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Abstract: Multiple sclerosis (MS) is a neuroinflammatory disease that involves structural and func-
tional damage to the brain. It changes the functional connectivity of the brain between and within
networks. Resting-state functional magnetic resonance imaging (fMRI) enables us to measure func-
tional correlation and independence between different brain regions. In recent years, statistical
methods, including independent component analysis (ICA) and graph-based analysis, have been
widely used in fMRI studies. Furthermore, topological properties of the brain have been appeared
as significant features of neuroscience studies. Most studies are focused on graph analysis and ICA
methods, rather than considering spectral approaches. Here, we developed a new framework to
measure brain connectivity (in static and dynamic formats) and incorporate it to study fMRI data
from MS patients and healthy controls (HCs). For this purpose, a spectral ICA method is proposed
to extract the nodes of the brain graph. Spectral ICA extracts more reliable components and de-
creases the processing time in calculation of the static brain connectivity. Compared to Infomax
ICA, dynamic range and low-frequency to high-frequency power ratio (fALFF) show better results
using the proposed ICA. It is also helpful in selection of the states for dynamic connectivity. Fur-
thermore, the dynamic connectivity-based extracted components from spectral ICA are estimated
using a mutual information method and based on correlation of sliding time-windowed on selected
IC time courses. First-level and second-level connectivity states are calculated using correlations of
connectivity strength between graph nodes (spectral ICA components). Finally, static and dynamic
connectivity are analyzed based on correlation nodes percolated by an anatomical automatic labeling
(AAL) atlas. Despite static and dynamic connectivity results of AAL correlations not showing any
significant changes between MS and HC, our results based on spectral ICA in static and dynamic
connectivity showed significantly decreased connectivity in MS patients in the anterior cingulate
cortex, whereas it was significantly weaker in the core but stronger at the periphery of the posterior
cingulate cortex.

Keywords: functional MRI; brain connectivity; multiple sclerosis; ICA

1. Introduction

Multiple sclerosis (MS) is a central nervous system (CNS) disease that is characterized
by multiple lesions occurring mostly in the white matter. As a result, structural and
functional connectivity between various areas of the CNS is changed. Functional magnetic
resonance imaging (fMRI) in resting state and tasks shows large functional changes in MS
patients. The study of resting-state functional connectivity in MS is primarily aimed at
understanding changes in the innate functional map of the brain and their role in disease
progression and clinical disorders. Resting-state fMRI can be used to recognize distinct
regions of the brain that configure specific resting-state networks [1]. Unlike task fMRI,
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resting-state fMRI is not affected by designed task performance, which may differ from
healthy individuals, especially in patients with clinical disabilities.

Axonal injury is a dangerous and critical process in many brain diseases. Understand-
ing the processes associated with such injury is critical for resolving the causes of brain
disorders. Table 1 summarizes studies on MS using resting-state functional MRI (rs-fMRI),
task-based fMRI, and other MRI modalities. The main disadvantages of the methods listed
in Table 1 are unidentified stage of the disease, unclassified background of MS studies,
unmatched age and sex between patients and healthy controls (HCs), and dissimilar tasks
among different methods, which make comparisons impossible.

Table 1. Studies on MS using fMRI and other MRI modalities.

Group Study Number of Subjects Dataset Method Follow-Up Year

RRMS and MS

16 patients with RRMS
and 2 patients with

possible MS
9 HC

Task fMRI
T2-LL
T1-LL

Simple motor task 15–26 months Pantano
2014 [2]

MS MS (11 cases)
HC (9 cases)

rs-fMRI
Task fMRI

DTI

Cross-correlation
Fiber tracking — Mark J. Lowe

2008 [3]

RRMS
13 patients with early

RRMS
19 HC

rs-fMRI
T1, T2 PASAT 12 months B. Audoin

2008 [4]

RRMS 20 patients with RRMS
rs-fMRI

GM volumes and
WM architecture

Stroop task and
rs-fMRI 12 weeks M. Filippi

2012 [5]

RRMS MS (18 cases)
HC (18 cases) rs-fMRI VBM

SEINA 1 — Bonavita
2011 [6]

MS MS (16 cases)
HC (16 cases)

rs-fMRI
DTI

SIENA
TBSS 2 — Hawellek

2011 [7]

MS MS (31 cases)
HC (31 cases) rs-fMRI FEW 3 — Loitfelder

2012 [8]

Early RRMS MS (13 cases)
HC (14 cases) rs-fMRI ICA — Faivre

2012 [9]

First-stage MS MS (22 cases)
HC (14 cases) rs-fMRI Graph connectivity — Richiardi

2012 [10]

Different MS MS (42 cases)
HC (42 cases) Task fMRI Correlation 6 months Rocca

2014 [11]

RRMS MS (55 cases)
HC (24 cases) rs-fMRI Correlation 12 months Tona

2014 [12]

MS and NMO
NMO (30 cases)

MS (25 cases)
HC (35 cases)

rs-fMRI
DTI

T1, T2

Cross-correlation
FA analysis

Cortical thickness
Analysis

— Eshaghi
2015 [13]

MS MS (43 cases)
HC (20 cases)

rs-fMRI
T1, T2

Correlation
Lesion

segmentation
— Zhong

2016 [14]

RRMS and MS

18 cognitively impaired
patients with RRMS

Control group:
14 cognitively impaired

patients with MS

NBV
T2-LL

rs-fMRI
FSL 8 weeks S Bonavita

2015 [15]
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Table 1. Cont.

Group Study Number of Subjects Dataset Method Follow-Up Year

MS MS (27 cases)
HC (27 cases) Task fMRI SPM — L Pfaff

2019 [16]

RRMS MS (12 cases)
HC (12 cases) RS fMRI CONN toolbox 12 months V Fleischer

2020 [17]

RRMS and
SPMS

40 patients with RRMS
and 28 patients with

possible SPMS 4
RS fMRI CONN toolbox — A Temniy

2021 [18]

1 Structural image evaluation using normalization of atrophy; 2 Tract-based spatial statistics; 3 Family-wise error;
4 Secondary progressive MS.

Today, hidden information in structural and functional connections between different
regions of the brain is reported to be important for diagnosis of mental illnesses at different
stages of the disease. In this regard, MRI modalities, such as diffusion tensor imaging
(DTI) and fMRI, were introduced to derive structural and functional connections. fMRI
measures the response of the hemodynamic system (blood-flow change) associated with
neural activity in the human brain or spinal cord. Since the magnetic resonance signal is
contrasted with the blood oxygen level, the term “blood oxygenation level-dependent”
(BOLD) is known in the fMRI community. Available methods for analyzing functional
relationships through fMRI are generally divided into two groups: model-based and
data-based. Model-based approaches, e.g., cross-correlation analysis (CCA), need prior
knowledge and are easy to implement and widely used. Data-driven methods (either based
on clustering or data analysis) require no prior knowledge and are thus quite useful for
rs-fMRI studies.

Independent vector analysis (IVA) [19,20] is an approach that keeps variability with
extending ICA to multiple datasets. IVA-GL algorithm [21] is a combination of IVA using
the Laplace density model (IVA-L) with IVA using the Gaussian density model (IVA-G).
IVA-GL assumes super-Gaussian distribution for the sources and uses second-order and
higher-order statistical dependence among multiple subjects.

In this study, rs-fMRI is used for HCs and MS with similar stage of disease. Further-
more, a multistage, data-driven method is developed to calculate more accurate functional
connectivity. A modified independent component analysis (ICA) method is proposed to
overcome speed concerns and local minima problems in time-series analysis. Dynamic
connectivity is then extracted with the IVA-GL algorithm and more realistic independent
components are selected using clustering and filtering methods.

The rest of the paper is organized as follows. In Section 2, our methods, including the
proposed ICA method and brain connectivity using graphs, are described. In Section 3,
the results are presented, showing the improvements achieved by the proposed method.
Finally, in Section 4, the conclusions are presented.

2. Material and Methods
2.1. Data Acquisition

Overall, 12 RRMS patients (7 female and 5 male) and 12 HCs (4 female and 8 male)
were included in this analysis. The MRI scans were performed with a 3 T MRI scanner
(Magnetom Tim Trio, Siemens Healthcare, Erlangen, Germany) with a 32-channel receive-
only head coil. MRI used a gradient echo (GE)–EPI sequence with the following settings:
TR = 3000 ms, TE = 30 ms, flip angle = 90◦, field of view (FOV) = 192 × 192 mm

2
, matrix

size = 64 × 64, spatial in-plane resolution 3 mm, 49 slices with a slice thickness of 2 mm
and an interslice gap of 1 mm, readout bandwidth (BW) = 2232 Hz/pixel. A time series
with 200 time points was acquired.

All subjects were from the Department of Neurology, University Medical Center of
the Johannes Gutenberg University Mainz and the Department of Neurology, Goethe-
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University Frankfurt, and underwent a standardized MRI protocol in Mainz [22]. Prior to
participating in this study, informed written consent was collected from all individuals,
which was approved by the Ethics Committee of the Rhineland-Palatinate State Medical
Association. This study was based on the principles set out in the Helsinki Declaration.
Human ethics documents were used before any data collection. Overall, 24 documents were
approved by the ethics committee. Each patient with MS was evaluated by an experienced
neurologist and an Expanded Disability Status Scale (EDSS) score was determined at study
entry after one year. Fatigue was classified according to the Fatigue Scale for Motor and
Cognitive Functions (FSMC) [23] and was also assessed at study input after one year. All
patients had recurrence at least 60 days before enrollment. To ensure a homogeneous
clinical set of patients, patients with clinical recurrence during the study period were
excluded [22].

2.2. Preprocessing

Parallel auto-preprocessing was used to realign the images. The data were then
spatially normalized to the Montreal Institute of Neurological Institute (MNI) standard
atlas, 3 mm × 3 mm × 3 mm voxels using nonlinear registration (affine + low-frequency
direct cosine transform functions) in SPM8 toolbox (http://www.fil.ion.ucl.ac.uk/spm,
accessed on 1 March 2021). A full-width Gaussian kernel at half-maximum 5 mm was used
to reduce some false-positive correlations in further analysis.

2.3. Methods

We used modified spectral ICA for calculating static and dynamic connectivity and
better discrimination of MS and HC. The method block diagram is shown in Figure 1 and
listed below.

• Extraction of ICs (nodes) using proposed ICA method
• Calculation of connectivity map for all datasets and all ICs, as well as extracting

connectivity maps for MS and HC.
• Calculation of static and dynamic connectivity
• Calculation of standard deviation between windows for MS and HC
• Calculation of different connections between the graph nodes. Most discriminative

nodes are temporal gyrus and frontal gyrus. All main nodes listed in Table 2.

Table 2. MS and healthy group differences using fMRI.

Brain Areas BA Max t-Score (x, y, z)

MS < HCs

Inferior Temporal Gyrus 20 4.6 (−57, −36, −21)

Superior Parietal Lobule 7 3.6 (36, −57, 51)

Middle Temporal Gyrus 21, 22 5.1 (63, −45, 3)

Inferior Parietal Lobule 40 3.7 (51, −39, 60)

Lingual Gyrus 18 3.8 (3, −90, −6)

MS > HCs

Medial Frontal Gyrus 10 17.1 (−6, 63, 6)

Superior Frontal Gyrus 10 8.1 (−12, 69, 3)

Anterior Cingulate 25 3.7 (−3, 18, −3)

Caudate - 10.4 (−6, 12, 9)

Lateral Ventricle - 8.6 (−3, 6, 9)

Medial Frontal Gyrus 10, 11 9.8 (−6, 60, −12)

Superior Temporal Gyrus 38 6.7 (−45, 21, −27)

Inferior Temporal Gyrus and Fusiform Gyrus 37 4.3 (−54, −60, −12)

http://www.fil.ion.ucl.ac.uk/spm


Diagnostics 2022, 12, 2263 5 of 19

Table 2. Cont.

Brain Areas BA Max t-Score (x, y, z)

Cuneus 18 4.7 (−9, −96, 15)

Inferior Frontal Gyrus 10, 46 4.5 (−54, 21, 24)
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To prove better discrimination of the proposed ICA between MS and HC, we used
dynamic range and fAlff of extracted ICs, listed in Table 3. For this purpose, statistical
measurements were computed for each standard deviation of functional connectivity
between the groups.

2.3.1. Conventional Independent Component Analysis (ICA)

ICA is a statistical method to decompose a set of information (observed data) such that
the decomposed sources will be maximally independent. ICA is one of the famous fMRI
models used to extract spatial or temporal sources of observed data (mostly the spatial
components are extracted). In spatial ICA analysis, X is an observation data matrix with
size of N ×M, where N is the number of time points and M is the number of voxels. As
such, M-dimensional random vector denoted by X = [x1, x2, . . . , xM]T (observation matrix)
should be solved by ICA matrix [24]:

X = AS (1)
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Table 3. Proposed ICA and Infomax ICA comparison with dynamic range and fALFF of
extracted components.

Proposed ICA Infomax ICA

Component Number Dynamic Range fALFF Dynamic Range fALFF

1 0.038 1.642 0.040 2.133

2 0.033 1.226 0.040 1.540

3 0.033 1.166 0.038 1.926

4 0.029 0.923 0.049 2.541

5 0.040 1.862 0.033 1.235

6 0.033 1.248 0.034 1.241

7 0.034 1.402 0.039 1.857

8 0.034 1.344 0.041 1.953

9 0.038 1.653 0.032 1.166

10 0.035 1.423 0.029 0.958

11 0.039 1.951 0.037 1.368

12 0.030 1.098 0.032 1.073

13 0.038 1.523 0.031 0.993

14 0.039 1.934 0.042 2.033

15 0.036 1.650 0.033 1.247

16 0.040 1.775 0.033 1.251

17 0.039 2.239 0.028 0.824

18 0.036 1.314 0.036 1.333

19 0.038 1.473 0.037 1.748

20 0.033 1.113 0.039 1.948

21 0.040 2.305 0.033 1.204

22 0.037 1.507 0.039 1.536

23 0.038 1.788 0.034 1.298

24 0.039 1.821 0.041 2.146

25 0.036 1.497 0.042 2.341

26 0.034 1.346 0.040 1.955

27 0.036 1.524 0.037 1.207

28 0.041 1.792 0.039 1.914

29 0.038 1.607 0.043 2.217

30 0.045 2.056 0.029 0.869

31 0.039 1.748 0.037 1.632

32 0.036 1.517 0.040 1.726

33 0.039 1.719 0.033 1.265

34 0.041 2.131 0.043 2.347

35 0.043 2.977 0.037 1.738

36 0.042 2.221 0.040 1.972

37 0.038 1.512 0.035 1.536

To acquire N-dimensional source matrix S = [s1, s2, . . . , sN ]
T , whose elements refer to

independent sources and A as an unknown mixing matrix. Usually, the number of voxels
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(M) is greater than the number of time points and “A” is usually a full rank matrix. Good
approximation of sources is determined using higher than second-order statistics. Most
popular ICA algorithms use nonlinear methods to generate higher-order statistics based on
maximum-likelihood estimation, maximization of information transfer, mutual information
minimization, and maximization of non-Gaussianity.

One of the main concerns in maximization methods is the selection of a proper starting
point to solve the problem of local maxima. For instance, Infomax, one of the most popular
algorithms, finds the unknown mixing matrix (A) by maximizing the sum of the marginal
entropies. Considering the orthogonality rules, joint entropy function is invariant to
orthogonal transformation (H(AX) = H(X)), where entropy of sources H(S) = ∑ H(si) is
equal to sum of marginal entropies. Accordingly, Infomax finds A by maximizing H(S):

max
A

N

∑
i=1

H[(A−1X)j] (2)

Infomax uses gradient methods for global search and optimization steps. However,
Infomax (like other optimization algorithms) encounters two disadvantages: first, compli-
cated nonlinear function in marginal entropy function; second, problem of finding local
maximum (which is more prone to error in higher dimension) and cannot be solved by
repetition.

2.3.2. Spectral ICA

Graph Laplacian is a known method in clustering approaches, dimension reduction,
and classification. In the ICA algorithm, elements of a weighted matrix are calculated using
observation matrix (X):

Wij = k
(
‖ Xi − X j ‖ 2/2ε

)
(3)

where ‖.‖ is the Euclidean distance, k is an exponential kernel and ε is bandwidth of the
kernel (k(x) = e−x). The normalization matrix (D) is then calculated as sum of the weighted
matrix elements:

Dii =
N

∑
j=1

Wij (4)

The weighted matrix is then normalized with matrix D and the negative definite graph
Laplacian matrix (L) is defined by:

L = D−1W − I (5)

where I is an N × N identity matrix. In spectral ICA, it is proven that the top few eigenvec-
tors belonging to nondegenerative eigenvalues of L are tightly correlated with independent
component of the observation matrix [25]. It has also been shown that spectral ICA is not
reliable for extracting more than one or two ICs (with more than 90% correlation to outputs
of ICA); however, the correlation value for the next eigenvectors decreases to lower than
60%. Compared with ICA, spectral ICA has the advantage of exemption from wrong initial
value selection and local maxima, but is more time-consuming.

2.3.3. Proposed Modified Spectral ICA Method

To implement, first the number of ICs is estimated using the minimum description
length (MDL) method (R is estimated number of ICs) [26]. Graph Laplacian matrix is then
calculated according to Equation (5) and first R nondegenerative eigenvalues are selected
and corresponding eigenvectors are extracted. These eigenvectors are then used as initial
ICs for the Infomax algorithm. The mixing matrix of Infomax is calculated based on the
observation matrix and the initial components (Ainitial = X·S−1

spectral) instead of a random
mixing matrix. In our study, a new group ICA method on fMRI data is introduced by
designing a modified combination of spectral ICA and Infomax algorithm and formulating
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a new approach in calculation of brain connectivity, elaborated in section C and D. The
Infomax algorithm and some utilities like repetition of ICA with ICASSO were undertaken
using the GIFT software package from MATLAB (http://mialab.mrn.org/software/gift/,
accessed on 15 April 2021) [27].

2.3.4. Proposed Method for Extraction of Static and Dynamic Brain Connectivity

For each individual, an m×m (where m is number of ICNs selected as 37 in this study)
weighted matrix is first constructed that represents a stationary brain connectivity (static
connectivity at the time) graph using the entire data time. ICs overlay to brain atlas to
know their Brodmann area. The departed ICs based on Brodmann area atlas are known
as ICNs. Selected ICs are in contrast to ICs related to physiological activity, movement, or
imaging artifacts (ARTs). These components are evaluated based on the expectation that
ICNs should reveal peak activations in gray matter, low spatial overlap with known ARTs,
and should represent time courses (TCs) that are correlated with low-frequency fluctuation.
The connectivity graph approach helps us to find the relationship between the two ICNs.
To build the edges in the connectivity graph, the correlation of time courses is calculated
for all ICN pairs, where B is n × n degree matrix of K.

The dynamic connectivity analysis of each individual is performed using a time-sliding
window (with width of L = 22× TR (66 s) in steps of 1× TR sliding), according to the find-
ings of Allen et al. (2014) [28] for establishing a good trade-off between the ability of solving
dynamicity and the quality of the connection estimation. Sliding windows are implemented
to divide total time points for each subject into smaller datasets. The IVA-GL algorithm is
applied on all these smaller datasets for all subjects. Back-reconstructed component maps
are acquired for each subject at each time window. The m = 37 ICN TCs are divided into
time segments by taking the time windows of width L, leading to F− L + 1 = 179 distinct
matrixes (where F is number of time points). Then, 179 different weighted brain graphs
m×m are constructed (Sw, w = 1, 2, 3, . . . , 179) and graph measurements, including the
connectivity strength, clustering coefficient, and global efficiency of SwS are calculated by
the Brain Connectivity Toolbox [29].

3. Results

The proposed modified spectral ICA method takes advantage of both spectral ICA
and Infomax algorithms. Spectral ICA extracts independent components quickly, but
not accurately; and Infomax is time-consuming and has a local maxima problem (due to
random initialization). The proposed method takes mutual advantage of both method-
ologies: the exact optimization is borrowed from Infomax to yield accurate ICs, and good
initialization is taken from spectral ICA to provide a reliable initial step and yielding to fast
and trustworthy convergence.

3.1. Modified Spectral ICA and Stationary Connectivity

The number of ICNs was extracted using minimum description length (MDL). A
spatial map of the ICNs was extracted with the proposed ICA algorithm. The ICA al-
gorithm was repeated 10 times in the ICASSO decomposition reliability estimation and
the resulting clusters compacted [30]. Also, by calculating the power spectrum, only the
components with low-frequency power spectra were selected [31]. Finally, 37 independent
components (ICs) were extracted as intrinsic connectivity networks (ICNs). Selected ICs
were in contrast to ICs related to physiological activity, movement, or imaging artifacts
(ARTs). These components were evaluated based on the expectation that ICNs should
reveal peak activations in gray matter, low spatial overlap with known ARTs, and represent
time courses (TC) correlated with low-frequency fluctuation. As demonstrated in Figure 2,
ICNs were rearranged based on their regions and their dynamic range. In the power spec-
tra, at frequency of right side of the peak, the difference between the maximum power and
minimum power was calculated. In addition, to compare the proposed ICA and Infomax
ICA, fALFF (low-frequency to high-frequency power ratio) and dynamic range of extracted

http://mialab.mrn.org/software/gift/
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ICs were compared (Table 3). The similarity matrix between ICNs, known as stationary
functional connectivity for each subject, was computed from the entire scan. Then, the
final similarity matrix was computed by averaging the similarity matrix for all subjects in a
group. Functional network connectivity correlations were also computed for each dataset
and averaged across sessions. In addition, mutual information was computed between
components spatially and averaged across the datasets. Stationary functional connectivity
of the MS group and healthy group are shown in Figure 3.
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across sessions. (b) FNC metrics of component spatial maps. Mutual information was computed
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were computed for average HC dataset. (d) Mutual information was computed between components
spatially for the HC dataset. (e) Functional network connectivity correlations we computed for the
average MS dataset. (f) Mutual information was computed between components spatially for the
MS dataset.
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3.2. Dynamic Connectivity and Graph Properties

Stationary connectivity, as a first-level analysis, was based on 37 identified connec-
tivity states, based on the extracted ICs. Dynamic functional connectivity with 50% slid-
ing windows were calculated to divide total time points for each subject into smaller
datasets. Mean and standard deviation of all extracted window in this dataset did not yield
meaningful results.

A possible problem is the number of windowed FNC correlations used by the dynamic
method for extracting state by reducing the number of FNC correlation windows to a few
clusters. This process can be done with different methods, such as k-mean, ICA, and
PCA. We used k-mean clustering to extract six different states from all extracted windows.
Dynamic connectivity of six different states extracted with k-mean clustering is shown in
Figure 4.
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Mean values and standard deviation were computed across windows for all datasets
and averaged across the subjects (Figure 5). To reduce the number of windowed FNC
correlations, ICA analysis with Infomax was repeated on all extracted windows. We
extracted six states with this method, more reliable than k-mean (Figure 4). ICA-based
extracted states are shown in Figure 6.

For each group, we constructed a dynamic connectivity map. At the first step, a chart
of state vs. mean dwell time was determined and is shown in Figure 7. This chart proves
that the second state is more reliable than other extracted states. Then, back-reconstruction
of the second state for HC and MS groups was done and two-sample t-test results run
(Figure 8).

As another method to compare ICA-based static and dynamic connectivity, we an-
alyzed the connectivity based on correlation of each pair of the regions in atlas of AAL.
Static and dynamic functional connectivity maps of HC and MS using this correlation are
shown in Figures 9 and 10.



Diagnostics 2022, 12, 2263 12 of 19Diagnostics 2022, 12, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 5. Dynamic functional connectivity using all extracted ICs: (a) average FNC across windows, 
(b) average standard deviation across windows for all datasets and averaged across subjects. 

 
Figure 6. Dynamic functional connectivity of all 37 extracted ICs: six different states, selected based 
on ICA from all windows. 

Figure 5. Dynamic functional connectivity using all extracted ICs: (a) average FNC across windows,
(b) average standard deviation across windows for all datasets and averaged across subjects.

Diagnostics 2022, 12, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 5. Dynamic functional connectivity using all extracted ICs: (a) average FNC across windows, 
(b) average standard deviation across windows for all datasets and averaged across subjects. 

 
Figure 6. Dynamic functional connectivity of all 37 extracted ICs: six different states, selected based 
on ICA from all windows. Figure 6. Dynamic functional connectivity of all 37 extracted ICs: six different states, selected based

on ICA from all windows.



Diagnostics 2022, 12, 2263 13 of 19Diagnostics 2022, 12, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 7. Dynamic connectivity maps: mean dwell time windows vs. cluster states. 

 
Figure 8. Two-sample t-test for dynamic connectivity map for MS and HC group. 

 

Figure 7. Dynamic connectivity maps: mean dwell time windows vs. cluster states.

Diagnostics 2022, 12, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 7. Dynamic connectivity maps: mean dwell time windows vs. cluster states. 

 
Figure 8. Two-sample t-test for dynamic connectivity map for MS and HC group. 

 

Figure 8. Two-sample t-test for dynamic connectivity map for MS and HC group.

Diagnostics 2022, 12, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 7. Dynamic connectivity maps: mean dwell time windows vs. cluster states. 

 
Figure 8. Two-sample t-test for dynamic connectivity map for MS and HC group. 

 

Figure 9. Mean static functional connectivity network for MS and HC using correlation with 90 brain
regions defined by AAL atlas.



Diagnostics 2022, 12, 2263 14 of 19

Diagnostics 2022, 12, x FOR PEER REVIEW 15 of 20 
 

 

Figure 9. Mean static functional connectivity network for MS and HC using correlation with 90 brain 
regions defined by AAL atlas. 

 
Figure 10. Mean dynamic FNC of both MS group and healthy control group using correlation with 
90 brain regions defined by AAL atlas. 

3.3. Assessing Reliability and Stability in ICA for fMRI Data 
One of the most important problems in ICA in analysis of fMRI data is the stability 

and reliability of the extracted independent components. The first source of uncertainty 
in ICA algorithm is the number of components to be extracted. Minimum description 
length (MDL) is used for estimating the number of ICs. Another source of uncertainty is 
using random initialization to find local minima in most of the algorithms. 

To overcome the first uncertainties (number of estimated ICs), we used the MDL al-
gorithm in most of the proposed algorithms. However, we also used the R-index, which 
defines the degree of difference between two samples. Figure 11 shows that the best re-
sults were achieved by ICs between 32 to 37. 

Regarding the other source of uncertainty (random initialization), we had two strat-
egies to overcome the local minimum problem. The first strategy is using spectral ICA, 
where the type of the optimization method with graph Laplacian is robust to change in 
repetitions. The proposed method uses spectral ICA as an input of the ICA algorithm, and 
it yielded stability of final extracted ICs. In addition, we used ICASSO, which uses repe-
tition and bootstrap, to find the more reliable and stable ICs (Figure 12). 

Figure 10. Mean dynamic FNC of both MS group and healthy control group using correlation with
90 brain regions defined by AAL atlas.

3.3. Assessing Reliability and Stability in ICA for fMRI Data

One of the most important problems in ICA in analysis of fMRI data is the stability
and reliability of the extracted independent components. The first source of uncertainty in
ICA algorithm is the number of components to be extracted. Minimum description length
(MDL) is used for estimating the number of ICs. Another source of uncertainty is using
random initialization to find local minima in most of the algorithms.

To overcome the first uncertainties (number of estimated ICs), we used the MDL
algorithm in most of the proposed algorithms. However, we also used the R-index, which
defines the degree of difference between two samples. Figure 11 shows that the best results
were achieved by ICs between 32 to 37.
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Regarding the other source of uncertainty (random initialization), we had two strate-
gies to overcome the local minimum problem. The first strategy is using spectral ICA,
where the type of the optimization method with graph Laplacian is robust to change in
repetitions. The proposed method uses spectral ICA as an input of the ICA algorithm,
and it yielded stability of final extracted ICs. In addition, we used ICASSO, which uses
repetition and bootstrap, to find the more reliable and stable ICs (Figure 12).
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4. Discussion

In this study, the characteristics of the dynamic graph were determined by calculating
different connections among different brain functions in HCs and MSs in resting-state fMRI
data. Brain graph nodes are defined by ICNs detected by group spectral ICA. Dynamic
weight brain graph is created using time-window sliding correlation analysis. The results
indicated that the dynamic graph metrics discovers higher variance in HC than MS. Median
value for connectivity measurements in MS are reduced.

We demonstrated three distinct kinds of comparisons to show the effectiveness of
the proposed method. First, results of the proposed method are compared with previous
publications with the most similar methods. Second, results of the proposed method
are compared with conventional methods using the same dataset. Third, results of the
proposed method are compared with medical achievement for MS patients.

The first declaration about validation of results is about connectivity changes. Our
results show that reduction in first-level connectivity state is associated with second-level
connectivity states. In first-level analysis, most of the changes are happening in third,
fourth and ninth ICs, and in second-level analysis, there are a lot of changes in connections
between HC and MS. For example, seventh IC connections are completely different in each
group. In other word, static connectivity shows only some changes in frontal gyrus, but
dynamic connectivity is able to discover the changes in frontal gyrus, cuneus, caudate and
inferior parietal lobule.

In comparison with other publications with the most similar methods, dynamic con-
nectivity has more reliable results. A second comparison is on performance of ICA vs a
conventional method (correlation with AAL90 atlas). As shown in Figures 9 and 10, the
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results of correlation could not determine any changes between MS and HC; however,
first-level and second-level connectivity using the proposed method is able to successfully
extract obvious changes

In blind source separation methods, uncertainty and reliability must be discussed.
ICASSO is well known for using bootstrap and multiple random initialization to check
stability. In this paper, we apply real ICASSO and ICASSO, and as per Figure 12a, real
ICASSO shows concertation and repeatability of the extracted ICs. Figure 12b presents
the results of ICASSO with proposed ICA. It is clear that estimated clusters in proposed
ICA are more reliable than conventional ICA. It is because of random initialization in ICA.
In addition, the number of ICs, as another issue in uncertainty analysis, is addressed by
calculating R-index between all ICs after applying ICA. By this method, the similarity
between all clusters is checked. As shown in Figure 11, after 32 clusters, R-index is
minimized. Finally, we select the number of ICs based on MDL calculation to select and the
most valid number of ICs and to decrease ICA uncertainty.

Our findings showed that the characteristics of the dynamic graph change based on
the functional connection of the variable brain together in MS, which is a potentially new
indicator for this mental illness. This provides a new framework for evaluating dynamic
brain graphs in resting-state fMRI data.

Due to the massive quantity and smallness of the neurons, it is challenging to build a
complete brain network at the neural level [32,33]. Functional brain connection networks in
fMRI data are often based on connections between large areas of the brain on a macroscopic
scale. Defining brain network nodes based on parcellation approaches includes the use
of predefined anatomical formats such as automatic anatomical labeling (AAL) [34–36],
randomly generated templates [37,38], and voxel-based divisions [39,40]. Few measures
of the topological characteristics of the brain graph may be modified by [32,33]. Previous
studies have estimated the network when using atlas-based areas (ROI) as damaged graph
nodes [41–43]. Furthermore, ROIs certainly do not respect the functional regions of the hu-
man brain or regions that reflect individual differences in subjects. In contrast, ICA provides
a data-driven approach to build networks by defining brain components as functionally
similar nodes [44–47]. In accordance with previous studies that also defined network
nodes using spatial ICA [28,47,48], in this study, the brain connectivity indicates a modular
organization within somatomotor, visual, cognitive control, default mode, and auditory
regions, as well as anticorrelation between default mode, visual, and auditory regions.

Beyond the static connectivity, we used correlation analysis based on time-sliding
windows to obtain dynamic topological criteria of time-varying brain graphs. This is the
most common strategy for investigating the brain connectivity dynamics in resting-state
fMRI [49,50]. Recent studies used this approach to show dynamics of the brain connectivity.
Sakoglou et al. (2010) [51] investigated dynamics of functional network connectivity in
schizophrenia. Jones et al. (2012) [52] examined the dynamic connectivity of brain networks
in Alzheimer’s disease. Wee et al. (2013) [53] used this approach to detect early mild
cognitive impairment (eMCI). However, these studies did not calculate the measurement
of the dynamic graph, which numerically analyzes dynamicity function of the whole brain.
There are few studies that analyze this type of dynamicity. In comparison with this study,
in previous literature, Pearson correlation was used, which is the most classic approach
to determine the existence of linear relationships via correlation coefficients, but we used
mutual information to test network dependency. We applied a different ICA method that
increased accuracy and speed of ICs. We compared both node selection method, atlas-
based node selection and data-driven (ICA-based) node selection. Results showed that
data-driven node selection was the most accurate method, with more differences between
HC and MS. Table 2 shows the significant difference between two groups that was extracted
from the proposed ICA. Connectivity of the medial frontal gyrus, superior frontal gyrus
and anterior cingulate increased in MS, while the inferior temporal gyrus and superior
parietal lobule decreased.
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