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Abstract: The increasing use of computed tomography (CT) and cone beam computed tomogra-
phy (CBCT) in oral and maxillofacial imaging has driven the development of deep learning and
radiomics applications to assist clinicians in early diagnosis, accurate prognosis prediction, and
efficient treatment planning of maxillofacial diseases. This narrative review aimed to provide an
up-to-date overview of the current applications of deep learning and radiomics on CT and CBCT
for the diagnosis and management of maxillofacial diseases. Based on current evidence, a wide
range of deep learning models on CT/CBCT images have been developed for automatic diagnosis,
segmentation, and classification of jaw cysts and tumors, cervical lymph node metastasis, salivary
gland diseases, temporomandibular (TMJ) disorders, maxillary sinus pathologies, mandibular frac-
tures, and dentomaxillofacial deformities, while CT-/CBCT-derived radiomics applications mainly
focused on occult lymph node metastasis in patients with oral cancer, malignant salivary gland
tumors, and TMJ osteoarthritis. Most of these models showed high performance, and some of them
even outperformed human experts. The models with performance on par with human experts have
the potential to serve as clinically practicable tools to achieve the earliest possible diagnosis and
treatment, leading to a more precise and personalized approach for the management of maxillofacial
diseases. Challenges and issues, including the lack of the generalizability and explainability of deep
learning models and the uncertainty in the reproducibility and stability of radiomic features, should
be overcome to gain the trust of patients, providers, and healthcare organizers for daily clinical use of
these models.

Keywords: artificial intelligence; deep learning; radiomics; computed tomography; cone-beam
computed tomography; maxillofacial diseases

1. Introduction

Technological advances are changing many aspects of our society and industries, in-
cluding healthcare. Innovative digital technologies such as computer-aided
design/manufacturing, rapid prototyping, augmented/virtual reality, and “omics” anal-
ysis have been increasingly used in several medical and dental disciplines for diagnostic
and therapeutic purposes [1]. Artificial intelligence (AI) is one of the most innovative
and disruptive technologies that has the potential to revolutionize current clinical practice
and research. The concept of AI was coined in the 1950s, referring to the idea of building
machines that can imitate human behavior to perform complex tasks [2]. Since the 1950s,
there were two “AI winters” in the 1970s and late 1980s, which occurred mainly due to
insufficient computational power and resources, leading to a huge gap between the expec-
tations and the actual outcomes of AI models of the time (i.e., knowledge-based expert
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systems) [2,3]. In the late 2000s, the advent of advanced graphics processing units reignited
the enthusiasm for the development of various AI technologies and applications, such as
intelligent robotics, autonomous vehicles, machine learning, computer vision, and natural
language processing (Figure 1) [4].
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Figure 1. Artificial intelligence and its subfields.

Machine learning is a subfield of AI that enables algorithms to learn the intrinsic
statistical patterns in a set of data without being explicitly programmed and then to make
predictions on unseen data [2]. Due to the characteristics of data (e.g., clinical, biological,
and radiographic data) and the major problems left unsolved in medicine and dentistry
(e.g., early diagnosis, accurate prediction, and efficient treatment of specific diseases),
machine learning and its subset deep learning are the most widely employed techniques
in these fields [3]. Deep learning, a subset of machine learning, specifically uses multi-
layered artificial neural networks to learn representations of data with multiple levels of
abstraction [5]. Deep learning algorithms are trained to automatically extract hierarchical
features in complex data and optimize the weighted parameters, leading to a more efficient
learning process and minimized prediction errors. Within deep learning, the convolutional
neural network (CNN) is a class of artificial neural networks that has been frequently used
for image-related tasks, such as automated detection, segmentation, and classification of
complex patterns in two-dimensional (2D) and three-dimensional (3D) images [3].

Radiomics is an emerging translational field in quantitative imaging, related to ma-
chine learning. It is capable of quantifying the textural information of specific regions
of interest in digital diagnostic images through mathematic extraction of signal intensity
distribution and pixel/voxel interrelationships that cannot be perceived by the human
eye [6]. Based on high-throughput analysis of quantitative imaging features for the charac-
terization of tissues, radiomics applications, similar to other omics clusters (e.g., genomics,
proteomics, and metabolomics), have the potential to promote personalized diagnosis and
management of interested diseases or conditions [5]. Currently, a wide range of radiomics
models have been developed in many medical fields to assist clinicians in the screening,
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diagnosis, risk stratification, treatment response monitoring, and outcome prediction of
malignancies, such as nasopharyngeal, lung, and breast cancer [6–8]. In general, AI and
radiomics are interconnected and mutually reinforcing. AI, particularly machine learning,
can serve as a powerful data modeling tool to analyze a massive number of radiomic fea-
tures and parameters, while interpretation of radiomic features may provide information
to better understand the decision-making process of a trained AI model.

Radiographic examination is an integral component in the diagnosis and manage-
ment of most dento-maxillofacial diseases, and so a great amount of digital radiographic
images are readily available in the archiving systems and associated databases of many
hospitals and clinics. Hence, the majority of AI models in dentistry have been devel-
oped based on radiographic images to assist dentists in the diagnosis (e.g., detection of a
certain pathology), treatment planning (e.g., segmentation of anatomical structures and
pathologies), and prediction (e.g., classification of individuals with a higher possibility of
good/poor treatment outcome) of various dental and maxillofacial diseases [3]. Computed
tomography (CT) and cone-beam computed tomography (CBCT) are the most common 3D
imaging modalities used in many dental specialties, especially in oral and maxillofacial
surgery. Compared with conventional 2D dental radiography (i.e., periapical, bitewing,
panoramic, and cephalometric radiography), CT/CBCT allows for the visualization of
anatomical structures and pathologies in 3D, thus capable of providing not only higher
diagnostic accuracy but also more detailed information regarding the true morphology,
volume, and location of the lesions. As CBCT has gained increasing popularity in daily
dental practice, this imaging modality is considered as an ideal data source for develop-
ing clinically practicable AI tools to improve the accuracy and efficiency of the diagnosis
and treatment of maxillofacial diseases [9]. According to a recent systematic review, the
number of AI models developed on CBCT images for dento-maxillofacial applications
has increased dramatically over the years since the mid-2010s, particularly using deep
learning [10]. Therefore, this narrative review aimed to provide an up-to-date overview of
the current applications of deep learning and radiomics on CT and CBCT for the diagnosis
and management of maxillofacial diseases.

2. Deep Learning and Radiomics on CT/CBCT for the Diagnosis and Management of
Maxillofacial Diseases

Maxillofacial diseases include both odontogenic and nonodontogenic diseases in the
jaws and related structures including salivary glands, temporomandibular joints (TMJs),
and facial muscles. Due to their anatomical complexity and proximity to critical vascular
and neural structures, 3D imaging (such as CT/CBCT) is often required in the diagnostic
and treatment planning processes, serving as one of the essential components of digital
workflows for patient management. Thus, a wide range of deep learning and radiomics
applications have been developed based on CT/CBCT images for diagnosis, treatment
planning, and prediction of various maxillofacial diseases (Tables 1 and 2).

2.1. Jaw Cysts and Tumors

Incidental findings of lesions in the jaws are often observed on routine dental radio-
graphic examination. These lesions are usually cystic in nature and thus challenging for
general practitioners to differentiate between cysts and tumors on radiographic images.
Motivated by the need for more timely and accurate diagnosis of maxillofacial cysts and tu-
mors, several studies have developed AI, especially deep learning, models on 2D panoramic
radiographs for automatic diagnosis of various cysts and tumors of the jaws [11–15]. Most
of them focused on the lesions including ameloblastoma, odontogenic keratocysts (OKCs),
dentigerous cysts, radicular cysts, and bone cysts, and the proposed models obtained high
diagnostic accuracy on par with oral–maxillofacial surgeons.

Differentiating various types of jaw cysts and tumors on CBCT using deep learning has
been proposed by several groups [16–18]. Lee et al. developed CNN models for automatic
detection, segmentation, and classification of OKCs, dentigerous and periapical cysts on
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panoramic and CBCT images [16]. Not surprisingly, the model trained on CBCT images
outperformed the one on panoramic radiographs, which may result from the advantages
of CBCT in depicting the lesion morphology in 3D with more quantitative features in each
voxel of the lesion region. Bispo et al. [17] and Chai et al. [18] developed CNN models
to automatically classify between ameloblastoma and OKCs on CT images, respectively.
Chai et al. compared the model’s performance with seven senior and thirty junior oral–
maxillofacial surgeons. The model outperformed both senior and junior oral-maxillofacial
surgeons with an accuracy of 85% in a short execution time of nearly 3 milliseconds per
scan. These deep learning models have the potential to assist general dental practitioners
in identifying different types of jaw cysts and tumors on CBCT images during daily dental
practice, which would facilitate timely referral to oral–maxillofacial specialists and thus
allow for the earliest possible treatment.

2.2. Lymph Node Metastasis

Oral squamous cell carcinoma (OSCC) is the sixth most frequent malignancy globally
and associated with a high rate of invasiveness and lymph node metastasis [19]. Cervical
lymph node metastasis has been reported as one of the major prognostic factors in OSCC
patients that is directly correlated with a reduced overall survival rate. Patients with
OSCC routinely have prophylactic neck dissection, as occult lymph node metastasis is not
uncommon in clinical practice [20]. However, the neck dissection may result in severe func-
tional and sensory complications (such as accessory or facial nerve paralysis and stiffness
of the shoulder and neck), which considerably influence the patients’ quality of life [20].
Therefore, the controversy in the prophylactic neck dissection for patients with OSCC
drives the search in non-invasive approaches with high accuracy in identifying lymph
node metastasis. Contrast-enhanced CT is one of the most common imaging modalities
used for the diagnosis of lymph node metastasis in OSCC patients. Size, necrosis, and
extranodal extension are the main features for identifying cervical lymph node metastasis.
However, complete detection of all metastatic lymph nodes using CT images based only
on the perceivable nodal features is still challenging [21]. AI seems to be able to promote
the development of a non-invasive approach for accurate identification of the nature of
cervical lymph nodes in patients with OSCC.

Ariji et al. first developed a CNN model to differentiate histopathologically proven
metastatic cervical lymph nodes from the negative ones on cropped contrast-enhanced
CT images of OSCC patients [22]. The model achieved favorable accuracy with an AUC
(area under the curve) of 0.80, which is similar to the level of two experienced radiologists
(AUC of 0.83). Subsequently, Ariji et al. further proposed a CNN model to differentiate
between metastatic lymph nodes with and without extranodal extension on cropped
contrast-enhanced CT images of OSCC patients [23]. The model achieved high accuracy
with an AUC of 0.82 and outperformed four experienced radiologists (AUCs of 0.52–0.63).
However, these models could only make decisions on the cropped images of individual
lymph nodes so that manual identification and cropping of all cervical lymph nodes on
multiple CT image slices were required. Manual identification and cropping works are
time-consuming, which would probably limit the implementation of these models for
routine clinical use. In order to improve their clinical applicability, Ariji et al. developed
CNN models for automated detection and segmentation of metastatic and non-metastatic
cervical lymph nodes on contrast-enhanced CT images [24,25]. The latest model (AUC
of 0.95) outperformed two experienced radiologists (AUC of 0.90) in detecting metastatic
cervical lymph nodes while its segmentation accuracy should be further improved.

The potential of radiomics in the screening, diagnosis, and prediction of oral, head
and neck cancer has been increasingly exploited [5]. Few studies investigated whether
radiomic features extracted from CT/CBCT images could be used for predictive analysis
of lymph node metastasis in patients with oral, head and neck cancer (Table 2). Kubo
et al. developed predictive models based on CT-derived radiomic features using various
machine learning classifiers for occult cervical lymph node metastasis in patients with
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tongue cancer [26]. The model trained with support vector machine (SVM) obtained
the highest accuracy in predicting regional lymph node metastasis with an AUC of 0.98.
Zhong et al. developed predictive models based on CT-derived radiomic features and
associated clinical parameters for occult cervical lymph node metastasis in patients with
tongue cancer [27]. The model on radiomic features and clinical lymph node status achieved
higher prediction accuracy (AUC of 0.94) than the one only on radiomic features (AUC of
0.92). Morgan et al. developed several models based on CT- and CBCT-derived radiomic
features and/or several clinical parameters using an explainable boosting machine for
predicting local failure in head and neck cancer [28]. The model trained on both radiomic
features and clinical parameters achieved the highest predictive performance with an AUC
of 0.87 for primary cancer and 0.91 for nodal structures. The use of these models may
enable a more personalized management of patients with oral, head and neck cancer.

2.3. Salivary Gland Diseases

Salivary gland diseases are a group of inflammatory, infectious, and neoplastic con-
ditions, mainly occurring in the parotid glands, followed by minor salivary glands, sub-
mandibular glands, and sublingual glands. Diagnosis of salivary gland diseases is a great
challenge in dentistry and oto-rhino-laryngology, as it heavily relies on the practitioners’ ex-
periences and diagnostic imaging. Deep learning models for the diagnosis of salivary gland
diseases have been developed largely on magnetic resonance imaging (MRI) scans [29]
because of its advantages over other imaging modalities in depicting soft tissues. Nev-
ertheless, MRI is not widely available in healthcare settings, and thus, CT remains an
important role in identifying and describing the extent of neoplasms. Applying deep
learning to CT images may expand its scope in the diagnosis of salivary gland diseases.
Kise et al. developed a CNN model on CT images to automatically detect the fatty de-
generation of the salivary gland that is a key characteristic finding for the diagnosis of
Sjogren’s syndrome [30]. The model performed similarly to three experienced radiologists
and outperformed three inexperienced radiologists. Additionally, deep learning models
on CT achieved promising performance in differentiating various types of salivary gland
tumors. Yuan et al. developed a CNN model to classify between pleomorphic adenoma
and malignant parotid gland tumors on CT images [31]. The model achieved high clas-
sification accuracy of 90%. Zhang et al. trained several CNN models for classification
between benign and malignant parotid gland tumors on CT images [32]. The customized
CNN model achieved the highest classification accuracy of up to 98% as compared with
the models built based on the pre-trained CNNs, including VGG16, InceptionV3, ResNet,
and DenseNet.

The intrinsic radiomic features of malignant parotid gland tumors on CT images
may be extracted to assist in differentiating between benign and malignant salivary gland
tumors (Table 2). Zhang et al. developed a multivariable logistic regression model based
on CT-derived radiomic features to classify between low- and high-grade mucoepidermoid
carcinoma of the salivary glands [33]. The model showed that high-grade mucoepidermoid
carcinomas may be associated with low energy, high correlation texture, and high surface
irregularity. Xu et al. developed predictive models based on individual or combined
CT-derived radiomic features and radiological variables (i.e., the location and metastases
of lymph nodes) to differentiate between benign and malignant parotid gland tumors [34].
The model trained using SVM on CT-derived radiomic features and the location and
metastases of lymph nodes achieved the highest performance than the models on individual
radiomic features or radiological variables. Liu et al. developed predictive models based
on either MRI or CT-derived radiomic features for differentiating between pleomorphic
adenoma and Warthin tumors of the parotid glands, respectively [35]. The model on MRI-
derived radiomic features (AUC of 0.91) performed slightly higher than but not significantly
different from the model on CT-derived radiomic features (AUC of 0.88). These models may
serve as auxiliary tools to assist clinicians in identifying patients with malignant salivary
gland tumors.
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2.4. Temporomandibular Joint Disorders

TMJ disorders are one of the most common orofacial dysfunctions that frequently
cause joint clicking sounds, limited mouth opening, pain, and headache [36]. Degenerative
bony changes is one of the main causes associated with TMJ disorders, which may start with
the flattening or sclerosis of the mandibular condyle head, followed by the erosion of its
cortical surface, and eventually osteoarthritis [37]. Accurate diagnosis of TMJ disorders is
difficult for general dental practitioners and requires adequate clinical experience to avoid
patients undergoing unnecessary examinations and invasive treatment. CBCT imaging
is commonly used for assessing the morphology of TMJs. However, a low consistency
among clinicians was found in the subjective interpretation of morphological changes in
the TMJs [37], indicating that a quantitative diagnostic tool for TMJ disorders would be of
great clinical value. Le et al. developed a CNN model for automated segmentation of the
mandibular ramus and condyle on CBCT images [38]. Kim et al. developed a CNN model
to automatically segment and measure the cortical thickness of the mandibular condyle
head on CBCT images [39]. The model achieved favorable performance with a short
execution time of nearly 10 s, which may contribute to automated quantitative analysis
of the changes in bony structures of TMJs. de Dumast et al. developed a deep learning
model on CBCT images to classify the morphological variations of TMJ osteoarthritis into
five categories [40]. The model achieved high classification agreement of 91% with two
human experts, demonstrating its potential to assist clinicians in the diagnosis of TMJ
osteoarthritis. Bianchi et al. developed diagnostic models based on radiomic, biomolecular,
clinical, and demographic features using different machine learning algorithms for TMJ
osteoarthritis [41]. The model trained using the combination of XGBoost (Extreme Gradient
Boosting) and LightGBM (Light Gradient Boosting Machine) algorithms achieved the
highest accuracy with an AUC of 0.82. With the aid of this diagnostic model, screening
individuals with early TMJ osteoarthritis seems possible.

2.5. Maxillary Sinus Pathologies

The maxillary sinus is the largest paranasal sinus and is frequently involved in various
dento-maxillofacial surgical procedures, such as apical surgeries of the maxillary posterior
teeth and sinus augmentation for dental implant placement [42,43]. Accurate diagnosis and
classification of maxillary sinus pathologies prior to surgical procedures involving the sinus
region is one of the key factors to ensure a predictable treatment outcome [44,45]. However,
general practitioners may be less confident in diagnosing maxillary sinus pathologies
on radiographic images due to their unfamiliarity with the anatomical structures and
pathologies of the sinus. Implementation of dento-maxillofacial surgical procedures in the
maxillary sinus with pathological changes are very likely to increase the risk of ostiomeatal
dysfunction and sinus infection [46]. Some deep learning models on 2D radiographic
images achieved favorable performance in detecting maxillary sinus pathologies [3]. One
of the main limitations of the models on 2D images is their inculpability of providing
information regarding the true morphology, volume, and location of the detected lesions,
which are important in the planning of an appropriate treatment strategy for surgical
procedures in the sinus region. Currently, CNN models were developed for automated
segmentation of the maxillary sinus [47,48] and the morphological changes of the sinus
mucosa [49,50] on CT/CBCT images. Jung et al. developed a CNN model on CBCT images
to segment maxillary sinus pathologies including the mucosal thickening and mucous
retention cysts of the sinus [49]. The model obtained favorable segmentation performance
on internal data while its performance was inferior on external images. The scans including
the maxillary sinus are frequently taken with a large field of view (FOV) and thus are
associated with higher radiation exposure to the patients [51]. The use of a low-dose
imaging protocol has been strongly recommended for large FOV scans of the sinus [52].
Hung et al. reported that their 3D CNN model achieved high performance on both standard-
dose (AUCs of 0.89–0.93) and low-dose (AUCs of 0.84–0.89) CBCT images in automatic
detection, segmentation, and measurement of the mucosal thickening and mucous retention
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cysts of the sinus [50]. No significant differences were found in the volume of the sinus, the
lesions, and their ratio between automated and manual measurements. This CNN model
has the potential to assist clinicians in identifying maxillary sinus lesions, evaluating the
extent of sinus opacification, and planning surgical procedures in the sinus region.

2.6. Mandibular Fractures

The mandible is the only moveable and the most commonly fractured bone of the
face in trauma cases. A CNN model was developed to automatically detect mandibular
fractures on CT images [53]. The models first generated a synthesized panoramic image
from the original CT scan. The mandibular region in the synthesized panoramic image was
subsequently straightened and divided into image patches of nine subregions, including
symphysis, left/right parasymphysis, left/right mandibular body, left/right mandibular
angle, and left/right condylar process. Eventually, the model determined the presence
or absence of a fracture on the image patches of specific mandibular subregions. This
model achieved high fracture detection accuracy with AUC values of 0.93–0.98 across
the nine mandibular subregions, which may be particularly useful for detecting occult
condylar fractures.

2.7. Dentofacial Deformities and Malocclusion

Dentofacial deformities and malocclusion are characterized by abnormalities of the
dentition, jaws, and face that affect not only the oral function and appearance of patients
but also their physical, social, and psychological well-being. Orthodontic and orthognathic
treatment is commonly performed to correct these abnormalities. Conventional treatment
planning of orthognathic surgery consists of a series of steps based on clinical examination,
cephalometric analysis, dental casts, facebow, and articulators. Compared with the conven-
tional approach, a digital workflow improves the accuracy and efficiency of orthognathic
surgery without the need of a facebow record and model surgery [54].

The digital workflows in dentistry frequently require a 3D virtual augmented patient
model that is created based on multimodal image data (such as CBCT and optical intra-oral,
facial, and/or model scans) to serve as the foundation for subsequent treatment planning
and guided surgery for many surgical procedures including orthognathic surgery. Segmen-
tation of anatomical structures and multimodal image registration are the essential steps in
the process of building a virtual patient model. They can be performed manually through
visual inspection or semi-automatically by using the fiducial marker registration method or
surface-based matching algorithm [55]. The manual approach is time-consuming, and er-
rors by visual inspection are unavoidable. While the semi-automatic approach can improve
the efficiency of these steps, manual correction is still necessary prior to further planning
steps, such as the design of surgical splints for orthognathic corrections. Deep learning
models for automatically segmenting anatomical structures on CBCT images or merging
the contour of the interested region from different image datasets may be a solution to
improving the accuracy and efficiency of image segmentation and registration. Commer-
cially available AI platforms, such as CranioCatch (Eskişehir, Turkey), Denti.AI (Toronto,
ON, Canada), Diagnocat (Tel Aviv, Israel), Promaton (Amsterdam, The Netherlands), and
Relu (Leuven, Belgium), and several CNN models have been proposed for automated
segmentation of dento-maxillofacial anatomical structures (including teeth, jaws, maxillary
sinus, pharyngeal airway, mandibular canal, palatine, zygomatic, nasal, and lacrimal bones)
on CBCT images (Figure 2) [56–63]. Some of them performed similarly to experienced
radiologists and outperformed other semi-automatic software, such as Mimics® (version
23.0, Materialise N.V., Leuven, Belgium). Automated multimodal image registration to
merge CBCT and optical intra-oral/model scans using deep learning has been proposed
by some groups [64,65]. The model by Jang et al. showed high accuracy with a mean
registration error of 0.5 mm, which is less than that of the manual registration approach
(1.7 mm) [64]. The model by Chung et al. completed the image registration procedure
in a short period of nearly 20 s with registration errors less than that of the conventional
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three-point registration method [65]. The model’s performance was not affected by the
presence of metal artifacts on CBCT images, which may greatly improve image registration
accuracy in patients with multiple metallic dental restorations.
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Figure 2. Example of automated segmentation of dento-maxillofacial anatomical structures on CBCT
images using a commercially available AI software platform, Relu (Leuven, Belgium; available at
https://relu.eu (accessed on 5 December 2022)). The overview of the segmented anatomical structures
(a), including the maxilla (b), mandible (c), teeth with orthodontic brackets (d), and pharyngeal airway
(e), and automated labeling of teeth (f).

In addition, deep learning was applied to determine whether an individual needs
orthognathic surgery and to predict the surgical outcomes. Kim et al. developed several
CNN models on CBCT images to automatically classify individuals into Class I, II, and
III skeletal malocclusion according to several parameters including the anteroposterior
relationship of the maxillary and mandibular first molars and the alignment of teeth with
reference to the line of occlusion [66]. The performance of the developed models was up
to an accuracy of 93.8%. The model may facilitate orthognathic evaluation by identifying
individuals in need of surgical correction of skeletal malocclusion. Few CNN models were
developed on CT/CBCT images to predict the changes in the skeletal and soft-tissue profile
after orthognathic surgery [67–69]. The model by ter Horst et al. for soft-tissue profile
prediction performed similarly to a soft tissue prediction model (mass tensor model) that is
widely used for maxillofacial surgical planning [67]. These predictive models may assist
surgeons in orthognathic surgical planning to improve postoperative facial symmetry.

https://relu.eu
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Table 1. Performance of deep learning models on CT/CBCT images for the diagnosis and treatment planning of maxillofacial diseases.

Author
(Year)

Application
Imaging
Modal-

ity
Model/Platform Training and Validation

Dataset
Test Dataset/Cross-

validation
Execution

Time

Performance

Major FindingsDeep Learning
Manual/Semi-

automatic
Method

Jaw cysts and tumors

Lee et al.
(2020)
[16]

Detection,
segmentation, and
classification of
OKCs,
dentigerous and
periapical cysts

Panoramic
and
CBCT
images

CNN (Inception
v3)

912 panoramic and 789
CBCT images

228 panoramic and 197
CBCT images NA

Panoramic/CBCT
AUC = 0.85/0.91
SEN = 88%/96%
SPE = 77%/77%

NA

The model on CBCT
images obtained higher
diagnostic performance
than the one on
panoramic images.

Bispo
et al.
(2021)
[17]

Differential
diagnosis of
ameloblastoma
and OKCs

CT CNN (Inception
v3)

2500 images augmented
based on 350 slices from 40
scans of patients with
ameloblastoma or OKCs

2-fold CV with 5
iterations NA ACC = 90–92% NA

The model obtained
higher accuracy in
identifying OKCs than
ameloblastoma.

Chai
et al.
(2022)
[18]

Classification of
ameloblastoma
and OKCs

CBCT CNN (Inception
v3)

272 scans of patients with
ameloblastoma or OKCs

78 scans of patients with
ameloblastoma or OKCs

Model/Se-
nior/Junior
OMF
surgeons
36/1471/
1113 s (78
scans)

ACC = 85%
SEN = 87%
SPE = 82%
F1 = 85%

7 senior/30 junior
OMF surgeons
ACC = 66%/59%
SEN = 60%/64%
SPE = 71%/53%
F1 = 64%/61%

The model
outperformed both
senior and junior OMF
surgeons.

Lymph node metastasis

Ariji
et al.
(2019)
[22]

Differentiation of
metastatic cervical
lymph nodes from
negative lymph
nodes in OSCC
patients

Contrast-
enhanced
CT

CNN (AlexNet)

441 cropped images
including 127 metastatic and
314 non-metastatic lymph
nodes from 45 OSCC
patients

5-fold CV NA

AUC = 0.80
ACC = 78%
SEN = 75%
SPE = 81%
PPV = 80%
NPV = 77%

2 radiologists
AUC = 0.83
ACC = 83%
SEN = 78%
SPE = 89%
PPV = 87%
NPV = 80%

The model performed
similarly to the
radiologists.

Ariji
et al.
(2020)
[23]

Differentiation
between
metastatic lymph
nodes with and
without
extranodal
extension in OSCC
patients

Contrast-
enhanced
CT

CNN (AlexNet)

80% of 703 cropped images
including metastatic lymph
nodes with or without
extranodal extension from 51
OSCC patients

20% of 703 cropped
images 11 s

AUC = 0.82
ACC = 84%
SEN = 67%
SPE = 90%
PPV = 69%
NPV = 89%

4 Radiologists
AUC = 0.52–63
ACC = 51–63%
SEN = 42–55%
SPE = 57–71%
PPV = 52–66%
NPV = 51–61%

The model
outperformed 4
radiologists in
identifying metastatic
lymph nodes with
extranodal extension.

Ariji
et al.
(2021)
[24]

Detection of
cervical lymph
nodes in OSCC
patients

Contrast-
enhanced
CT

CNN (DetectNet)

320 image slices including
134 metastatic and 448
non-metastatic lymph nodes
from 56 OSCC patients

45 image slices including
25 metastatic and 69
non-metastatic lymph
nodes from 56 OSCC
patients

8 s

SEN = 73%
PPV = 96%
F1 = 83%
False positive rates per
images = 4%

NA

The model has the
potential to
automatically detect
cervical lymph nodes.
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Table 1. Cont.

Author
(Year)

Application
Imaging
Modal-

ity
Model/Platform Training and Validation

Dataset
Test Dataset/Cross-

validation
Execution

Time

Performance

Major FindingsDeep Learning
Manual/Semi-

automatic
Method

Ariji
et al.
(2022)
[25]

Detection and
segmentation of
metastatic cervical
lymph nodes in
OSCC patients

Contrast-
enhanced
CT

CNN (U-Net)

911 image slices including
134 metastatic and 446
non-metastatic lymph nodes
from 59 OSCC patients

72 image slices of 24
metastatic and 68
non-metastatic lymph
nodes from 59 OSCC
patients

7 s

Detection
AUC = 0.95
ACC = 96%
SEN = 98%
SPE = 95%
Segmentation
SEN = 74%
PPV = 94%
F1 = 83%

2 radiologists
Detection
AUC = 0.90
ACC = 89%
SEN = 94%
SPE = 86%

The model
outperformed 2
radiologists in detecting
metastatic cervical
lymph nodes while its
segmentation accuracy
should be improved.

Salivary gland diseases

Kise
et al.
(2019)
[30]

Diagnosis of
Sjögren’s
syndrome

CT CNN (AlexNet)

400 image slices from 20
scans of patients with
Sjögren’s syndrome and 20
scans of individuals without
parotid gland abnormalities

100 image slices from 5
scans of patients with
Sjögren’s syndrome and
5 scans of individuals
without parotid gland
abnormalities

NA
ACC = 0.96
SEN = 100%
SPE = 92%

3 experienced/3
inexperienced
OMF radiologists
ACC = 98%/84%
SEN = 99%/78%
SPE = 97%/89%

The model performed
similarly to experienced
radiologists and
outperformed
inexperienced
radiologists.

Zhang
et al.
(2021)
[32]

Classification
between benign
and malignant
parotid gland
tumors

CT

CNNs (Improved
CNN, VGG16,
InceptionV3,
ResNet, and
DenseNet)

720 image slices (group 1)
and 1050 image slices (group
2)

180 image slices (group
1) and 270 image slices
(group 2)

<1 min

Improved CNN on
Group 1/2
ACC = 98%/78%
SEN = 97%/77%
SPE = 99%/79%
PPV = 99%/79%
F1 = 98%/78%

NA

The improved CNN
model achieved the
highest classification
accuracy than other
pre-trained CNN
models.

Yuan
et al.
(2022)
[31]

Classification
between
pleomorphic
adenoma and
malignant parotid
gland tumors

CT CNN (ResNet50) 121 scans 30 scans NA ACC = 90% NA

The model achieved
high accuracy in
identifying malignant
parotid gland tumors.

Temporomandibular disorders
de
Dumast
et al.
(2018)
[40]

Classification of
morphological
variation in TMJ
osteoarthritis

CBCT Deep neural
network

Scans of 259 condyles from
154/105 individuals
with/without TMJ
osteoarthritis

Scans of 34 condyles
from 17/17 individuals
with/without TMJ
osteoarthritis.

NA Agreement with two
experts = 91% NA

The model has the
potential to assist
clinicians in the
diagnosis of TMJ
osteoarthritis.
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Table 1. Cont.
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Performance

Major FindingsDeep Learning
Manual/Semi-

automatic
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Kim
et al.
(2021)
[39]

Segmentation and
measurement of
the cortical
thickness of
mandibular
condyle head

CBCT CNN (U-Net)

11,776 image slices from 23
scans of individuals without
pathological bony changes
on the condyle head

1024 image slices from 2
scans of individuals
without pathological
bony changes on the
condyle head

10–15 s

Marrow bone
IoU = 0.87
HD = 0.93 mm
Cortical bone
IoU = 0.73
HD = 1.25 mm

NA

The model may
contribute to automated
quantitative analysis of
the changes in bony
structures of TMJ.

Le et al.
(2021)
[38]

Segmentation of
mandibular ramus
and condyle

CBCT CNN (U-Net)

90 scans of individuals
with/without osteoarthritis,
obtained from multiple
centers

19 scans of individuals
with/without
osteoarthritis, obtained
from multiple centers

NA

AUC = 0.95
ACC = 100%
SEN = 93%
SPE = 100%
F1 = 92%

NA
The model may facilitate
treatment planning of
TMJ degeneration.

Maxillary sinus
Xu et al.
(2020)
[47]

Segmentation of
the maxillary
sinus

CT CNN (V-Net) 35 scans 26 scans <1 min
DSC = 0.94
IoU = 0.90
Precision = 94%

NA
The model achieved
high segmentation
accuracy.

Deng
et al.
(2020)
[48]

Segmentation of
the maxillary
sinus

CT CNN (BE-FNet) 50 scans 5-fold CV 0.5 s
DSC = 0.95
VOE = 10.2%
ASD = 2.9 mm

NA
The model achieved
high segmentation
accuracy.

Jung
et al.
(2021)
[49]

Segmentation of
maxillary sinus
lesions

CBCT CNN (3D
nnU-Net)

83 scans obtained from
Korea University Anam
Hospital

20 scans obtained from
Korea University Anam
Hospital and 20 scans
from Korea University
Ansan Hospital

NA

Anam Hospital
DSC = 0.76
Ansan Hospital
DSC = 0.54

NA

A lower segmentation
accuracy of the model
was found on external
images.

Hung
et al.
(2022)
[50]

Detection,
segmentation, and
measurement of
the morphological
changes of the
sinus mucosa

CBCT CNN (V-Net and
SVR)

347 low-dose scans of
individuals with or without
morphological changes of
the maxillary sinus mucosa

77 low-dose and 21
standard-dose scans of
individuals with or
without morphological
changes of the maxillary
sinus mucosa

NA

Low-dose scans
AUC = 0.84–0.89
SEN = 79–81%
SPE = 71–89%
Standard-dose scans
AUC = 0.89–0.93
SEN = 79–93%
SPE = 89–93%

NA

The model performed
similarly on both
standard- and low-dose
scans.

Fractures

Wang
et al.
(2022)
[53]

Detection and
classification of
mandibular
fractures

CT CNNs (U-Net and
ResNet) 278 scans 408 scans NA

AUC = 0.93–0.98
ACC = 94–98%
SEN = 91–97%
SPE = 91–99%

NA

The model may assist
clinicians in timely and
accurate detection of
mandibular fractures.
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Table 1. Cont.
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Major FindingsDeep Learning
Manual/Semi-
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Dentofacial deformities and malocclusion

Kim
et al.
(2020)
[66]

Classification of
skeletal
malocclusion

CBCT Multi-channel
CNNs

173 scans of individuals with
Class I, II, or III malocclusion

45 scans of individuals
with Class I, II, or III
malocclusion

NA

ACC = 93–94%
SEN = 95%
PPV = 93–94%
F1 = 94–95%

NA

The model may facilitate
orthodontic and
orthognathic evaluation
to determine whether
the patient needs
surgical correction.

Ma et al.
(2022)
[68]

Prediction of
skeletal changes
after orthognathic
surgery

CT CNN 50 pairs of preoperative and
postoperative full skull scans

6 pairs of preoperative
and postoperative full
skull scans

43 s

Mean landmark
localization deviation
= 5.4 mm
74% of the predicted
postoperative skull
models was consistent
with the ground truth

NA

The model may assist
OMF surgeons in
predicting postoperative
skeletal changes for
orthognathic surgical
planning.

ter
Horst
et al.
(2021)
[67]

Prediction of
virtual soft tissue
profile after
mandibular
advancement
surgery

3D pho-
tographs
and
CBCT

Autoencoder-
inspired neural
network

119 pairs of 3D photographs
and CBCT scans of patients
who underwent mandibular
advancement surgery

14 pairs of 3D
photographs and CBCT
scans of patients who
underwent mandibular
advancement surgery

NA

Mean absolute error
1 mm (lower face)
1.1 mm (lower lip)
1.4 mm (chin)

MTM-based
soft-tissue
simulations
Mean absolute
error
1.5 mm (lower
face)
1.7 mm (lower lip)
2 mm (chin)

The model performed
similarly to the
MTM-based soft-tissue
simulations, indicating
that it may be useful for
soft tissue profile
prediction in
orthognathic surgery.

Lin et al.
(2021)
[69]

Assessment of
facial symmetry
before and after
orthognathic
surgery

CBCT
CNNs (VGG16,
VGG19, ResNet50,
and Xception)

71 scans 59 scans NA

ACC
80% (VGG16)
86% (VGG19)
83% (ResNet50)
90% (Xception)

NA

The model trained with
Xception achieved
highest accuracy for
facial symmetry
assessment.

Image registration

Chung
et al.
(2020)
[65]

Registration
between CBCT
and optical dental
model scans

CBCT
and
optical
dental
model
scans

Deep pose
regression neural
networks and
optimal
cluster-based
matching

150 pairs of CBCT and
optical maxillary model
scans and 150 pairs of CBCT
and mandibular model scans

3-fold CV 17.6 s
Mean distance errors
5.1 mm (surface)
1.8 mm (landmarks)

Conventional
three-point
registration
Mean distance
errors
9.6 mm (surface)
2.7 mm
(landmarks)

The model is applicable
to full-arch scanned
models and can avoid
metal artifacts during
the matching
procedures.
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Table 1. Cont.
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Jang
et al.
(2021)
[64]

Registration
between CBCT
and intraoral
scans

CBCT
and in-
traoral
scans

CNN

71 maxillary or mandibular
intraoral scans and the
corresponding 49 CBCT
scans

22 pairs of CBCT and
intraoral scans NA

Mean distance errors
0.5 mm (surface)
0.2 mm (landmarks)

Manual
registration
Mean distance
errors
1.7 mm (surface)
0.7 mm
(landmarks)

The model
outperformed the
manual registration
method.

Segmentation of maxillofacial structures
Lo
Giudice
et al.
(2021)
[56]

Segmentation of
the mandible CBCT CNN 20 scans 20 scans 50 s

DSC = 0.97
Matching percentage =
89%

NA

The model may be
useful in the planning of
maxillofacial surgical
procedures.

Xu et al.
(2021)
[63]

Segmentation of
mandibles
with/without
tumor invasion

CT CNN (3D V-Net)
160 scans of 80 consisting of
80 MTI scans and 80
Non-MTI scans

70 scans consisting of 35
MTI scans and 35
Non-MTI scans

7.4 s

Non-MTI
segmentation
DSC = 0.98
IoU = 0.96
ASD = 0.06 mm
HD = 0.48 mm
MTI segmentation
DSC = 0.97
IoU = 0.94
ASD = 0.16 mm
HD = 1.16mm

NA

The model obtained high
accuracy in segmenting
mandibles with and
without tumor invasion.

Sin et al.
(2021)
[59]

Segmentation of
pharyngeal airway CBCT CNN (U-Net) 260 scans 46 scans NA DSC = 0.92

IoU = 0.99 NA

The model can efficiently
calculate the pharyngeal
airway volume from
CBCT images.

Orhan
et al.
(2022)
[60]

Segmentation of
the pharyngeal
airway in OSA
and non-OSA
patients

CBCT

Diagnocat (a
commercially
available AI
platform; https:
//diagnocat.com
(accessed on 5
December 2022))

NA

200 scans of 100 OSA
and 100 non-OSA
patients, taken using 3
different CBCT scanners

NA
ICC between
Diagnocat and
radiologists = 0.97

NA

Diagnocat performed
similarly to radiologists
and can efficiently
calculate the pharyngeal
airway volume in OSA
and non-OSA patients.

https://diagnocat.com
https://diagnocat.com
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Preda
et al.
(2022)
[57]

Segmentation of
the maxillofacial
complex,
including palatine,
maxillary,
zygomatic, nasal,
and lacrimal
bones

CBCT CNN (U-Net) 120 scans taken using two
different scanners

24 scans taken using two
different scanners

Model
39 s
Manual
133 min

DSC = 0.93
IoU = 0.86
95% HD = 0.62 mm
RMS 0.5 mm

Semi-automated
segmentation
using Mimics
DSC = 0.69
IoU = 0.53
95% HD = 2.78
mm
RMS 1.76 mm

The model may improve
the efficiency of the
digital workflows for
patient-specific
treatment planning of
maxillofacial surgical
procedures.

Ezhov
et al.
(2021)
[58]

Segmentation of
teeth and jaws,
numbering of
teeth, detection of
caries, periapical
lesions, and
periodontitis

CBCT

Diagnocat (a
commercially
available AI
platform; https:
//diagnocat.com
(accessed on 5
December 2022))

1346 scans taken using 17
scanners 30 scans

With the aid
of
Diagnocat =
17.6 min
Without the
aid of
Diagnocat =
18.7 min

Diagnocat
SEN = 92%
SPE = 99%
12 dentists with the
aid of Diagnocat
SEN = 85%
SPE = 97%

4 OMF
radiologists
SEN = 93–94%
SPE = 99–100%
12 dentists
without the aid of
Diagnocat
SEN = 77%
SPE = 96%

Diagnocat performed
similarly to four
radiologists and
improved twelve
dentists’ performance

Jaskari
et al.
(2020)
[61]

Segmentation of
the mandibular
canal

CBCT CNN 509 scans taken using two
scanners 15 scans NA

MCD = 0.56 mm ASSD
= 0.45 mm
DSC = 0.57 (left) and
0.58 (right)
HD = 1.40 (left) and
1.38 (right)

NA

The model may help to
locate the inferior
alveolar nerve for
surgical planning

Lim
et al.
(2021)
[62]

Segmentation of
the mandibular
canal

CBCT CNN (3D
nnU-Net)

83 scans from Korea
University Anam Hospital

15, 20, and 20 scans from
Korea University Anam
Hospital (1), Korea
University Ansan
Hospital (2), and Korea
University Guro
Hospital (3)

Model
86 s
Manual
125 s

Internal testing
DSC = 0.58 (1)
External testing
DSC = 0.55 (2)
DSC = 0.43 (3)

NA

The model may help to
locate the inferior
alveolar nerve for
surgical planning

Abbreviations: 3D, three-dimensional; ACC, accuracy; ASSD, average symmetric surface distance; AUC, area under the ROC curve; CBCT/CT, cone-beam computed tomography; CMS,
contour matching score; CNN, convolutional neural network; CV, cross-validation; DSC, dice similarity coefficient; F1, F1-score; HD, hausdorff distance; IoU, intersection over union; JSC,
jaccard similarity coefficient; k-NN, k-nearest neighbors; OKC, odontogenic keratocyst; LDA, linear discriminant analysis; LOOCV, leave-one-out cross-validation; MCD, mean curve
distance; MTM, mass tensor model; MTI, mandible with tumor invasion; NA, not available; NN, neural network; NPV, negative predictive value; OMF, oral and maxillofacial; OSA,
obstructive sleep apnea; OSCC, oral squamous cell carcinoma; PPV, positive predictive value (precision); RMS, root mean square; SDA, sparse discriminant analysis; SEN, sensitivity
(recall); SPE, specificity; SSIM, structural similarity index measure; SVM, support vector machine; TMJ, temporomandibular joint; VOE, volumetric overlap error.

https://diagnocat.com
https://diagnocat.com
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Table 2. Performance of radiomics models on CT/CBCT images for maxillofacial diseases.

Author
(Year) Application Imaging

Modality Image Dataset Region of Interest for
Feature Extraction

Data for Model
Building

Machine Learning
Approach Validation Method Performance of the

Best Model(s) Major Findings

Zhong
et al.
(2021)
[27]

Prediction of
cervical
lymph node
metastasis in
patients with
tongue cancer

Contrast-
enhanced
CT

313 scans of
patients with
tongue cancer

Primary cancer
Radiomic features
and clinical lymph
node status

Artificial neural
network

Hold-out validation
(20%)

Model on radiomic
features and clinical
lymph node status
AUC = 0.94
ACC = 84%
SEN = 93%
SPE = 77%
Model on radiomic
features
AUC = 0.92
ACC = 86%
SEN = 82%
SPE = 89%

The model on radiomic
features and clinical
lymph node status
achieved higher
prediction accuracy than
the one only on radiomic
features.

Kubo
et al.
(2022)
[26]

Prediction of
occult cervical
lymph node
metastasis in
patients with
tongue cancer

Contrast-
enhanced
CT

161 scans of
tongue cancer
patients with or
without occult
cervical lymph
node metastasis

Cervical lymph nodes Radiomic features
kNN, SVM, CART, RF,
AdaBoost
with/without SMOTE

10-fold CV

Side level
RF with SMOTE
AUC = 0.92
ACC = 85%
SEN = 82%
PPV = 88%
Region level
SVM with SMOTE
AUC = 0.98
ACC = 96%
SEN = 95%
PPV = 96%

The radiomics models
may serve as useful tools
to support clinical
decision making in the
management of patients
with tongue cancer.

Morgan
et al.
(2021)
[28]

Prediction of
local failure in
head and neck
cancer

Contrast-
enhanced
CT and
CBCT

Baseline CT scan,
two CBCT scans at
fractions 1 and 21
of radiotherapy
from 90 head and
neck SCC patients
with or without
local failure

All primary and nodal
structures

Radiomic features
and several
clinical variables

Explainable boosting
machine with 25
iterations

5-fold CV

Fused ensemble model
(primary/nodal
structures)
AUC = 0.87/0.91
SEN = 78%/100%
SPE = 91%/68%

The model on radiomic
features and clinical
variables achieved the
highest accuracy in
predicting local failure in
head and neck cancer.
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Table 2. Cont.

Author
(Year) Application Imaging
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Data for Model
Building
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Best Model(s) Major Findings

Xu et al.
(2021)
[34]

Differentiation
between
benign and
malignant
parotid gland
tumors

CT

87 scans of
patients with
benign or
malignant parotid
gland tumor

Primary tumors

Radiomic features
and radiological
variables
including the
location and
metastases of
lymph nodes

SVM Hold-out validation
(38 scans)

The combined model
AUC = 0.84
SEN = 82%
SPE = 74%
The model on
radiomic features
AUC = 0.77
SEN = 79%
SPE = 89%

The combined model
outperformed the
models on individual
radiomic features,
lymph node location, or
lymph node metastases.

Zhang
et al.
(2021)
[33]

Differentiation
between low-
and
high-grade
mucoepider-
moid
carcinoma of
the salivary
glands

CT

53 scans of
patients with low
or high grade
mucoepidermoid
carcinoma

Primary cancer Radiomic features Logistic regression NA

AUC = 0.80
ACC = 78%
SEN = 89%
PPV = 67%

High-grade
mucoepidermoid
carcinomas may be
associated with a low
energy, high correlation
texture, and high surface
irregularity.

Liu et al.
(2021)
[35]

Differentiation
between
pleomorphic
adenoma and
Warthin
tumors of the
parotid glands

CT and
MRI

659 pairs of CT
and MRI scans
from patients with
pleomorphic
adenoma or
Warthin tumors

Primary tumors
CT- and
MRI-derived
radiomic features

Logistic regression NA

CT/MRI
AUC = 0.88/0.91
ACC = 78%/84%
SEN = 81%/85%
SPE = 76%/83%
PPV = 70%/77%
NPV = 86%/89%

The model on
MRI-derived radiomic
features performed
slightly higher than but
not significantly
differently from the
model on CT-derived
radiomic features.

Bianchi
et al.
(2020)
[41]

Diagnosis of
TMJ
osteoarthritis

CBCT

92 scans of
subjects with or
without TMJ
osteoarthritis

Internal condylar
lateral region

20 radiomic and
25 biomolecular
features, 5 clinical
and 2
demographic
variables

LR, RF, LightGBM,
XGBoost with 10
iterations

5-fold CV

XGBoost + LightGBM
AUC = 0.87
ACC = 82%
SEN = 84%
F1 = 82%

The model may be
helpful for screening
individuals with early
TMJ osteoarthritis.

Abbreviations: ACC, accuracy; AUC, area under the ROC curve; CART, classification and regression tree; CBCT/CT, cone-beam computed tomography; CV, cross-validation; F1,
F1-score; LASSO, least absolute shrinkage and selection operator; LightGBM, light gradient boosting machine; LR, logistic regression; mRMR, maximum relevance and minimum
redundancy; kNN, k-nearest neighbor; ICC, intra-class correlation coefficient; MRI, magnetic resonance imaging; PPV, positive predictive value (precision); RF, random forest; RFE,
recursive feature elimination; SCC, squamous cell carcinoma; SEN, sensitivity (recall); SMOTE, synthetic minority oversampling technique; SPE, specificity; SVM, support vector
machine; TMJ, temporomandibular joint; U test, Mann–Whitney U test; XGBoost, extreme gradient boosting.
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3. The Challenges and Prospects of Deep Learning and Radiomics on CT/CBCT for
Maxillofacial Diseases

Based on current evidence, early diagnosis, accurate prognostic prediction, and effi-
cient treatment planning are main focuses of deep learning and radiomics models devel-
oped on CT/CBCT for maxillofacial diseases (Tables 1 and 2). Few studies reported that
deep learning models on CBCT images performed better than those on 2D radiographic im-
ages [3,16]. These findings may result from more informative features on CBCT than on 2D
images to be utilized for training the models. Most of the proposed deep learning models
showed high performance, and some of them even outperformed human experts, especially
when the ground truth was not based solely on visual inspection on radiographic images.
Deep learning models capable of detecting diseases, particularly malignant lesions, at an
early stage are expected to allow for the earliest possible diagnosis and treatment to prevent
disease progression, which therefore will improve treatment outcome and prognosis. Apart
from diagnostic applications, deep learning models were also developed to assist clinicians
in many time-consuming tasks required in the treatment planning process for patients with
maxillofacial diseases as mentioned above. Applications for automated multimodal image
registration as well as localization, segmentation, and measurement of anatomical struc-
tures or pathologies on CT/CBCT images have the potential to improve the accuracy and
efficiency of digital workflows for patient-specific treatment planning, which may enable a
more precise and personalized approach for the management of maxillofacial diseases.

Despite the promising performance of deep learning models proposed, their general-
izability has not been validated sufficiently. Most of them were trained using CT/CBCT
images acquired at a certain time point from a single institution and were tested with the
cross-validation or split sample validation method using images from the same institu-
tion, which is very likely to cause overfitting of the trained model. Some studies have
reported that their models had inferior performance when tested on images from other
institutions [70,71]. More validation studies that prospectively collect new datasets to test
the performance of the developed models are needed. Ideally, the model’s performance
should be evaluated on external image data, acquired with different scanners and imaging
protocols, from multiple institutions to verify their true generalizability. If the model’s
performance on external datasets is not favorable, the datasets from different centers should
be included for cross-center training to avoid overfitting and improve the model’s general-
izability. On the other hand, training data insufficiency is also one of the most common
reasons that cause overfitting, resulting in the model’s learning statistical regularity specific
to the training data. Some strategical learning approaches, such as federated learning and
learning from the normal methods, may be the solution to overcome the insufficiency of
training data [72]. Moreover, it has been raised that radiomic analysis is more robust than
deep learning approach in the case of training with small data [73]. Incorporating radiomic
features into deep learning models seems to be able to avoid overfitting [73].

Deep learning algorithms allow for automatic extraction and selection of imaging fea-
tures on radiographic images in the neural network. As deep learning models automatically
extract hierarchical features in complex data and optimize the weighted parameters from
raw data, their decision-making process cannot be deduced, and thus, they are considered
as “black-box” models (Figure 3). Compared with deep learning models, radiomics models
have been seen as “glass-box” models because of better transparency [28]. The radiomics
approach involves the extraction of quantitative imaging features from the segmented
regions of interest on radiographic images, selection of reproducible and reliable features,
and building a high-level statistical model with the selected features using machine learn-
ing methods for diagnostic and predictive purposes. Therefore, the contribution of each
selected feature to the overall prediction can be deduced from radiomics models, which is
one of the main advantages of radiomic analysis as compared to deep learning [28]. Thus
far, radiomics studies on CT/CBCT were conducted mainly for differentiating between
benign and malignant lesions as well as predicting cervical lymph node metastasis and
local failure in patients with oral, head and neck cancer. There are still several challenges in
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current radiomics studies regarding the repeatability and reproducibility of radiomic fea-
tures and the stability of feature selection [74–76]. The variations in the scanners, imaging
protocols, and reconstruction algorithms may affect the repeatability and reproducibility
of radiomic features [77]. Moreover, radiomics models built based on an unstable feature
selection method may include many unstable features, resulting in a lack of reliability of the
developed models and reduced accuracy on external data. The use of ensemble methods,
including resampling, bagging, and boosting techniques, for radiomic feature selection has
been highly recommended to improve the stability of radiomic feature selection [28,78].
Regardless, radiomic models also have some limitations when compared to deep learning
methods, such as the requirement of segmentation, and its application is limited to classifi-
cation of segmented lesions. These limitations may be overcome by integrating radiomics
and deep learning to expand their clinical applications.
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It remains unknown whether CT- and CBCT-derived radiomic features are interchangeable.
Few studies have assessed the differences in radiomic feature values of head and neck
cancer between CT and CBCT images of the same individuals [79,80]. It was reported
that no significant differences were found in most of the extracted feature values between
the paired CT and CBCT images, indicating that radiomic features from CT and CBCT
may be interchangeable [79]. Notably, some image processing techniques, such as high-
pass filtering, could affect the reproducibility of radiomic features [79]. On the contrary,
some held the view that radiomic features from CBCT may not be directly transferable to
those from CT due to the differences in their inherent image characteristics, such as the
scatters, noise, and resolution [80]. These differences may contribute to larger variations
in radiomic feature values calculated from specific regions of interest between the two
imaging modalities. The analysis of delta radiomic features (i.e., the changes in radiomic
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feature values from serial scans) may be the solution to improve the reproducibility of
radiomic features for the management of oral, head and neck cancer [80].

The reproducibility in the radiomic feature values calculated by different software
packages (such as Pyradiomics, MaZda, LIFEx, MITK Phenotyping, and CERR radiomic
extension) remains uncertain. Some found that the values of features in certain categories
(e.g., second-order features) were not consistent across packages [81] while others reported
high consistency [82]. Researchers should be aware of this issue when comparing results
from studies using different radiomics software packages. The image biomarker standard-
ization initiative (IBSI; https://ibsi.readthedocs.io/ (accessed on 5 December 2022)) is an
independent international collaboration where experts in various areas of medical imaging
from several institutions in eight countries work together to standardize the extraction
of image biomarkers (i.e., radiomic features) from diagnostic imaging for the purpose of
achieving greater harmonization of radiomics research [83]. Standardization of radiomic
analysis is fundamental for the comparison and validation of findings from different studies
and is crucial for a possible translation of radiomics into clinical practice.

At present, most of the deep learning and radiomics models for maxillofacial diseases
were developed based solely on CT/CBCT image data. Enriching these models with diverse
data from the individual level (such as demographic, behavioral, and social characteristics),
setting level (such as geospatial, environmental, or provider-related data), and system
level (such as health insurance, regulatory, and legislative data) may facilitate a deeper and
more holistic understanding of individual health and disease and may therefore enable a
more precise and personalized management of patients with maxillofacial diseases [84].
Most importantly, the true usefulness and cost-effectiveness of these deep learning and
radiomics models in daily practice should be further assessed to gain the trust of patients,
providers, and healthcare organizers. Further development of explainable AI systems that
can provide an insight of how the predictions are made is the key to fostering trust in their
clinical use [73].

4. Conclusions

A wide range of deep learning and radiomic models on CT/CBCT have been proposed
for automatic diagnosis, segmentation, and classification of jaw cysts and tumors, cervical
lymph node metastasis, salivary gland diseases, TMJ disorders, maxillary sinus pathologies,
mandibular fractures, and dentomaxillofacial deformities. The models with performance
on par with specialists have the potential to serve as clinically practicable tools to achieve
the earliest possible diagnosis and treatment, leading to a more precise and personalized
approach for the management of maxillofacial diseases.

Author Contributions: K.F.H., writing—original draft preparation; Q.Y.H.A., L.M.W., A.W.K.Y.,
D.T.S.L. and Y.Y.L., writing—review and editing. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Joda, T.; Yeung, A.W.K.; Hung, K.; Zitzmann, N.U.; Bornstein, M.M. Disruptive innovation in dentistry: What it is and what

could be next. J. Dent. Res. 2021, 100, 448–453. [CrossRef]
2. Schwendicke, F.; Samek, W.; Krois, J. Artificial intelligence in dentistry: Chances and challenges. J. Dent. Res. 2020, 99, 769–774.

[CrossRef]
3. Hung, K.F.; Ai, Q.Y.H.; Leung, Y.Y.; Yeung, A.W.K. Potential and impact of artificial intelligence algorithms in dento-maxillofacial

radiology. Clin. Oral Investig. 2022, 26, 5535–5555. [CrossRef]
4. Stone, P.; Brooks, R.; Brynjolfsson, E.; Calo, R.; Etzioni, O.; Hager, G.; Hirschberg, J.; Kalyanakrishnan, S.; Kamar, E.; Kraus, S.; et al.

Artificial Intelligence and Life in 2030. One Hundred Year Study on Artificial Intelligence: Report of the 2015–2016 Study Panel; Stanford
University: Stanford, CA, USA, 2016; Available online: http://ai100stanfordedu/2016-report (accessed on 5 December 2022).

5. Leite, A.F.; Vasconcelos, K.F.; Willems, H.; Jacobs, R. Radiomics and machine learning in oral healthcare. Proteom. Clin. Appl. 2020,
14, e1900040. [CrossRef]

https://ibsi.readthedocs.io/
http://doi.org/10.1177/0022034520978774
http://doi.org/10.1177/0022034520915714
http://doi.org/10.1007/s00784-022-04477-y
http://ai100stanfordedu/2016-report
http://doi.org/10.1002/prca.201900040


Diagnostics 2023, 13, 110 20 of 23

6. van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-“how-to” guide and
critical reflection. Insights Imaging 2020, 11, 91. [CrossRef]

7. Roy, S.; Whitehead, T.D.; Quirk, J.D.; Salter, A.; Ademuyiwa, F.O.; Li, S.; An, H.; Shoghi, K.I. Optimal co-clinical radiomics:
Sensitivity of radiomic features to tumour volume, image noise and resolution in co-clinical T1-weighted and T2-weighted
magnetic resonance imaging. EBioMedicine 2020, 59, 102963. [CrossRef]

8. Roy, S.; Whitehead, T.D.; Li, S.; Ademuyiwa, F.O.; Wahl, R.L.; Dehdashti, F.; Shoghi, K.I. Co-clinical FDG-PET radiomic signature
in predicting response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 49,
550–562. [CrossRef]

9. Hung, K.; Yeung, A.W.K.; Tanaka, R.; Bornstein, M.M. Current applications, opportunities, and limitations of AI for 3D imaging
in dental research and practice. Int. J. Environ. Res. Public Health 2020, 17, 4424. [CrossRef] [PubMed]

10. Hung, K.; Montalvao, C.; Tanaka, R.; Kawai, T.; Bornstein, M.M. The use and performance of artificial intelligence applications in
dental and maxillofacial radiology: A systematic review. Dentomaxillofac. Radiol. 2020, 49, 20190107. [CrossRef]

11. Poedjiastoeti, W.; Suebnukarn, S. Application of convolutional neural network in the diagnosis of jaw tumors. Healthc. Inform.
Res. 2018, 24, 236–241. [CrossRef]

12. Kwon, O.; Yong, T.H.; Kang, S.R.; Kim, J.E.; Huh, K.H.; Heo, M.S. Automatic diagnosis for cysts and tumors of both jaws on
panoramic radiographs using a deep convolution neural network. Dentomaxillofac. Radiol. 2020, 49, 20200185. [CrossRef]

13. Endres, M.G.; Hillen, F.; Salloumis, M.; Sedaghat, A.R.; Niehues, S.M.; Quatela, O.; Hanken, H.; Smeets, R.; Beck-Broichsitter,
B.; Rendenbach, C.; et al. Development of a deep learning algorithm for periapical disease detection in dental radiographs.
Diagnostics 2020, 10, 430. [CrossRef]

14. Ariji, Y.; Yanashita, Y.; Kutsuna, S.; Muramatsu, C.; Fukuda, M.; Kise, Y.; Nozawa, M.; Kuwada, C.; Fujita, H.; Katsumata, A.; et al.
Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning
object detection technique. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 128, 424–430. [CrossRef]

15. Watanabe, H.; Ariji, Y.; Fukuda, M.; Kuwada, C.; Kise, Y.; Nozawa, M.; Sugita, Y.; Ariji, E. Deep learning object detection of
maxillary cyst-like lesions on panoramic radiographs: Preliminary study. Oral Radiol. 2021, 37, 487–493. [CrossRef] [PubMed]

16. Lee, J.H.; Kim, D.H.; Jeong, S.N. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images
based on deep learning neural network. Oral Dis. 2020, 26, 152–158. [CrossRef]

17. Bispo, M.S.; Pierre Júnior, M.L.G.Q.; Apolinário Jr, A.L.; Dos Santos, J.N.; Junior, B.C.; Neves, F.S.; Crusoé-Rebello, I. Computer
tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: Classification using a convolutional neural
network. Dentomaxillofac. Radiol. 2021, 50, 20210002. [CrossRef] [PubMed]

18. Chai, Z.K.; Mao, L.; Chen, H.; Sun, T.G.; Shen, X.M.; Liu, J.; Sun, Z.J. Improved diagnostic accuracy of ameloblastoma and
odontogenic keratocyst on cone-beam CT by artificial intelligence. Front Oncol. 2022, 11, 793417. [CrossRef] [PubMed]

19. Negi, A.; Puri, A.; Gupta, R.; Nangia, R.; Sachdeva, A.; Mittal, M. Comparison of immunohistochemical expression of antiapoptotic
protein survivin in normal oral mucosa, oral leukoplakia, and oral squamous cell carcinoma. Patholog. Res. Int. 2015, 2015, 840739.
[CrossRef] [PubMed]

20. Hanai, N.; Asakage, T.; Kiyota, N.; Homma, A.; Hayashi, R. Controversies in relation to neck management in N0 early oral tongue
cancer. Jpn. J. Clin. Oncol. 2019, 49, 297–305. [CrossRef]

21. van den Brekel, M.W.; Stel, H.V.; Castelijns, J.A.; Nauta, J.J.; van der Waal, I.; Valk, J.; Meyer, C.J.; Snow, G.B. Cervical lymph node
metastasis: Assessment of radiologic criteria. Radiology 1990, 177, 379–384. [CrossRef]

22. Ariji, Y.; Fukuda, M.; Kise, Y.; Nozawa, M.; Yanashita, Y.; Fujita, H.; Katsumata, A.; Ariji, E. Contrast-enhanced computed
tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of
artificial intelligence. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 458–463. [CrossRef] [PubMed]

23. Ariji, Y.; Sugita, Y.; Nagao, T.; Nakayama, A.; Fukuda, M.; Kise, Y.; Nozawa, M.; Nishiyama, M.; Katumata, A.; Ariji, E. CT
evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma using deep
learning classification. Oral Radiol. 2020, 36, 148–155. [CrossRef] [PubMed]

24. Ariji, Y.; Fukuda, M.; Nozawa, M.; Kuwada, C.; Goto, M.; Ishibashi, K.; Nakayama, A.; Sugita, Y.; Nagao, T.; Ariji, E. Automatic
detection of cervical lymph nodes in patients with oral squamous cell carcinoma using a deep learning technique: A preliminary
study. Oral Radiol. 2021, 37, 290–296. [CrossRef] [PubMed]

25. Ariji, Y.; Kise, Y.; Fukuda, M.; Kuwada, C.; Ariji, E. Segmentation of metastatic cervical lymph nodes from CT images of oral
cancers using deep-learning technology. Dentomaxillofac. Radiol. 2022, 51, 20210515. [CrossRef]

26. Kubo, K.; Kawahara, D.; Murakami, Y.; Takeuchi, Y.; Katsuta, T.; Imano, N.; Nishibuchi, I.; Saito, A.; Konishi, M.; Kakimoto, N.;
et al. Development of a radiomics and machine learning model for predicting occult cervical lymph node metastasis in patients
with tongue cancer. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022, 134, 93–101. [CrossRef]

27. Zhong, Y.W.; Jiang, Y.; Dong, S.; Wu, W.J.; Wang, L.X.; Zhang, J.; Huang, M.W. Tumor radiomics signature for artificial neural
network-assisted detection of neck metastasis in patient with tongue cancer. J. Neuroradiol. 2022, 49, 213–218. [CrossRef]

28. Morgan, H.E.; Wang, K.; Dohopolski, M.; Liang, X.; Folkert, M.R.; Sher, D.J.; Wang, J. Exploratory ensemble interpretable
model for predicting local failure in head and neck cancer: The additive benefit of CT and intra-treatment cone-beam computed
tomography features. Quant. Imaging Med. Surg. 2021, 11, 4781–4796. [CrossRef]

29. Gündüz, E.; Alçin, Ö.F.; Kizilay, A.; Piazza, C. Radiomics and deep learning approach to the differential diagnosis of parotid
gland tumors. Curr. Opin. Otolaryngol. Head Neck Surg. 2022, 30, 107–113. [CrossRef]

http://doi.org/10.1186/s13244-020-00887-2
http://doi.org/10.1016/j.ebiom.2020.102963
http://doi.org/10.1007/s00259-021-05489-8
http://doi.org/10.3390/ijerph17124424
http://www.ncbi.nlm.nih.gov/pubmed/32575560
http://doi.org/10.1259/dmfr.20190107
http://doi.org/10.4258/hir.2018.24.3.236
http://doi.org/10.1259/dmfr.20200185
http://doi.org/10.3390/diagnostics10060430
http://doi.org/10.1016/j.oooo.2019.05.014
http://doi.org/10.1007/s11282-020-00485-4
http://www.ncbi.nlm.nih.gov/pubmed/32948938
http://doi.org/10.1111/odi.13223
http://doi.org/10.1259/dmfr.20210002
http://www.ncbi.nlm.nih.gov/pubmed/33882255
http://doi.org/10.3389/fonc.2021.793417
http://www.ncbi.nlm.nih.gov/pubmed/35155194
http://doi.org/10.1155/2015/840739
http://www.ncbi.nlm.nih.gov/pubmed/26457223
http://doi.org/10.1093/jjco/hyy196
http://doi.org/10.1148/radiology.177.2.2217772
http://doi.org/10.1016/j.oooo.2018.10.002
http://www.ncbi.nlm.nih.gov/pubmed/30497907
http://doi.org/10.1007/s11282-019-00391-4
http://www.ncbi.nlm.nih.gov/pubmed/31197738
http://doi.org/10.1007/s11282-020-00449-8
http://www.ncbi.nlm.nih.gov/pubmed/32506212
http://doi.org/10.1259/dmfr.20210515
http://doi.org/10.1016/j.oooo.2021.12.122
http://doi.org/10.1016/j.neurad.2021.07.006
http://doi.org/10.21037/qims-21-274
http://doi.org/10.1097/MOO.0000000000000782


Diagnostics 2023, 13, 110 21 of 23

30. Kise, Y.; Ikeda, H.; Fujii, T.; Fukuda, M.; Ariji, Y.; Fujita, H.; Katsumata, A.; Ariji, E. Preliminary study on the application of deep
learning system to diagnosis of Sjögren’s syndrome on CT images. Dentomaxillofac. Radiol. 2019, 48, 20190019. [CrossRef]

31. Yuan, J.; Fan, Y.; Lv, X.; Chen, C.; Li, D.; Hong, Y.; Wang, Y. Research on the practical classification and privacy protection of CT
images of parotid tumors based on ResNet50 model. J. Phys. Conf. Ser. 2020 2022, 1576, 012040. [CrossRef]

32. Zhang, H.; Lai, H.; Wang, Y.; Lv, X.; Hong, Y.; Peng, J.; Zhang, Z.; Chen, C.; Chen, C. Research on the classification of benign
and malignant parotid tumors based on transfer learning and a convolutional neural network. IEEE Access 2021, 9, 40360–40371.
[CrossRef]

33. Zhang, M.H.; Hasse, A.; Carroll, T.; Pearson, A.T.; Cipriani, N.A.; Ginat, D.T. Differentiating low and high grade mucoepidermoid
carcinoma of the salivary glands using CT radiomics. Gland Surg. 2021, 10, 1646–1654. [CrossRef] [PubMed]

34. Xu, Y.; Shu, Z.; Song, G.; Liu, Y.; Pang, P.; Wen, X.; Gong, X. The role of preoperative computed tomography radiomics in
distinguishing benign and malignant tumors of the parotid gland. Front. Oncol. 2021, 11, 634452. [CrossRef] [PubMed]

35. Liu, Y.; Zheng, J.; Lu, X.; Wang, Y.; Meng, F.; Zhao, J.; Guo, C.; Yu, L.; Zhu, Z.; Zhang, T. Radiomics-based comparison of MRI and
CT for differentiating pleomorphic adenomas and Warthin tumors of the parotid gland: A retrospective study. Oral Surg. Oral
Med. Oral Pathol. Oral Radiol. 2021, 131, 591–599. [CrossRef]

36. Li, D.T.S.; Leung, Y.Y. Temporomandibular disorders: Current concepts and controversies in diagnosis and management.
Diagnostics 2021, 11, 459. [CrossRef]

37. Ottersen, M.K.; Abrahamsson, A.K.; Larheim, T.A.; Arvidsson, L.Z. CBCT characteristics and interpretation challenges of
temporomandibular joint osteoarthritis in a hand osteoarthritis cohort. Dentomaxillofac. Radiol. 2019, 48, 20180245. [CrossRef]

38. Le, C.; Deleat-Besson, R.; Prieto, J.; Brosset, S.; Dumont, M.; Zhang, W.; Cevidanes, L.; Bianchi, J.; Ruellas, A.; Gomes, L.; et al.
Automatic segmentation of mandibular ramus and condyles. In Proceedings of the 2021 43rd Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 2952–2955.

39. Kim, Y.H.; Shin, J.Y.; Lee, A.; Park, S.; Han, S.S.; Hwang, H.J. Automated cortical thickness measurement of the mandibular
condyle head on CBCT images using a deep learning method. Sci. Rep. 2021, 11, 14852. [CrossRef]

40. de Dumast, P.; Mirabel, C.; Cevidanes, L.; Ruellas, A.; Yatabe, M.; Ioshida, M.; Ribera, N.T.; Michoud, L.; Gomes, L.; Huang, C.; et al.
A web-based system for neural network based classification in temporomandibular joint osteoarthritis. Comput. Med. Imaging
Graph. 2018, 67, 45–54. [CrossRef]

41. Bianchi, J.; de Oliveira Ruellas, A.C.; Gonçalves, J.R.; Paniagua, B.; Prieto, J.C.; Styner, M.; Li, T.; Zhu, H.; Sugai, J.; Giannobile, W.; et al.
Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning. Sci. Rep. 2020,
10, 8012. [CrossRef]

42. Hung, K.F.; Hui, L.L.; Leung, Y.Y. Patient-specific estimation of the bone graft volume needed for maxillary sinus floor elevation:
A radiographic study using cone-beam computed tomography. Clin. Oral Investig. 2022, 26, 3875–3884. [CrossRef]

43. Yeung, A.W.K.; Hung, K.F.; Li, D.T.S.; Leung, Y.Y. The use of CBCT in evaluating the health and pathology of the maxillary sinus.
Diagnostics 2022, 12, 2819. [CrossRef]

44. Hung, K.; Hui, L.; Yeung, A.W.K.; Wu, Y.; Hsung, R.T.; Bornstein, M.M. Volumetric analysis of mucous retention cysts in the
maxillary sinus: A retrospective study using cone-beam computed tomography. Imaging Sci. Dent. 2021, 51, 117–127. [CrossRef]

45. Hung, K.; Montalvao, C.; Yeung, A.W.K.; Li, G.; Bornstein, M.M. Frequency, location, and morphology of accessory maxillary
sinus ostia: A retrospective study using cone beam computed tomography (CBCT). Surg. Radiol. Anat. 2020, 42, 219–228.
[CrossRef]

46. Yeung, A.W.K.; Colsoul, N.; Montalvao, C.; Hung, K.; Jacobs, R.; Bornstein, M.M. Visibility, location, and morphology of the
primary maxillary sinus ostium and presence of accessory ostia: A retrospective analysis using cone beam computed tomography
(CBCT). Clin. Oral Investig. 2019, 23, 3977–3986. [CrossRef]

47. Xu, J.; Wang, S.; Zhou, Z.; Liu, J.; Jiang, X.; Chen, X. Automatic CT image segmentation of maxillary sinus based on VGG network
and improved V-Net. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1457–1465. [CrossRef]

48. Deng, Z.; Wang, B.; Zhu, Z. BE-FNet: 3D bounding box estimation feature pyramid network for accurate and efficient maxillary
sinus segmentation. Math. Probl. Eng. 2020, 2020, 5689301. [CrossRef]

49. Jung, S.K.; Lim, H.K.; Lee, S.; Cho, Y.; Song, I.S. Deep active learning for automatic segmentation of maxillary sinus lesions using
a convolutional neural network. Diagnostics 2021, 11, 688. [CrossRef]

50. Hung, K.F.; Ai, Q.Y.H.; King, A.D.; Bornstein, M.M.; Wong, L.M.; Leung, Y.Y. Automatic detection and segmentation of
morphological changes of the maxillary sinus mucosa on cone-beam computed tomography images using a three-dimensional
convolutional neural network. Clin. Oral Investig. 2022, 26, 3987–3998. [CrossRef]

51. Hung, K.F.; Hui, L.; Yeung, A.W.K.; Jacobs, R.; Leung, Y.Y.; Bornstein, M.M. An analysis of patient dose received during cone-beam
computed tomography in relation to scan settings and imaging indications as seen in a dental institution in order to establish
institutional diagnostic reference levels. Dentomaxillofac. Radiol. 2022, 51, 20200529. [CrossRef]

52. Bornstein, M.M.; Yeung, A.W.K.; Tanaka, R.; von Arx, T.; Jacobs, R.; Khong, P.L. Evaluation of health or pathology of bilateral
maxillary sinuses in patients referred for cone beam computed tomography using a low-dose protocol. Int. J. Periodontics Restor.
Dent. 2018, 38, 699–710. [CrossRef]

53. Wang, X.; Xu, Z.; Tong, Y.; Xia, L.; Jie, B.; Ding, P.; Bai, H.; Zhang, Y.; He, Y. Detection and classification of mandibular fracture on
CT scan using deep convolutional neural network. Clin. Oral Investig. 2022, 26, 4593–4601. [CrossRef]

http://doi.org/10.1259/dmfr.20190019
http://doi.org/10.1088/1742-6596/1576/1/012040
http://doi.org/10.1109/ACCESS.2021.3064752
http://doi.org/10.21037/gs-20-830
http://www.ncbi.nlm.nih.gov/pubmed/34164309
http://doi.org/10.3389/fonc.2021.634452
http://www.ncbi.nlm.nih.gov/pubmed/33777789
http://doi.org/10.1016/j.oooo.2021.01.014
http://doi.org/10.3390/diagnostics11030459
http://doi.org/10.1259/dmfr.20180245
http://doi.org/10.1038/s41598-021-94362-7
http://doi.org/10.1016/j.compmedimag.2018.04.009
http://doi.org/10.1038/s41598-020-64942-0
http://doi.org/10.1007/s00784-021-04354-0
http://doi.org/10.3390/diagnostics12112819
http://doi.org/10.5624/isd.20200267
http://doi.org/10.1007/s00276-019-02308-6
http://doi.org/10.1007/s00784-019-02829-9
http://doi.org/10.1007/s11548-020-02228-6
http://doi.org/10.1155/2020/5689301
http://doi.org/10.3390/diagnostics11040688
http://doi.org/10.1007/s00784-021-04365-x
http://doi.org/10.1259/dmfr.20200529
http://doi.org/10.11607/prd.3435
http://doi.org/10.1007/s00784-022-04427-8


Diagnostics 2023, 13, 110 22 of 23

54. Apostolakis, D.; Michelinakis, G.; Kamposiora, P.; Papavasiliou, G. The current state of computer assisted orthognathic surgery:
A narrative review. J. Dent. 2022, 119, 104052. [CrossRef]

55. Shujaat, S.; Bornstein, M.M.; Price, J.B.; Jacobs, R. Integration of imaging modalities in digital dental workflows—Possibilities,
limitations, and potential future developments. Dentomaxillofac. Radiol. 2021, 50, 20210268. [CrossRef]

56. Lo Giudice, A.; Ronsivalle, V.; Spampinato, C.; Leonardi, R. Fully automatic segmentation of the mandible based on convolutional
neural networks (CNNs). Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 100–107. [CrossRef]

57. Preda, F.; Morgan, N.; Van Gerven, A.; Nogueira-Reis, F.; Smolders, A.; Wang, X.; Nomidis, S.; Shaheen, E.; Willems, H.; Jacobs, R.
Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed
tomography: A validation study. J. Dent. 2022, 124, 104238. [CrossRef]

58. Ezhov, M.; Gusarev, M.; Golitsyna, M.; Yates, J.M.; Kushnerev, E.; Tamimi, D.; Aksoy, S.; Shumilov, E.; Sanders, A.; Orhan, K.
Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci. Rep. 2021, 11, 15006. [CrossRef]

59. Sin, Ç.; Akkaya, N.; Aksoy, S.; Orhan, K.; Öz, U. A deep learning algorithm proposal to automatic pharyngeal airway detection
and segmentation on CBCT images. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 117–123. [CrossRef]

60. Orhan, K.; Shamshiev, M.; Ezhov, M.; Plaksin, A.; Kurbanova, A.; Ünsal, G.; Gusarev, M.; Golitsyna, M.; Aksoy, S.; Mısırlı, M.; et al.
AI-based automatic segmentation of craniomaxillofacial anatomy from CBCT scans for automatic detection of pharyngeal airway
evaluations in OSA patients. Sci. Rep. 2022, 12, 11863. [CrossRef]

61. Jaskari, J.; Sahlsten, J.; Järnstedt, J.; Mehtonen, H.; Karhu, K.; Sundqvist, O.; Hietanen, A.; Varjonen, V.; Mattila, V.; Kaski, K.
Deep learning method for mandibular canal segmentation in dental cone beam computed tomography volumes. Sci. Rep. 2020,
10, 5842. [CrossRef]

62. Lim, H.K.; Jung, S.K.; Kim, S.H.; Cho, Y.; Song, I.S. Deep semi-supervised learning for automatic segmentation of inferior alveolar
nerve using a convolutional neural network. BMC Oral Health 2021, 21, 630. [CrossRef]

63. Xu, J.; Liu, J.; Zhang, D.; Zhou, Z.; Zhang, C.; Chen, X. A 3D segmentation network of mandible from CT scan with combination
of multiple convolutional modules and edge supervision in mandibular reconstruction. Comput. Biol. Med. 2021, 138, 104925.
[CrossRef]

64. Jang, T.J.; Yun, H.S.; Kim, J.E.; Lee, S.H.; Seo, J.K. Fully automatic integration of dental CBCT images and full-arch intraoral
impressions with stitching error correction via individual tooth segmentation and identification. arXiv 2021, arXiv:2112.01784.

65. Chung, M.; Lee, J.; Song, W.; Song, Y.; Yang, L.-H.; Lee, J.; Shin, Y.-G. Automatic registration between dental cone-beam CT
and scanned surface via deep pose regression neural networks and clustered similarities. IEEE Trans. Med. Imaging 2020, 39,
3900–3909. [CrossRef]

66. Kim, I.; Misra, D.; Rodriguez, L.; Gill, M.; Liberton, D.K.; Almpani, K.; Lee, J.S.; Antani, S. Malocclusion classification on
3D cone-beam CT craniofacial images using multi-channel deep learning models. In Proceedings of the 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020;
pp. 1294–1298.

67. ter Horst, R.; van Weert, H.; Loonen, T.; Bergé, S.; Vinayahalingam, S.; Baan, F.; Maal, T.; de Jong, G.; Xi, T. Three-dimensional
virtual planning in mandibular advancement surgery: Soft tissue prediction based on deep learning. J. Craniomaxillofac. Surg.
2021, 49, 775–782. [CrossRef]

68. Ma, Q.; Kobayashi, E.; Fan, B.; Hara, K.; Nakagawa, K.; Masamune, K.; Sakuma, I.; Suenaga, H. Machine-learning-based approach
for predicting postoperative skeletal changes for orthognathic surgical planning. Int. J. Med. Robot. 2022, 18, e2379. [CrossRef]

69. Lin, H.H.; Chiang, W.C.; Yang, C.T.; Cheng, C.T.; Zhang, T.; Lo, L.J. On construction of transfer learning for facial symmetry
assessment before and after orthognathic surgery. Comput. Methods Programs Biomed. 2021, 200, 105928. [CrossRef]

70. Nishiyama, M.; Ishibashi, K.; Ariji, Y.; Fukuda, M.; Nishiyama, W.; Umemura, M.; Katsumata, A.; Fujita, H.; Ariji, E. Performance
of deep learning models constructed using panoramic radiographs from two hospitals to diagnose fractures of the mandibular
condyle. Dentomaxillofac. Radiol. 2021, 50, 20200611. [CrossRef]

71. Krois, J.; Cantu, A.G.; Chaurasia, A.; Patil, R.; Chaudhari, P.K.; Gaudin, R.; Gehrung, S.; Schwendicke, F. Generalizability of deep
learning models for dental image analysis. Sci. Rep. 2021, 11, 6102. [CrossRef]

72. Rischke, R.; Schneider, L.; Müller, K.; Samek, W.; Schwendicke, F.; Krois, J. Federated learning in dentistry: Chances and
challenges. J. Dent. Res. 2022, 101, 1269–1273. [CrossRef]

73. Roy, S.; Meena, T.; Lim, S.J. Demystifying supervised learning in healthcare 4.0: A new reality of transforming diagnostic medicine.
Diagnostics 2022, 12, 2549. [CrossRef]

74. Pfaehler, E.; Zhovannik, I.; Wei, L.; Boellaard, R.; Dekker, A.; Monshouwer, R.; El Naqa, I.; Bussink, J.; Gillies, R.; Wee, L.; et al. A
systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features. Phys. Imaging
Radiat. Oncol. 2021, 20, 69–75. [CrossRef] [PubMed]

75. Xue, C.; Yuan, J.; Lo, G.G.; Chang, A.T.Y.; Poon, D.M.C.; Wong, O.L.; Zhou, Y.; Chu, W.C.W. Radiomics feature reliability assessed
by intraclass correlation coefficient: A systematic review. Quant. Imaging Med. Surg. 2021, 11, 4431–4460. [CrossRef] [PubMed]

76. Zhang, R.; Ai, Q.Y.H.; Wong, L.M.; Green, C.; Qamar, S.; So, T.Y.; Vlantis, A.C.; King, A.D. Radiomics for discriminating benign
and malignant salivary gland tumors; which radiomic feature categories and MRI sequences should be used? Cancers 2022,
14, 5804. [CrossRef] [PubMed]

77. Wang, H.; Zhou, Y.; Wang, X.; Zhang, Y.; Ma, C.; Liu, B.; Kong, Q.; Yue, N.; Xu, Z.; Nie, K. Reproducibility and repeatability of
CBCT-derived radiomics features. Front. Oncol. 2021, 11, 773512. [CrossRef]

http://doi.org/10.1016/j.jdent.2022.104052
http://doi.org/10.1259/dmfr.20210268
http://doi.org/10.1111/ocr.12536
http://doi.org/10.1016/j.jdent.2022.104238
http://doi.org/10.1038/s41598-021-94093-9
http://doi.org/10.1111/ocr.12480
http://doi.org/10.1038/s41598-022-15920-1
http://doi.org/10.1038/s41598-020-62321-3
http://doi.org/10.1186/s12903-021-01983-5
http://doi.org/10.1016/j.compbiomed.2021.104925
http://doi.org/10.1109/TMI.2020.3007520
http://doi.org/10.1016/j.jcms.2021.04.001
http://doi.org/10.1002/rcs.2379
http://doi.org/10.1016/j.cmpb.2021.105928
http://doi.org/10.1259/dmfr.20200611
http://doi.org/10.1038/s41598-021-85454-5
http://doi.org/10.1177/00220345221108953
http://doi.org/10.3390/diagnostics12102549
http://doi.org/10.1016/j.phro.2021.10.007
http://www.ncbi.nlm.nih.gov/pubmed/34816024
http://doi.org/10.21037/qims-21-86
http://www.ncbi.nlm.nih.gov/pubmed/34603997
http://doi.org/10.3390/cancers14235804
http://www.ncbi.nlm.nih.gov/pubmed/36497285
http://doi.org/10.3389/fonc.2021.773512


Diagnostics 2023, 13, 110 23 of 23

78. Wong, L.M.; Ai, Q.Y.H.; Zhang, R.; Mo, F.; King, A.D. Radiomics for discrimination between early-stage nasopharyngeal
carcinoma and benign hyperplasia with stable feature selection on MRI. Cancers 2022, 14, 3433. [CrossRef]

79. Bagher-Ebadian, H.; Siddiqui, F.; Liu, C.; Movsas, B.; Chetty, I.J. On the impact of smoothing and noise on robustness of CT and
CBCT radiomics features for patients with head and neck cancers. Med. Phys. 2017, 44, 1755–1770. [CrossRef]

80. Sellami, S.; Bourbonne, V.; Hatt, M.; Tixier, F.; Bouzid, D.; Lucia, F.; Pradier, O.; Goasduff, G.; Visvikis, D.; Schick, U. Predicting
response to radiotherapy of head and neck squamous cell carcinoma using radiomics from cone-beam CT images. Acta Oncol.
2022, 61, 73–80. [CrossRef]

81. Foy, J.J.; Robinson, K.R.; Li, H.; Giger, M.L.; Al-Hallaq, H.; Armato, S.G. Variation in algorithm implementation across radiomics
software. J. Med. Imaging (Bellingham) 2018, 5, 044505. [CrossRef]

82. Bianchi, J.; Gonçalves, J.R.; Ruellas, A.C.O.; Vimort, J.B.; Yatabe, M.; Paniagua, B.; Hernandez, P.; Benavides, E.; Soki, F.N.;
Cevidanes, L.H.S. Software comparison to analyze bone radiomics from high resolution CBCT scans of mandibular condyles.
Dentomaxillofac. Radiol. 2019, 48, 20190049. [CrossRef]

83. Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.;
Boellaard, R.; et al. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput
image-based phenotyping. Radiology 2020, 295, 328–338. [CrossRef]

84. Hung, K.F.; Yeung, A.W.K.; Bornstein, M.M.; Schwendicke, F. Personalized dental medicine, artificial intelligence, and their
relevance for dentomaxillofacial imaging. Dentomaxillofac. Radiol. 2023, 52, 20220335. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/cancers14143433
http://doi.org/10.1002/mp.12188
http://doi.org/10.1080/0284186X.2021.1983207
http://doi.org/10.1117/1.JMI.5.4.044505
http://doi.org/10.1259/dmfr.20190049
http://doi.org/10.1148/radiol.2020191145
http://doi.org/10.1259/dmfr.20220335
http://www.ncbi.nlm.nih.gov/pubmed/36472627

	Introduction 
	Deep Learning and Radiomics on CT/CBCT for the Diagnosis and Management of Maxillofacial Diseases 
	Jaw Cysts and Tumors 
	Lymph Node Metastasis 
	Salivary Gland Diseases 
	Temporomandibular Joint Disorders 
	Maxillary Sinus Pathologies 
	Mandibular Fractures 
	Dentofacial Deformities and Malocclusion 

	The Challenges and Prospects of Deep Learning and Radiomics on CT/CBCT for Maxillofacial Diseases 
	Conclusions 
	References

