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Abstract: In epidemiology, a risk factor is a variable associated with increased disease risk. Under-
standing the role of risk factors is significant for developing a strategy to improve global health. There
is strong evidence that risk factors like smoking, alcohol consumption, previous cataract surgery,
age, high-density lipoprotein (HDL) cholesterol, BMI, female gender, and focal hyper-pigmentation
are independently associated with age-related macular degeneration (AMD). Currently, in the litera-
ture, statistical techniques like logistic regression, multivariable logistic regression, etc., are being
used to identify AMD risk factors by employing numerical/categorical data. However, artificial
intelligence (AI) techniques have not been used so far in the literature for identifying risk factors for
AMD. On the other hand, artificial intelligence (AI) based tools can anticipate when a person is at
risk of developing chronic diseases like cancer, dementia, asthma, etc., in providing personalized
care. AI-based techniques can employ numerical/categorical and/or image data thus resulting in
multimodal data analysis, which provides the need for AI-based tools to be used for risk factor
analysis in ophthalmology. This review summarizes the statistical techniques used to identify various
risk factors and the higher benefits that AI techniques provide for AMD-related disease prediction.
Additional studies are required to review different techniques for risk factor identification for other
ophthalmic diseases like glaucoma, diabetic macular edema, retinopathy of prematurity, cataract,
and diabetic retinopathy.

Keywords: age-related macular degeneration; artificial intelligence; statistical techniques; machine
learning; deep learning; identifying risk factors; personalized care

1. Introduction

Diabetes has become the fifth leading cause of blindness across the globe, due to which
ophthalmic diseases are a global concern. Retinal disorders can cause blindness, but early
diagnosis and timely treatment can prevent vision loss. Therefore, there is a dire need for
automated diagnosis systems to assist in the early diagnosis of ophthalmic disease. There
exist many retinal diseases. Cataract refers to the clouding of the lens, and in glaucoma
the optic nerve of the eye that provides information to the brain is damaged, which can
lead to gradual vision loss when left untreated and in diabetic retinopathy, where the
blood vessels of the eye are damaged owing to the complication of diabetes. Researchers
developed automatic detection systems to detect cataract [1–4], glaucoma [5], and diabetic
retinopathy [6,7].

Age-related macular degeneration is also a leading cause of visual impairment and
severe vision loss and is the most common form of maculopathy leading to vision loss
in people [8,9]. AMD affects individuals over the age of 55 years. According to the
world report on vision, of the estimated 196 million people suffering globally from age-
related macular degeneration, 10.4 million (5.3%) have moderate or severe distance vision
impairment or blindness from more severe forms of the condition [10].
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A meta-analysis [11] suggested that the number of people in Europe affected by
any AMD is expected to increase by 15% by 2050. AMD can be divided into subgroups
according to the presence/absence of neo-vascularization–dry/non-neo-vascular and
wet/neovascular AMD (nAMD). Several risk factors of AMD have been identified: age;
gender; race; obesity; hypertension; smoking; sunlight; diet; phenotypic; demographic;
environmental; genetic; alcohol consumption; and molecular risk factors; etc. [12–25].
Therefore, using risk factors as biomarkers for predicting AMD and AMD progression is a
significant area of research

Artificial intelligence (AI) in diagnosis and prognosis represents a paradigm shift in
healthcare. Artificial intelligence (AI) has already demonstrated proof-of-concept in medical
fields such as radiology, pathology, and dermatology, which are similar to ophthalmology
as they are deeply rooted in diagnostic imaging, which is the most prominent application
of AI in healthcare. AI in medicine has overwhelming advantages: it can detect and learn
features from large volumes of imaging data using efficient algorithms, assisting clinical
practice. It can foster personalized medicine and help reduce diagnostic and therapeutic
errors. In addition, AI can correlate novel features and recognize disease-specific patterns
to gain innovative scientific insight. AI aims to contribute to better care outcomes and
improve the productivity and efficiency of care delivery.

Many statistical methods have been designed to identify important risk factors from
clinical data in the context of risk factors. However, an AI-based risk identification tool
is needed to identify risk factors for ophthalmic diseases. This will nullify practitioner-
dependent biases seen commonly in assessments of patients and hence the conventional
methods of identifying risk factors. Novel treatments are being widely investigated in
several clinical trials for both forms of AMD [26,27]. A meta-analysis has shown promising
results for the diagnostic accuracy of the machine learning classifiers for AMD and its
implementation in clinical settings [28]. Hence, using AI with deep learning tools has
excellent potential in AMD, for diagnostic purposes–while allowing for a more efficient
and accurate approach–to prognostication of affected individuals and perhaps to directly
determine the efficacy of investigational medical products.

This review aims to summarize the literature related to techniques used to study risk
factors of AMD and investigate AI-based options available for the same.

The paper is organized as follows: Section 2 presents the methods used in this research.
Section 3 reviews statistical techniques used to identify risk factors for AMD. Section 4
provides a review of artificial intelligence techniques used in AMD diagnosis. Section 5
discusses the significance of AI over traditional statistical methods. Section 6 includes the
discussion, and Section 7 lists the conclusion.

2. Methods
2.1. Study Selection
Search Terms

We used PubMed as our primary electronic search engine for looking into published
articles related to AMD from 1991 to 2019. The search terms used were “age-related macular
degeneration,” “risk factors,” “prevalence,” and “incidence.” The search strategy used both
text word searches and subject headings. Additionally, initial search terms were updated
after searching the reference lists of relevant articles. The articles were restricted to only the
English language.

2.2. Inclusion and Exclusion Criteria

After preliminary searches, criteria were developed in an iterative process. We in-
cluded studies on AMD, which identified risk factors using different statistical techniques.
All risk factors studied, from clinical variables to genes, were considered for inclusion.
Studies that did not mention statistical techniques to identify the risk factors were excluded.
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2.3. Selecting Studies

A total of 118 articles were retrieved from PubMed after the initial search, of which
34 articles met this study’s objective and were selected for review. The flow diagram
describing the study selection is depicted in Figure 1. The year-wise classification of
included articles is shown in Figure 2.
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3. Statistical Techniques for Risk Factor Identification

In medical research, statistical analyses are an essential component that can further
the understanding of risk factors, treatment effects, and other aspects of the disease when
appropriately applied. Statistics has become an integral part of research in ophthalmology,
and its use to evaluate experimental data in ophthalmology has increased. Figure 3 depicts
the various application of statistical methods from a clinician’s perspective.
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Figure 3. Application of statistical methods concerning the perspective of a clinician.

Table 1 illustrates the studies included in this review, the overview of the risk fac-
tors identified, and the statistical tools used to identify them. The commonly identified
risk factors identified may be divided into ocular-based factors (focal hyperpigmenta-
tion, drusen, slow choroidal filling, cataract, hyperopia), susceptibility-based risk factors
(age, gender, race, hypertension, cardiovascular status, body mass index, obesity, and
cholesterol), exposure-related risk factors (smoking, alcohol, physical activity) and genetics
(Table 1). Figure 4 depicts the classification by percentage of techniques used in included
articles in Table 1.
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Table 1. The summarized review of statistical techniques for AMD.

Technique Source Study Type Country Sex (%male) Age Range
(Years) AMD Type Classification

Criteria Adjustment Risk Factors
Identified

Poisson Regression
Analysis Holz et al. [29] Prospective London 46.8 Older than 50 years

of age AMD Standardized
grading scheme

Age, sex
and smoking

Focal hyperpigmentation,
slow choroidal filling

and degree of confluence
of drusen

Unconditional
logistic analysis Tamakoshi et al. [30] Case-control Japan 100 Aged 50 to 69 years Neovascular AMD NR Age, sex Cigarette smoking

Univariate and
multivariate

analyses

Klein et al. [31] Population-based United States NR 43–86 years of age ARM WARMGS Age and gender

(No strong relation
between cardiovascular
disease and most of its

risk factors with the
incidence of lesions

associated with
age-related maculopathy)

Buch et al. [32] Population-based
cohort Denmark 36.2 Between 60 and

80 years ARM Modification of
WARMGS Age and gender

Age, cataract,
family history,

alcohol consumption,
the apolipoproteins A1

and B

Women’s Health
Initiative Sight
Exam ancillary

study [33]

Ancillary United States 0 63 years and older. Late AMD WARMGS Age
Smoking, use of calcium

channel blockers,
diabetes, and obesity

Logistic Regression

Chaine et al. [34] Case-control France 31 50–85 years AMD NR NR

Arterial hypertension,
coronary disease,

hyperopia,
light-coloured irises,

lens opacities and
previous cataract surgery

POLA study [35] Prospective France 43.8 60 years or over AMD International
classification * Age and gender

(No significant
association of late AMD

with a history of
cardiovascular disease,

diabetes, and
hypertension)

Vine et al. [36] Case-control United States 41.8 ≥65
Year old AMD NR

Age, CRP,
and homocysteine

level

CRP
and homocysteine level

AREDS study [37] Clinic-based
prospective cohort NR NR 55 to 80 years Neovascular AMD NR Age, gender, and

AREDS treatment Smoking, race, and BMI

Fraser-Bell et al. [38] Population-based,
cross-sectional United States 42 40 years old Early and

advanced AMD Modified WARMGS Age, sex and
smoking status

Smoking and heavy
alcohol consumption
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Table 1. Cont.

Technique Source Study Type Country Sex (%male) Age Range
(Years) AMD Type Classification

Criteria Adjustment Risk Factors
Identified

Gemmy et al. [39] Population-based,
cross-sectional

Singapore and
India

50.2 (Singapore) &
47.3 (India) 40–83 years Early AMD

International
classification of
the Wisconsin

age-related
maculopathy

Age, BMI, sex,
cholesterol,
myocardial
infarction,

hypertension,
central corneal

thickness
axial length, and

IOP.

Shorter axial length
higher BMI, previous

cataract surgery,
lower cholesterol
and hypertension.

Yip et al. [40] Prospective cohort United Kingdom 43.1 44–91 years AMD Modified Wisconsin
protocol *

Sex, education,
smoking,
and SBP.

Older age,
baseline CRP, and a

higher baseline
and follow-up levels

of HDL.

Raman et al. [41] Population-based
cross-sectional India NR ≥60 years Early and

late AMD

International ARM
epidemiological

study group
Age and gender

Age per year increase,
middle socioeconomic

status,
and smokeless tobacco

Myra et al. [42] Observational Australia 40 47–85 years Late AMD NR

Sex, age at fundus
photography,

index of relative
socioeconomic
disadvantage,

and the
Mediterranean

diet score

Current smokers

Connolly et al. [43] Cohort Ireland 44 ≥50 years AMD

A modified version
of the

international
classification

and grading system
for AMD

Age, sex, education
and CFH

Older age, the presence
of ARMS2 and CFH

risk alleles

Butt et al. [44] Cross-sectional United States NR 45 to 74 years Early and
late AMD

University of
Wisconsin

ocular
epidemiology
reading center

NR Age and
HDL cholesterol

Polychotomous
logistic

regression analyses

Hyman et al. [45] Case-control United States 40 Between the age
of 50 and 79 years Neovascular AMD Independent graders

at the reading center
Age, sex,

and energy intake.
Moderate to severe

hypertension

AREDS study [46] Case-control United States 44.2 Aged 60 to 80 years AMD

The Wisconsin
age-related

maculopathy
grading system #

Age and gender

Smoking, hypertension,
lens opacities, hyperopia,

female gender, less
education, white race,

and increased BMI
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Table 1. Cont.

Technique Source Study Type Country Sex (%male) Age Range
(Years) AMD Type Classification

Criteria Adjustment Risk Factors
Identified

Multivariable
logistic

regression models

Klein et al. [47] Cohort United States 45.6 Aged 21 to 84 years AMD WARMGS Age and sex Smoking and
serum HDL cholesterol

Shim et al. [48] Prospective cohort South Korea 60.5 Older than 50 years Early AMD
progression

International
age-related

maculopathy (ARM)
epidemiological
study group and

WARMGS

Age,
alcohol

consumption,
smoking status,
BMI, BP, HDL

cholesterol, and total
cholesterol

An increasing number
of drusen,

central drusen location,
hypertension,

and current smoking.

Erke et al. [49] Population-based,
cross-sectional Norway 43 65–87 years AMD and

late AMD
International
classification

system *

Age, sex, smoking
and SBP

Smoking, higher SBP,
physical inactivity,

overweight and obesity
in women

Standard Bivariate
and

Multivariate
Analyses

Krishnaiah et al. [50] Population-based,
cross-sectional India 47 Aged 40 to 102 years AMD

International
classification

and grading system

Age, area
and gender

Ageing, smoking, prior
cataract surgery, and
presence of cortical

cataract.

Multivariate
stepwise

logistic regression

Choudhury
et al. [51]

Population-based
prospective cohort United States 39.1 Aged 40 or older Any AMD and

progression of AMD Modified WARMGS Age

Older age, current
smoking

and higher pulse
pressure

Jonasson et al. [52] Population-based
prospective cohort Iceland 42.4 Aged 67 years

and older AMD Modification of
WARMGS Age and sex

Age, smoking,
plasma HDL cholesterol,

BMI and female sex

Saunier et al. [53] Population-based
cohort France 37.3 73 years or older Early to

advanced AMD

International
classification *

and to a
modification of the

grading scheme
used in the

multi-ethnic study of
atherosclerosis @

Age and sex

Fellow eye, smoking,
plasma HDL cholesterol

concentration,
and CFH Y402H

genotype

Multivariate Cox
regression survival

analysis
Lechanteur et al. [54] Retrospective Netherlands 34.3 54.3–93.4 years. End-stage AMD NR

Age, education, sex,
baseline AMD grade,

smoking,
BMI,

six genetic variants
and associated
genotypes, and

treatment groups

Sex, smoking status, age,
to a lesser extent BMI,

CFI (rs10033900) and LPL
(rs12678919)
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Table 1. Cont.

Technique Source Study Type Country Sex (%male) Age Range
(Years) AMD Type Classification

Criteria Adjustment Risk Factors
Identified

Generalized
estimating

equation logistic
regressions

Cougnard et al. [55] Population-based France 38.1 65 years and older Early and
any AMD

International
classification *@

Age, educational
level, sex,

BMI, smoking,
lipid-lowering

medication use for
all relevant genetic

polymorphisms,
cardiovascular

disease and diabetes,

HDL,
TC, LDL,

higher HDL,
and TG

Foo et al. [56] Population-based
cohort Singapore 49.7 NR Early AMD WARMGS

Age, gender,
hypertension, total

cholesterol,
cardiovascular
disease, BMI

categories,
smoking status,

alcohol consumption
frequency,

serum CRP
and ARMS2
genetic loci.

Heavy alcohol drinking,
underweight BMI,
ARMS2 rs3750847

homozygous genetic loci
carrier, and

cardiovascular
disease history.

Wang et al. [57] Population-based
cohort Australia 39.2 49 years or older AMD WARMGS

Age, sex, smoking
status

and the correlation
between eyes

Eyes with indistinct soft
drusen, large drusen,
hyperpigmentation or

a large area of the macula
covered by drusen.

Logistic regression
analyses

and
Mantel-Haenszel

analysis

Aoki et al. [58] Cross-sectional Japan 60 65–74 years and
75–84 years AMD

Simplified severity
scale for AMD

from the AREDS
Age CFH I62V and

ARMS2 A69S variant

Survival analysis
and

Cox proportional
hazards regression

Hallak et al. [59]
Retrospective,

post hoc
secondary analysis

United States 40.8 50 years or older Neovascular AMD NR NR

Mean drusen
reflectivity, the total

en-face area of the drusen
restricted to a circular

area of 3 mm
from the fovea and one

genetic variant
(rs61941274)
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Table 1. Cont.

Technique Source Study Type Country Sex (%male) Age Range
(Years) AMD Type Classification

Criteria Adjustment Risk Factors
Identified

Others

Hammond et al. [60] Case-control United States 47 NR Neovascular AMD NR NR Smokers

Alain et al. [61] Case-control France 22.6 Mean age 77 years AMD WARMGS NR Perturbations of HDL
metabolism

Tomany et al. [62] Population-based
cohort

Australia,
Netherlands,

and the United
States

43 43–95 years AMD

Wisconsin and
international
age-related

maculopathy
grading systems

Age, gender (when
appropriate),

data source, and
follow-up time

Smoking

AMD, age-related macular degeneration; ARM, age-related maculopathy; WARMGS, the Wiscon-sin age-related maculopathy grading system; CRP, C-reactive protein; BMI, body mass
index; POLA, Pathologies Oculaires Liées à I’Age; AREDS, Age-Related Eye Disease Study; IOP, intraocular pressure; SBP, systolic blood pressure; HDL, high-density lipoprotein;
CFH, complement factor H; ARMS2, age-related maculopathy susceptibility 2; BP, blood pressure; SBP, systolic blood pressure; LPL, lipoprotein lipase; CFI, complement factor I; LDL,
low-density lipoprotein; TC, total cholesterol; TG, triglycerides. *: Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, et al. An international classification and grading
system for age-related maculopathy and age-related macular degeneration. The international ARM epidemiological study group. Surv Ophthalmol. 1995;39:367–74. #: Klein R, Davis
MD, Magli YL, et al. The Wisconsin age-related maculopathy grading system. Ophthalmology 1991;98:1128–34. @: Klein R, Klein BE, Knudtson MD, et al. Prevalence of age-related
macular degeneration in 4 racial/ethnic groups in the Multi-Ethnic Study of Atherosclerosis. Ophthalmology. 2006;113(3): 373–380.
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The review identified 34 prospective studies investigating risk factors for AMD. There
was good evidence that risk factors like smoking, alcohol consumption, previous cataract
surgery, age, high-density lipoprotein (HDL) cholesterol, BMI, female gender, and focal
hyper-pigmentation were more often associated with being independent risk factors for
AMD. One study showed a significant association between cardiovascular disease and
the risk factors associated with AMD. In contrast, two studies showed no significant
association between cardiovascular disease and its risk factors with AMD. Therefore, more
investigation is needed to identify the association of cardiovascular disease and its risk
factors with AMD.

4. Artificial Intelligence in AMD

In AMD pathogenesis, genetics plays a critical role. Many variants associated with
AMD have been identified by sequencing studies and genome-wide association studies [63].
Figure 5 depicts the various applications of artificial intelligence from a clinician’s perspec-
tive. The input to AI can be data of the following types: numerical/categorical, fundus
images, and optical coherence tomography (OCT) volumes. The most common imaging
modalities in AI for AMD are OCT, color fundus image, and fundus autofluorescence (FAF).
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Based on the input to the AI techniques, the application of AI can be divided into the
following categories:

4.1. Lesion Detection, Quantification, and Extraction

A European study was done by Grinsven et al. [64] to detect and quantify drusen on
color fundus photographs in 407 eyes without AMD or with early to moderate AMD. This
study demonstrated that for detecting the presence of drusen and estimating the area, it
achieved an intraclass correlation coefficient (ICC) larger than 0.85 and was in keeping
with experienced human observers. Consequently, another algorithm was explored for the
automatic detection of reticular pseudo-drusen (RPD) [65]. Automated RPD quantification
achieved an ICC of 0.7, similar to the observers. Consequently, Liefers et al. [66] used a
deep learning model to segment and quantify retinal features in individuals with atrophic
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AMD and nAMD. The mean ICC obtained was 0.66 ± 0.22 and 0.62 ± 0.21 for the model
and observers, respectively.

4.2. Automated Image Segmentation

Schmidt-Erfuth et al. [67] analyzed OCT volume scans features–intraretinal cystoid
fluid (IR), subretinal fluid (SRF), and pigment epithelial detachments (PED) to evaluate the
predictive potential of machine learning in terms of best-corrected visual acuity (BCVA). A
modest correlation was found between BCVA and OCT at baseline (R2 = 0.21). Subsequently,
the same group used a deep learning method and a convolutional neural network (CNN)
to accurately measure fluid response to anti-vascular endothelial growth factor (VEGF)
treatment in neovascular AMD [68] in the HARBOR study. For this purpose, the group
used automatic volumetric quantification data of fluid volumes in the OCT. Subsequently,
the authors also validated the retinal fluid volumes (intraretinal fluid (IRF), subretinal fluid
(SRF), and pigment epithelial detachment (PED)) as important biomarkers in neovascular
AMD [69]. Lee et al. [70] utilized a deep learning framework to perform automated diag-
nosis and segmentation of retinal diseases. They created a key OCT image segmentation
model. The authors applied this methodology in 14,884 clinically heterogenous scans.

4.3. AMD Classification

Yim et al. [71] combined 3D OCT images and automatic tissue maps in individuals
with nAMD in one eye to predict progression in the contralateral eye to nAMD. This system
outperformed five out of six experts and achieved a sensitivity of 80% at 55% specificity and
34% specificity at 90% sensitivity. Yan et al. [72] used data of disease severity phenotypes
and fundus images available at baseline and follow-up visits over 12 years from AREDS to
predict late AMD progression. They achieved an average AUC value of 0.85 when fundus
images were coupled with genotypes to predict late AMD progression. Only fundus
images showed a middle area under the ROC curve value of 0.81. Peng et al. [73] combined
deep learning (DL) and survival analysis to develop, train, and validate a framework for
predicting individual risk of late AMD. The model achieved a 5-year C-statistic of 86.4
when validated against an independent test data set of 601 participants, which substantially
exceeded that of retinal specialists using two existing clinical standards of 81.3 and 82.0,
respectively. Ajana et al. [74] used genotypic, lifestyle, and phenotypic factors to develop
a prediction model for advanced AMD. The training data set included Rotterdam Study
I [75] (RS-I) enrolled participants. The validation dataset included antioxidants, lipides
essentiels, nutrition et maladies oculaires [76] (ALIENOR) study enrolled participants. The
cross-validated AUC estimation in RS-I was 0.92 at five years, 0.92 at ten years, and 0.91 at
15 years. In ALIENOR, the AUC reached 0.92 at five years. Seddon et al. [77] calculated the
AMD progression risk score to discriminate progressors from nonprogressors to advanced
AMD based on demographic, ocular, behavioral, treatment, and genetic factors. They
obtained a C-statistic score of 0.83, compared to C statistics for coronary heart disease
(CHD), 0.79 for white men, and 0.83 for white women in the Framingham study cohort,
and somewhat lower in several replication samples [78].

Seddon et al. [79] included time-varying progression rates up to 12 years, macular
drusen size in both eyes at baseline, AMD status at baseline, six genetic variants, and
environmental and demographic factors to build a model for AMD progression. The
model’s AUC for progression at ten years with drusen size, environmental covariates, and
genetic factors was 0.915 in the total sample. Klein et al. [80] constructed a risk assessment
model to develop advanced AMD incorporating phenotypic, demographic, environmental,
and genetic risk factors. The model did well on performance measures, with excellent
discrimination (C statistic = 0.872) and excellent calibration and overall performance (Brier
score at five years = 0.08). Seddon et al. [81] developed an online application and a predic-
tive model. The online application assists in clinical decision-making and is available at
www.seddonamdriskscore.org. The model included age, ten genetic loci, sex, BMI, educa-
tion, baseline AMD status, and smoking, and the AUC for progression to advanced AMD

www.seddonamdriskscore.org
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over ten years was 91.1%. Spencer et al. [82] combined the results from the grammatical
evolution of neural networks (GENN) and logistic regression models using a consensus
approach to build an algorithm using a constellation of environmental risk factors and
knowledge of each individual’s particular genetic profile, which was successful in dif-
ferentiating between low and high-risk groups for AMD with a sensitivity of 77.0% and
specificity of 74.1%.

Fraccaro et al. [83] used black-box methods, such as random forests, AdaBoost, and
SVM, as well as white-box techniques, including decision trees and logistic regression,
to develop models to diagnose AMD, including demographics, depigmentation area,
and, for each eye, presence/absence of significant AMD-related clinical signs (retinal
pigment epithelium, soft drusen, defects/pigment mottling, subretinal fluid, subretinal
hemorrhage, macula thickness, subretinal fibrosis, macular scar). The model’s logistic
regression, AdaBoost, and random forests achieved an AUC of 0.92, followed by decision
trees and SVM with an AUC of 0.90. Shin et al. [84] used ocular and systemic factors
to develop a risk prediction model for the progression of AMD in Koreans. The model
achieved a C statistic of 0.84, indicating excellent predictive power. The fundus images
were used for AMD grading; they can also be used with genotypes to predict the probability
of late AMD progression. Such predictions can slow the disease progression by urging the
patients to start preventative care beforehand since late AMD is irreversible.

The review of AI techniques for AMD as described in Sections 4.1–4.3 is summarized
in Table 2.

Table 2. The summarized review of AI techniques for AMD.

Source Technique Dataset Metrics Disease

Grinsven et al. [64] Supervised machine
learning algorithm

A total of 407 images of different
eyes with nonadvanced stages of

AMD (i.e., stages 1, 2, and 3
according to the criteria shown in
Table 1), with sufficient grading
quality for human graders, were
selected consecutively from the

European genetic database
(EUGENDA), a large multicenter

database for clinical and molecular
analysis of AMD.

AUROC values of 0.948
and 0.954 AMD risk assessment

Grinsven et al. [65] Machine learning
algorithm

A set of subjects with and without
RPD were selected from the

Rotterdam Study. A prospective
cohort study aimed to investigate
risk factors for chronic diseases in

the elderly.

AUROC value of 0.941 Reticular pseudo drusen
(RPD) detection

Liefers et al. [66] Deep learning model

This study’s imaging data (OCT B
scans) were obtained from 30,337
patients at five centres in the UK
(NRES Committee London, City
Road and Hampstead, London).

On 11 of 13 features, the
model obtained a mean
Dice score of 0.63 ± 0.15,

compared with 0.61 ± 0.17
for the observers. ICC was

0.66 ± 0.22, compared
with 0.62 ± 0.21 for the

observers

Feature segmentation
associated with

neovascular and atrophic
AMD

Schmidt-Erfuth
et al. [67]

Random forest
regression algorithm

Data (spectral-domain (SD) OCT
volume scans) of 614 evaluable
patients receiving intravitreal

ranibizumab monthly or pro re
nata according to

protocol-specified criteria in the
HARBOR trial were studied.

At baseline, OCT features
and BCVA were correlated

with R2 = 0.21.

Predict best-corrected
visual acuity

(BCVA) outcomes
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Table 2. Cont.

Source Technique Dataset Metrics Disease

Schmidt-Erfuth
et al. [68]

Deep learning method
(convolutional neural

network (CNN))

SD-OCT scans of 1095 patients
enrolled in the HARBOR trial NR

Measure fluid response to
anti-vascular endothelial

growth factor (VEGF)
treatment in

neovascular AMD

Keenan et al. [69] Artificial Intelligence
Algorithms

Data from (a) the HARBOR trial,
(b) a tertiary referral retinal centre

in the United Kingdom, (c) a
tertiary referral retinal centre in

Israel, and (d) the AREDS2 10-year
follow-up. were studied,

Large ranges that differed
by population were

observed at the
treatment-naive stage:

0–3435 nL (IRF), 0–5018 nL
(SRF), and 0–10,022 nL

(PED).

Validation of retinal fluid
volumes (IRF, SRF

and PED)

Lee et al. [70]
Automated

segmentation
algorithm with a CNN

A dataset including 930 B-scans
from 93 eyes of 93 patients

with nAMD.

Dice coefficients for
segmentation of IRF, SRF,

SHRM, and PED were
0.78, 0.82, 0.75, and 0.80

To quantify and detect
intraretinal fluid (IRF),
subretinal fluid (SRF),

pigment epithelial
detachment (PED), and

subretinal hyperreflective
material (SHRM)

with nAMD

Yim et al. [71] Artificial intelligence
system

A cohort of 2,795 patients (OCT
scans) across seven different sites

who were first diagnosed with
nAMD between June 2012 and

June 2017

Sensitivity of 80% at 55%
specificity and 34%
specificity at 90%

sensitivity

Progression to exudative
wet AMD

Yan et al. [72]
Modified deep

convolutional neural
network

The data consisted of 52
AMD-associated genetic variants
and 31,262 fundus images from

1,351 subjects from the age-related
eye disease study (AREDS) fundus
images coupled with genotypes.

AUC value of 0.85 AMD progression

Peng et al. [73] Deep learning (DL)
and survival analysis AREDS and AREDS2 5-year C-statistic 86.4 Late AMD

Ajana et al. [74]
Prediction model used

bootstrap lasso for
survival analysis

The training data set included
Rotterdam study I (RS-I) enrolled

participants.

AUC estimation in RS-I
was 0.92 at five years,

0.92 at ten years and 0.91
at 15 years

Advanced AMD

Seddon et al. [77] Predictive model

The data was from 1446
individuals who

participated in the multicenter
AREDS, of which 279 progressed
to advanced AMD and 1167 did
not progress during 6.3 years of

follow-up

C statistic score of 0.83 Prevalence and
incidence of AMD

Seddon et al. [79] Model of AMD
progression

Data consisted of 2937 individuals
in the

AREDS
AUC 0.915 in the

total sample AMD Progression

Klein et al. [80] Risk assessment
model

Longitudinal data from 2846
participants

in the AREDS

C statistic = 0.872.
Brier score at
5 years = 0.08

Advanced AMD

Seddon et al. [81] Predictive model
and online application

Data from the AREDS for
Caucasian participants were used

for this analysis
AUC- 91.1 Progression to

advanced AMD

Spencer et al. [82]

Logistic regression
and

grammatical
evolution of

neural networks
(GENN) models

A VM family dataset, the
population-based age-related

maculopathy ancillary (ARMA)
study cohort, and

Vanderbilt-Miami (VM)
clinic-based case-control dataset.

Sensitivity of 77.0%
and specificity of 74.1%

High- and low-risk
groups for AMD
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Table 2. Cont.

Source Technique Dataset Metrics Disease

Fraccaro et al. [83]

Random forests,
AdaBoost and SVM,
as well as white-box
methods, including
decision trees and
logistic regression

Data on healthy subjects, study
participants, and patients with

macular diseases were collected
from March 2013 to January 2014
during routine clinical practice at
the Medical Retina Center of the

University Eye Clinic of
Genoa (Italy).

Logistic Regression,
AdaBoost, and random
forests achieved a mean

AUC of 0.92, followed by
decision trees and SVM

with a mean AUC of 0.90.

Diagnose AMD

Shin et al. [84] Risk prediction model

The study sample included 50
years of age or older individuals

counting 10,890; 318 (2.92%)
presented with early AMD

findings in baseline examinations.

C statistic-0.84 Progression of AMD

5. Significance of AI over Traditional Statistical Methods
Open Problems

Statistical methods can work only with numerical or categorical data. In contrast,
artificial intelligence (AI) can detect AMD automatically. AI techniques can assist in
extracting the vascular skeleton and thus compute features like tortuosity, fractal index,
thickness, and vessel density of blood vessels in a fundus image. AI can also detect and
quantify drusen present in a fundus image. Moreover, automatic image segmentation can
also be performed using AI.

Traditional statistical methods rely on strong assumptions, such as the additivity of
the parameters within the linear predictor, the type of error distribution, and proportional
hazards. These assumptions are often overlooked in the scientific literature and are not
met in clinical practice. For instance, when studying survival in gastric cancer patients, the
assumption of proportional hazards has been violated, as nodal status and the prognostic
significance of the depth of tumor invasion tend to decrease with increasing follow-up. At
the same time, the loss of the TP53 gene and the histology acquire prognostic importance
after at least two years of follow-up [85]. On the other hand, machine learning (ML)
techniques in AI have considerable flexibility and are free from a priori assumptions.

Traditional statistical approaches often fail because they make an a priori selection of
the variables to be considered. For instance, a Cochrane review in gastric cancer surgery
dealing with the extension of lymphadenectomy was later withdrawn and criticized because
it failed to assess the quality of surgical procedures under comparison [86]. Whereas in ML
any number of features can be chosen based on all the available information.

Traditional regression models show several limitations in choosing the most important
risk factors when there are many predictors and few observations, such as in transcrip-
tomics, genomics, metabolomics, and proteomics [87]. In contrast, ML is particularly suited
for such situations. Therefore, it is possible to use numerous approaches to apply small
datasets in building ML predictive models.

Traditional statistical methods can only address interactions between single potential
confounders and the primary determinant. For instance, in gastric cancer patients, the
effect of the surgical approach on survival is modulated by histology and tumor stage [88].
However, within a Cox model, it is not easy to highlight this second-order interaction [89],
as the interaction between lymphadenectomy and histology becomes apparent after the
first two years of follow-up. ML can also efficiently address such interactions. Furthermore,
ML algorithms can analyze various data types (imaging data, laboratory findings, and
demographic data) and integrate them into predictions for illness risk, prognosis, diagnosis,
and appropriate treatments [90].

6. Discussion

Out of the included studies, the review found that for identifying risk factors, 32.35%
used logistic regression, 8.82% of each used univariate & multivariate analyses, multivari-
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able logistic regression, multivariate stepwise logistic regression, generalized estimating
equation logistic regressions, 5.88% used polychotomous logistic regression and 2.94% of
each used Poisson regression, unconditional logistic analysis, standard bivariate, and mul-
tivariate analyses, multivariate Cox regression, logistic regression, and Mantel-Haenszel
analysis, survival analysis and Cox proportional hazards regression. The classification by
number and percentage of techniques used in included articles is depicted in Figure 3.

AI techniques often used are logistic regression and deep learning for predicting AMD.
The metrics evaluated by the AI techniques are not comparable due to the different datasets
used in these studies. The prediction of AMD can be done by acquiring dataset of OCT
volumes, color fundus images, and clinical data of risk factors. However, there is a tradeoff
between the cost of obtaining the dataset and the metrics (accuracy, AUC, etc.) of the AI
models received to predict AMD. In this context, the cost of obtaining OCT volumes is
higher than obtaining color fundus images which is higher than obtaining clinical risk
factor data. In this context, Yim et al. [71] demonstrated that an AI system using deep
learning which combined 3D OCT images and automatic tissue maps in individuals with
nAMD in one eye to predict progression in the contralateral eye to nAMD. This system
outperformed five out of six experts and achieved a sensitivity of 80% at 55% specificity
and 34% specificity at 90% sensitivity. Grinsven et al. [64] developed a supervised learning
algorithm to detect and quantify drusen on color fundus photographs without AMD or
with early to moderate AMD. The system achieved areas under the receiver operating
characteristic (ROC) curve of 0.948 and 0.954 for automatic AMD risk assessment, which
was similar in performance compared to human observers. Moreover, Ajana et al. [74] used
genotypic, lifestyle, and phenotypic factors to develop a prediction model for advanced
AMD and achieved an AUC achieved of 0.92. Therefore, using OCT volumes, fundus
images, and clinical data result in similar performance if the metrics are compared to
predict presence of AMD. If a method performs only moderately better using OCT volumes
of data as compared to using fundus or clinical data, then the method may not prove
economical. Therefore, there is always a tradeoff between the cost of obtaining the data
and the metrics achieved by the AI models to predict AMD.

AI-based methods can be vital in identifying potential biomarkers for guiding targeted
therapy in ophthalmology. Many risk factors are embedded in the high dimensional data
produced by various imaging modalities. AI can process this high-dimensional data to
find some risk factors for AMD, whereas statistical methods do not have high-dimensional
data as input. Saha et al. [91] used deep learning for the automated identification of these
OCT-based AMD biomarkers.

Despite the AI-based models showing a high level of accuracy in many of the diseases
in ophthalmology, there are still many technical and clinical challenges for real-time de-
ployment and clinical implementation of these models in clinical practice. These challenges
could arise in both the research and clinical settings. Many studies’ training datasets are
from relatively homogeneous populations [92–94]. AI training and testing using retinal
images are subject to numerous variabilities, including the field of view, the width of the
field, image quality, image magnification, and participant ethnicities. Diversifying the data
set regarding image-capture hardware and races could help address this challenge [95].

The limited availability of large amounts of data is another challenge in developing
AI models in ophthalmology. The software will likely produce inaccurate outcomes if the
training set of images given to the AI tool is too small or not representative of natural
patient populations. In addition, more evidence on obtaining high-quality ground-truth
labels is required for different imaging tools.

Many DL systems in AI have reported a robust diagnostic performance, although
some papers did not show how the power calculation was performed for the independent
data sets. A power calculation should consider the following: the prevalence of the
disease, type 1 and 2 errors, CIs (confidence intervals), and desired precision. The desired
operating threshold should be first preset on the training set, followed by an analysis
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of performance metrics such as sensitivity and specificity on the test set to assess the
calibration of the algorithm.

AI is adopted in healthcare, but it is still not on the horizon as clinicians and patients are
concerned about AI and DL being ‘black boxes.’ It is not only the quantitative algorithmic
performance in healthcare but the underlying features essential to improve physicians’
acceptance through which the algorithm classifies the disease. Generating heat maps
highlighting the regions of influence on the image which contributed to the algorithmic
conclusion may be the first step, although such maps are often challenging to interpret [96].
Explainable artificial intelligence (XAI) can also be used, a set of methods and processes that
allows human users to comprehend and trust the results and output created by machine
learning algorithms.

There are some limitations to the review. First, the review is limited to a certain
number of studies and the associated risk factors. Second, the review is limited to only
AMD. It can be further extended to other ophthalmic diseases like glaucoma, retinopathy
of prematurity, cataract, diabetic retinopathy, etc.

7. Conclusions

To the best of our knowledge, this review is the first of its kind which analyzes the tech-
niques for identifying the risk factors and predicting the disease using risk factor datasets
in ophthalmology. Other reviews in the literature find modifiable and non-modifiable
risk factors related to AMD. However, such a review of techniques to identify risk factors
for AMD is so far not looked upon. In the study, logistic regression was found as the
most used technique to identify risk factors for AMD. This review has highlighted that
ML techniques can also be used for similar purposes. The study has demonstrated that
statistical methods were used to determine the risk factors for AMD to a large extent.
AI-based tools have already started managing epidemics and discovering potential drugs.
Therefore, AI technology is more suitable to play a significant role in identifying risk factors
in ophthalmology. To a reasonable extent, AI techniques play an essential role in predicting
AMD. They have great potential to be used for personalized care in diagnosing, prognosis,
and treating diseases in ophthalmology. Future studies can focus on novel analysis methods
and biomarkers diagnosing AMD. For example, many patients with diabetic retinopathy
do not respond well to current therapeutics. Therefore, new analytical techniques related
to molecular biomarkers should accelerate progress in recent research [97]. In this context,
erythrocyte membrane fluidity has been found as a biomarker for diabetic retinopathy [98].
Novel segmentation methods should be developed to unveil metabolic features as future
work in this research [99,100].
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