13,627 tggtttgattttgttgaaaatcc AUUUUCAACAAAAUCAAACCA
GUUUGAUUUUGUUGAAAAUCC −18.34, 35.22

11 14,005–14,027 acgcaaattgcgttaattgtact UACAAUUAACGCAAUUUGCGU
GCAAAUUGCGUUAAUUGUACU −22.34, 79.46

12 14,389–14,411 tggtatctaaaggtttctttaag UAAAGAAACCUUUAGAUACCA
GUAUCUAAAGGUUUCUUUAAG −22.04, 67.95

13 16,177–16,199 gtcttgtattcggcttatacaag UGUAUAAGCCGAAUACAAGAC
CUUGUAUUCGGCUUAUACAAG −26.53, 58.68

14 16,217–16,239 tccttctatagttgaatttaata UUAAAUUCAACUAUAGAAGGA
CUUCUAUAGUUGAAUUUAAUA −20.24, 48.81

15 17,283–17,305 gtctacaataataaattgttagc UAACAAUUUAUUAUUGUAGAC
CUACAAUAAUAAAUUGUUAGC −17.87, 75.42

16 17,583–17,605 aacaacattaacagatttaatgt AUUAAAUCUGUUAAUGUUGUU
CAACAUUAACAGAUUUAAUGU −19.59, 62.23

17 18,028–18,050 ctctacaattaggattttcaact UUGAAAAUCCUAAUUGUAGAG
CUACAAUUAGGAUUUUCAACU −22.08, 53.94

18 19,806–19,828 ttgtataagaaagtcaataatga AUUAUUGACUUUCUUAUACAA
GUAUAAGAAAGUCAAUAAUGA −19.97, 64.53

19 20,090–20,112 ctcaactattcataactatttta AAAUAGUUAUGAAUAGUUGAG
CAACUAUUCAUAACUAUUUUA −19.63, 42.01

20 20,498–20,520 tgccaatatgcgtgttatacatt UGUAUAACACGCAUAUUGGCA
CCAAUAUGCGUGUUAUACAUU −25.98, 74.21

21 20,948–20,970 gggtactattaaagaaaatatag AUAUUUUCUUUAAUAGUACCC
GUACUAUUAAAGAAAAUAUAG −17.65, 66.76

3.2. Cytotoxicity Assay

The cellular toxicities of the designed siRNAs were evaluated in the three selected cell
lines and were observed to be concentration-dependent. None of the tested siRNAs displayed
significant toxicity in any cell lines. The data were statistically analyzed by using the GraphPad
Prism (9.3.0) two-way ANOVA software and considered significant with a p-value of <0.0001.
The cytotoxicity results of each cell line are provided in Table 2 and Figure 2.
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Table 2. Cytotoxicity (CC50) of siRNAs in selected cells.

siRNAs
Combination

siRNA Concentrations
(nM)/OD Value in

Vero Cells

siRNA Concentrations
(nM)/OD Value in
HEK-293-T Cells

siRNA Concentrations
(nM)/OD Value in

Huh7 Cells
50 25 10 5.0 CC50 50 25 10 5.0 CC50 50 25 10 5.0 CC50

siRNA-1+2 1.3 1.3 1.3 1.3 >100 1.3 1.3 1.3 1.3 >100 1.4 1.3 1.4 1.4 >100
siRNA-1+3 1.4 1.4 1.4 1.4 >100 1.4 1.4 1.4 1.5 >100 1.3 1.5 1.5 1.5 >100
siRNA-1+4 1.6 1.6 1.6 1.6 >100 1.6 1.5 1.6 1.4 >100 1.5 1.6 1.6 1.5 >100
siRNA-1+5 1.5 1.5 1.5 1.5 >100 1.5 1.5 1.6 1.6 >100 1.4 1.5 1.5 1.6 >100
siRNA-1+6 1.6 1.6 1.6 1.6 >100 1.6 1.6 1.6 1.5 >100 1.5 1.4 1.5 1.5 >100
siRNA-1+7 1.7 1.7 1.7 1.7 >100 1.7 1.7 1.4 1.7 >100 1.6 1.6 1.4 1.6 >100
siRNA-1+8 1.5 1.5 1.5 1.5 >100 1.5 1.5 1.6 1.6 >100 1.4 1.5 1.5 1.5 >100
siRNA-1+9 1.4 1.4 1.4 1.4 >100 1.4 1.7 1.5 1.5 >100 1.4 1.5 1.6 1.5 >100
siRNA-1+10 1.5 1.5 1.5 1.5 >100 1.5 1.6 1.4 1.4 >100 1.6 1.4 1.4 1.5 >100
siRNA-1+11 1.4 1.4 1.4 1.4 >100 1.4 1.6 1.5 1.3 >100 1.4 1.5 1.5 1.6 >100
siRNA-1+12 1.5 1.5 1.5 1.5 >100 1.5 1.4 1.3 1.2 >100 1.6 1.3 1.4 1.7 >100
siRNA-1+13 1.4 1.4 1.4 1.4 >100 1.6 1.4 1.5 1.5 >100 1.5 1.4 1.5 1.6 >100
siRNA-1+14 1.5 1.5 1.5 1.5 >100 1.5 1.6 1.5 1.4 >100 1.4 1.5 1.6 1.5 >100
siRNA-1+15 1.5 1.5 1.5 1.5 >100 1.7 1.6 1.5 1.5 >100 1.5 1.6 1.5 1.4 >100
siRNA-1+16 1.5 1.5 1.5 1.5 >100 1.6 1.5 1.5 1.4 >100 1.6 1.6 1.6 1.5 >100
siRNA-1+17 1.7 1.7 1.7 1.7 >100 1.7 1.6 1.5 1.5 >100 1.5 1.5 1.4 1.6 >100
siRNA-1+18 1.5 1.5 1.5 1.5 >100 1.5 1.6 1.5 1.4 >100 1.4 1.4 1.5 1.5 >100
siRNA-1+19 1.7 1.7 1.7 1.7 >100 1.7 1.6 1.5 1.5 >100 1.6 1.6 1.6 1.6 >100
siRNA-1+20 1.8 1.8 1.8 1.8 >100 1.5 1.5 1.4 1.3 >100 1.4 1.4 1.5 1.7 >100
siRNA-1+21 1.7 1.7 1.7 1.7 >100 1.6 1.5 1.5 1.4 >100 1.5 1.6 1.5 1.6 >100

Negative 1.5 1.5 1.5 1.5 >100 1.5 1.5 1.5 1.5 >100 1.5 1.5 1.5 1.5 >100
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Figure 2. Cytotoxicity of siRNAs in selected cell lines at different concentrations. The variable
concentrations of siRNA combinations (50, 25, 10, and 5 nM) were delivered to the grown cell lines.
No cell lines showed significant cytotoxicity.

3.3. Analysis of Virus Inhibition

The virus inhibition and the level of viral RNA in the cell lines were determined by
the Ct value of qPCR for all combinations of siRNAs in the cell supernatant as well as
the cell lysate. The analysis was performed by using only four different concentrations
(50, 25, 10, and 5 nM) of siRNAs, as per previous works [28,29]. The viral inhibition was
observed to be dose-dependent for different siRNA combinations in Vero cells, HEK-293-T
cells, and Huh-7 cells at various concentrations. In the Vero cell supernatant, the highest
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qPCR Ct value was observed for the siRNA 1+3 combination at all the concentrations,
whereas the siRNA 1+8 combination showed a higher Ct value than the positive control
at concentrations of 50 nM and 10 nM. The lowest Ct value was 13.17 among all tested
combinations, and the highest was 20.90. The siRNA combinations 1+8 and 1+9 in the cell
lysate showed a higher Ct value at a concentration of 5 nM as compared to the positive
control (Table 3, Figure 3). In the HEK-293-T cell supernatant, the highest Ct value (35.17)
was observed for the siRNA 1+6 combination at a concentration of 25 nM, whereas in
the cell lysate, many siRNA combinations (1+2-25 nM, 1+3-5, 50 nM, 1+6-25 nM, 1+7-5
nM, and 1+8-5, 50 nM) showed higher Ct values at various concentrations (50–5 nM) as
compared to the positive control (Table 4, Figure 4). Based on the in vitro results of all cell
lines, it appeared that the combined use of different siRNAs was better for virus inhibition
compared to using a single siRNA. In Huh-7 cells, the highest Ct value was observed in the
supernatant of siRNA combinations 1+13 and 1+18 at concentrations of 50, 5, and 10 nM,
and in the cell lysate, siRNA combinations 1+11 and 1+15 showed the highest Ct value
at 10 nM and 5 nM. Interestingly, many siRNA combinations showed higher Ct values
than the positive control (Table 5, Figure 5). The results for different siRNAs at the same
concentrations is comparable because of the different cell lines and their replication as well
as the growth and multiplication of the virus in the tested cell lines.

Table 3. Ct value of qPCR of siRNA in Vero cells.

siRNAs
Combinations

Vero Cells
(Cell Supernatant)—(nM) (Cell Lysate)—(nM)

50 25 10 5.0 50 25 10 5.0

siRNA1+2 18.25 18.31 18.01 17.64 14.75 14.74 14.43 17.13
siRNA1+3 19.07 19.24 18.68 18.08 16.06 15.48 15.06 14.99
siRNA1+4 17.87 17.89 17.66 17.77 15.32 17.11 14.06 16.59
siRNA1+5 17.41 17.76 17.97 17.13 14.80 14.44 15.87 16.53
siRNA1+6 17.83 18.99 19.68 17.82 15.61 15.89 16.43 17.74
siRNA1+7 17.34 17.80 17.97 16.87 17.50 14.86 17.22 15.75
siRNA1+8 17.48 17.85 18.58 20.90 15.82 16.56 16.63 21.96
siRNA1+9 17.25 17.84 17.91 16.46 16.62 14.88 16.76 20.23

siRNA1+10 18.24 18.14 18.06 18.46 14.09 13.96 13.78 14.11
siRNA1+11 18.59 18.10 19.97 19.46 14.46 13.60 14.33 15.21
siRNA1+12 18.08 17.71 20.45 18.24 14.62 14.28 14.80 14.61
siRNA1+13 18.26 19.97 18.07 18.63 13.17 14.50 14.15 15.60
siRNA1+14 18.32 18.63 18.02 17.42 15.19 14.31 14.38 13.48
siRNA1+15 18.32 19.61 19.68 19.12 13.67 14.41 15.07 14.76
siRNA1+16 17.90 18.06 18.97 18.71 14.73 14.01 14.11 13.50
siRNA1+17 17.64 18.91 18.09 17.97 13.52 14.41 14.88 15.48
siRNA1+18 17.20 17.67 17.66 17.12 15.75 19.54 19.67 17.81
siRNA1+19 16.42 17.81 17.10 17.48 14.51 14.78 14.76 14.59
siRNA1+20 18.48 17.68 16.67 17.97 15.27 15.17 15.14 15.35
siRNA1+21 17.86 18.97 18.25 18.37 14.88 14.94 15.31 14.70

Positive control 17.85 16.04
Negative control 45.00 45.00



Diagnostics 2023, 13, 151 8 of 15

Diagnostics 2022, 12, x FOR PEER REVIEW 8 of 15 
 

 

Table 3. Ct value of qPCR of siRNA in Vero cells. 

siRNAs Combinations Vero Cells 

(Cell Supernatant)—(nM) (Cell Lysate)—(nM) 
 50  25  10  5.0  50  25  10  5.0 

siRNA1+2 18.25 18.31 18.01 17.64 14.75 14.74 14.43 17.13 
siRNA1+3 19.07 19.24 18.68 18.08 16.06 15.48 15.06 14.99 
siRNA1+4 17.87 17.89 17.66 17.77 15.32 17.11 14.06 16.59 
siRNA1+5 17.41 17.76 17.97 17.13 14.80 14.44 15.87 16.53 
siRNA1+6 17.83 18.99 19.68 17.82 15.61 15.89 16.43 17.74 
siRNA1+7 17.34 17.80 17.97 16.87 17.50 14.86 17.22 15.75 
siRNA1+8 17.48 17.85 18.58 20.90 15.82 16.56 16.63 21.96 
siRNA1+9 17.25 17.84 17.91 16.46 16.62 14.88 16.76 20.23 
siRNA1+10 18.24 18.14 18.06 18.46 14.09 13.96 13.78 14.11 
siRNA1+11 18.59 18.10 19.97 19.46 14.46 13.60 14.33 15.21 
siRNA1+12 18.08 17.71 20.45 18.24 14.62 14.28 14.80 14.61 
siRNA1+13 18.26 19.97 18.07 18.63 13.17 14.50 14.15 15.60 
siRNA1+14 18.32 18.63 18.02 17.42 15.19 14.31 14.38 13.48 
siRNA1+15 18.32 19.61 19.68 19.12 13.67 14.41 15.07 14.76 
siRNA1+16 17.90 18.06 18.97 18.71 14.73 14.01 14.11 13.50 
siRNA1+17 17.64 18.91 18.09 17.97 13.52 14.41 14.88 15.48 
siRNA1+18 17.20 17.67 17.66 17.12 15.75 19.54 19.67 17.81 
siRNA1+19 16.42 17.81 17.10 17.48 14.51 14.78 14.76 14.59 
siRNA1+20 18.48 17.68 16.67 17.97 15.27 15.17 15.14 15.35 
siRNA1+21 17.86 18.97 18.25 18.37 14.88 14.94 15.31 14.70 

Positive control 17.85    16.04    
Negative control 45.00    45.00    

 
Figure 3. Presentation of the Ct values of the combined use of siRNAs in both the cell lysate and 
supernatant of Vero cells. Some siRNAs showed better potential as compared to other combinations 
(50, 25, 10, and 5 nM). The highest Ct value was 45, which occurred in the negative control sample. 

Figure 3. Presentation of the Ct values of the combined use of siRNAs in both the cell lysate and
supernatant of Vero cells. Some siRNAs showed better potential as compared to other combinations
(50, 25, 10, and 5 nM). The highest Ct value was 45, which occurred in the negative control sample.

Table 4. Ct value of qPCR results of siRNA in HEK-293-T cells.

siRNAs
Combinations

HEK-293-T Cells
(Cell Supernatant)—(nM) (Cell Lysate)—(nM)

50 25 10 5.0 50 25 10 5.0

siRNA1+2 28.62 33.66 30.06 32.81 26.69 35.10 29.21 31.55
siRNA1+3 33.84 32.42 30.77 33.96 36.58 29.32 30.10 36.76
siRNA1+4 33.88 30.34 32.63 32.44 31.20 29.89 32.14 29.89
siRNA1+5 33.56 31.24 30.92 32.94 31.40 30.83 29.02 31.75
siRNA1+6 32.86 35.17 29.87 31.10 30.78 38.28 27.96 25.90
siRNA1+7 31.87 33.71 29.73 34.48 29.42 29.78 26.60 37.23
siRNA1+8 33.23 30.37 31.35 34.04 34.71 28.11 31.24 35.56
siRNA1+9 30.88 30.37 31.35 34.04 27.77 33.15 31.82 29.01

siRNA1+10 29.35 30.92 28.85 34.17 30.72 30.32 31.60 31.73
siRNA1+11 31.44 27.76 33.83 35.02 30.86 30.35 31.96 32.82
siRNA1+12 28.58 31.44 31.36 30.21 32.84 35.20 30.61 31.23
siRNA1+13 30.60 24.63 34.69 32.46 29.46 26.86 34.27 28.80
siRNA1+14 32.03 31.94 31.72 33.09 31.97 31.17 30.59 31.96
siRNA1+15 29.57 34.56 30.26 29.91 29.91 31.45 31.53 30.58
siRNA1+16 27.51 28.53 29.00 28.33 28.15 29.48 28.59 29.14
siRNA1+17 28.42 29.69 27.40 32.28 27.54 29.25 28.12 30.53
siRNA1+18 34.18 28.25 29.47 31.94 36.87 27.93 29.93 31.84
siRNA1+19 34.23 32.65 30.54 29.49 30.31 29.67 29.66 31.06
siRNA1+20 30.28 28.46 31.86 29.04 28.49 23.53 31.28 27.38
siRNA1+21 29.06 29.94 30.36 29.46 26.61 28.42 28.77 29.66

Positive control 34.50 38.11
Negative control 45.00 45.00
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Figure 4. Presentation of the Ct values of combined use of siRNAs in both the cell lysate and
supernatant of HEK-293-T cells. The graph shows that a few siRNAs exhibited better potential
compared to other combinations (50,25, 10, and 5 nM). The highest Ct value was 45, which occurred
in the negative control sample.

Table 5. Ct values of qPCR results of siRNA combinations in Huh-7 cells.

siRNAs
Combination

Huh-7 Cells
(Cell Supernatant)—(nM) (Cell Lysate)—(nM)

50 25 10 5.0 50 25 10 5.0

siRNA1+2 20.77 21.97 21.02 21.07 15.71 17.99 16.25 16.60
siRNA1+3 23.42 23.54 21.31 22.77 18.04 19.54 16.90 18.17
siRNA1+4 20.77 21.94 21.22 22.20 17.68 19.07 17.89 19.03
siRNA1+5 22.82 22.10 21.86 21.87 17.05 19.00 16.72 17.08
siRNA1+6 21.80 22.59 20.53 19.43 17.55 17.17 15.19 16.22
siRNA1+7 21.15 20.91 20.66 21.00 17.57 17.27 16.32 16.18
siRNA1+8 21.24 20.44 20.53 20.41 17.21 16.41 19.15 16.93
siRNA1+9 20.10 18.97 18.96 20.09 16.42 15.37 16.06 15.73

siRNA1+10 21.17 21.51 20.68 21.12 18.11 18.50 23.11 17.25
siRNA1+11 19.99 20.48 21.10 19.86 23.87 17.88 18.02 18.29
siRNA1+12 22.03 22.49 19.85 22.70 17.92 18.72 18.48 18.97
siRNA1+13 24.33 20.02 21.31 23.48 18.85 18.60 18.03 19.05
siRNA1+14 23.53 22.03 20.95 22.26 18.42 19.12 18.66 17.26
siRNA1+15 20.81 22.31 23.25 22.65 18.97 19.02 23.94 20.26
siRNA1+16 21.06 22.05 21.95 20.61 18.90 18.74 20.82 20.40
siRNA1+17 19.99 19.93 19.36 19.05 19.38 18.93 17.12 16.61
siRNA1+18 24.39 21.99 23.44 23.74 18.36 18.17 18.60 22.40
siRNA1+19 22.36 22.17 23.18 23.26 18.10 17.89 20.95 19.88
siRNA1+20 23.97 23.39 23.87 22.92 18.62 19.69 20.76 21.18
siRNA1+21 22.89 23.42 23.36 22.98 18.86 21.25 19.98 19.73

Positive control 21.10 19.18
Negative control 45.00 45.00
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The highest Ct value was 45, which occurred in the negative control sample. 
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Figure 5. Presentation of Ct values of combined use of siRNAs in both the cell lysate and supernatant
of Huh-7 cells. The multiple combinations of siRNAs were delivered to Huh-7 cells at different
concentrations (50,25, 10, and 5 nM). The qPCR data were used to draw the graph using the graph
Pad software. The data show the efficiency of the siRNAs at various combinations and concentrations.
The highest Ct value was 45, which occurred in the negative control sample.

3.4. Prediction of Secondary Structure of siRNA

The RNAfold server was used to predict the secondary structure of the designed
siRNAs. The minimum free energy (MFE) and thermodynamics ensemble (%) data for all
siRNAs are provided in Table 1, and their secondary structures are presented in Figure 6.
The secondary structure of the selected siRNA follows the selection criteria of the RNAfold
and has no structure complexity. The prediction showed better binding efficiency to the
target sequences with potential silencing of the target genes.
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4. Discussion

In 2012, MERS-CoV was identified in a hospitalized patient in the Kingdom of Saudi
Arabia, where the highest fatality rate of the disease has been reported. Tremendous efforts
have been made in MERS-CoV research using varied approaches that have contributed
significantly towards disease management. Despite this enormous global research effort,
no vaccines or antivirals are currently available against MERS-CoV, but various strate-
gies are being used for their development, including oligonucleotide (siRNAs/miRNAs)-
based therapy [46–51]. Ongoing research has successfully solved most complications
related to siRNAs-based therapy, resulting in progressive outcomes against many viral
diseases [52–54]. Currently, only one siRNA known as ALNRSV01 has been approved by
the WHO for human use [16]. Various siRNAs for MERS-CoV have been designed by com-
putational approaches, but their antiviral efficacy has not been evaluated in vitro [23,24].
Many new siRNAs have been designed for HCV and MERS-CoV inhibition, and experimen-
tally observed to be effective in the reduction of viral RNA load in selected cells [28,29,40].
Recently, Fukushige et al. used hyaluronic acid-coated liposomes as alternative liposomes
for siRNA delivery to lung cells [55]. In our study, we have used the bioinformatics
approach to design and evaluate the antiviral potency of MERS-CoV siRNAs.

In our study, the software produced 462 siRNAs from the orf1ab region. We selected
and evaluated only 21 siRNAs following the standard criteria for filtration [25,26]. The
prediction of the siRNA secondary structure was performed by using the online RNAfold
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server, which was also used to calculate the MFE and partition function of the RNA by
reading the RNA sequences.

We evaluated only certain siRNAs for combined use in the Vero, Huh-7, and HEK-
293-T cell lines. The cellular toxicity of each designed siRNA was evaluated in the three
cell lines before inducing virus infection and qPCR. The results showed no cytotoxicity
of the evaluated siRNAs in the tested cell lines. The experimental evaluation results of
each siRNA combination and their antiviral potency were significantly variable across
different cell lines, even at the same concentration, which could be due to the growth
and multiplication properties of the cell lines after siRNA delivery and virus infection.
Many siRNA combinations showed significant and strong inhibitory effects toward viral
replication in Vero cells. The Ct values from the qPCR data indicated a significant inhibition
of replication and a reduction in viral RNA in both the cell supernatant and lysate of the
Vero, Huh-7, and HEK-293-T cell lines. We evaluated all 21 combinations of siRNAs in
the selected cell lines. Better siRNA efficacy and reduction of viral load were observed in
Vero cells due to the better growth and multiplication of the virus in this cell line. In silico
approaches are commonly used to screen possible strategies for overcoming infections,
with successful examples in similar studies that emphasize bioinformatic approaches and
their utility [56]. One limitation of this study was that siRNA treatment was conducted
in only selected cell lines because MERS-CoV does not grow and multiply in most other
cell lines. Further evaluation of additional siRNA combinations in multiple cell lines is
needed to use as oligonucleotide-based antivirals for MERS-CoV. The findings of this study
should be further evaluated in mice and other human primates, which are lacking here in
our facility.

5. Conclusions

Based on our computational approach combined with the experimental evaluation of
selected siRNAs in terms of cytotoxicity and qPCR, we concluded that the in silico designing
and filtration of siRNAs can be an effective approach to alternative oligonucleotide-based
therapeutics for MERS-CoV. The experimental evaluation results of the antiviral potency of
siRNAs provided valuable information about the selection of siRNAs tested in various cell
lines at selected concentrations with multiple combinations. Recently, after many barriers
and challenges were overcome, the FDA approved several siRNA-based therapeutics.
However, many other challenges must still be addressed, such as enzymatic degradation,
rapid renal clearance, endosomal trapping, plasma protein sequestration, and activation of
the immune system. To overcome these barriers, many strategies and techniques are being
used to modify the backbone, bases, sugars, conjugation of aptamers, and exosome-based
delivery of siRNAs. We observed that the Vero cells were better than other cells because of
virus multiplication and cell growth for testing the siRNAs against MERS-CoV. Finally, the
overall results proved that the computational approach of this study can be used to design
siRNAs as potential therapeutics against MERS-CoV, and our experimental evaluation
provided information about the selection of these siRNAs.
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