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Abstract: Diabetic Retinopathy is a vision impairment caused by blood vessel degeneration in the
retina. It is becoming more widespread as it is linked to diabetes. Diabetic retinopathy can lead
to blindness. Early detection of diabetic retinopathy by an ophthalmologist can help avoid vision
loss and other complications. Diabetic retinopathy is currently diagnosed by visually recognizing
irregularities on fundus pictures. This procedure, however, necessitates the use of ophthalmic
imaging technologies to acquire fundus images as well as a detailed visual analysis of the stored
photos, resulting in a costly and time-consuming diagnosis. The fundamental goal of this project is to
create an easy-to-use machine learning model tool that can accurately predict diabetic retinopathy
using pre-recorded digital fundus images. To create the suggested classifier model, we gathered
annotated fundus images from publicly accessible data repositories and used two machine learning
methods, support vector machine (SVM) and deep neural network (DNN). On test data, the proposed
SVM model had a mean area under the receiver operating characteristic curve (AUC) of 97.11%,
whereas the DNN model had a mean AUC of 99.15%.

Keywords: diabetic retinopathy; machine learning; GLCM feature; fundus image; image segmenta-
tion; MATLAB; SVM; DNN

1. Introduction

Diabetes is a long-term but controllable disease that happens when the pancreas does
not make enough insulin or when the body does not use the insulin it makes. Insulin is a
hormone that regulates the amount of sugar in the bloodstream. Over time, physiological
systems are harmed by excessively high blood sugar levels. Diabetes can cause long-term
complications such as diabetic nephropathy (kidney disease), strokes and heart attacks,
neuropathy (nerve damage), diabetic foot ulcers, and diabetic retinopathy (DR) [1]. DR is a
condition that causes damage to the retina. The retina is a light-sensitive layer on the eye’s
backside. When blood vessels in the retina are destroyed, it results in DR, which might
cause minor vision problems at first but eventually leads to blindness. Non-proliferative
diabetic retinopathy (NPDR) is the first stage of diabetic retinopathy, in which microscopic
bulges known as microaneurysms grow in the retina’s tiny blood vessels, allowing blood to
seep into the retina [2–4]. DR is the main cause of eyesight loss in working-age individuals
(20–65 years), according to the International Diabetes Federation (IDF). One in every
three diabetics is affected by DR, and one in every ten positive cases develops a vision-
threatening form of the disease. The IDF has announced that 537 million people worldwide
have diabetes, up 16 percent (74 million) from previous IDF forecasts for 2019 [5,6]. Because
DR is becoming more common, it is projected to be one of the leading causes of vision
impairment or blindness in the future. As a result, an eye exam is an important element of
diabetes care. The earlier DR is discovered, the more quickly it can be treated. As a result,
individuals diagnosed with diabetes should see an ophthalmologist right away for medical
treatment to prevent blindness.

Machine learning (ML) and artificial intelligence (AI) have successfully solved compli-
cated issues in almost every area in recent years, as proven by the scientific community.
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The importance of ML and AI in medicine is growing [7–9]. In the future, ML and AI will
be used to improve patient care by personalizing medication and adapting it to the needs
of individual patients. We employed ML algorithms to estimate DR using retinal scans
in this study. The key features of the fundus images were identified using a grey-level
co-occurrence matrix (GLCM). We created two ML classifier models, SVM and DNN, that
make use of GLCM characteristics extracted from fundus images, and we conducted multi-
ple tests to identify the most accurate DR classifier for categorizing any unknown retinal
scan into healthy or DR.

The following sections make up the remainder of this paper: Section 2 offers back-
ground and a review of recently published research papers. Section 3 details the materials
and methods employed in the research. The findings of numerous trials are presented in
Section 4, which is followed by the conclusion in Section 5.

The eye is a sensitive organ and a crucial part of the visual system. It is a spherical
hollow sphere with an uneven shape. It has the incredible capacity to absorb light rays
reflected from physical objects in our environment and convert them to corresponding
images [10]. Figure 1 presents the anatomy of the eye with its vital components [11]. The
cornea is a clear domelike structure placed in front of the eye covering the iris or colored
part of the eye, which controls the amount of light entering it. The lens is the transparent
region of the eye beneath the iris that concentrates incident light on the retina. The retina
processes light into electrical impulses that pass via the optic nerve (located on the back of
the eye) and are transmitted to the brain for further processing [12].
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Diabetic patients are prone to several complications, one of which is DR. Diabetic
people, particularly those with uncontrollably high blood sugars, are susceptible to this eye
disease [13]. DR is a consequence of diabetes that damages the blood vessels at the back of
the eye and may lead to blindness if left misdiagnosed and untreated [3–5]. The variants
of DR are proliferative retinopathy and macular edema. The former is caused by blood
flow into the center of the eye from damaged vessels, causing blurred vision. The latter is
a more advanced situation in which the fluid leaks into the macula’s center and leads to
partial or complete blindness [3–5]. A comprehensive eye exam that includes the following
tests can detect macular edema and diabetic retinopathy: A visual acuity test that measures
how well you see at various distances, followed by a dilated eye test, a type of eye exam in
which certain drops enlarge the pupils, allowing the eye specialist to examine the retina
and optic nerve for signs of damage with the help of a magnifying lens. The specialist
may also conduct a tonometry test to measure the pressure inside the eye using special
instruments [14]. The presence of hard exudates, microscopic white or yellowish-white
coatings with sharp edges in the retina’s outer layers, is the most apparent symptom of
DR [13]. These hard exudates are visible on the retinal scans, making it easy for an expert
to diagnose the condition. Many different retinal/fundal imaging devices currently in use
can provide high-quality digital images of the retina.

Many research articles have been published on detecting DR utilizing fundus images
and ML methods in recent years [15–19]. In some investigations, the researchers used
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binary fundus image datasets, and the rest used multiclass datasets. As learned from the
research publications, the three critical processes involved in the DR prediction algorithms
are preprocessing, feature extraction, and classification. Different image enhancement
approaches have been used to preprocess the input images. Convolutional Neural Network
(CNN) and Gray Level Co-occurrence Matrix (GLCM), and Local Binary Patterns (LBP)
are some of the most commonly used feature extraction techniques. Most recent papers
employed CNN as feature extraction. This study uses binary datasets with retinal images
divided into healthy and DR groups.

Ahmad Z. et al. (2018) created a DR classifier using the GLCM as a feature extractor and
an SVM with four kernel functions (quadratic, linear, Gaussian, and polynomial) as a binary
classifier. The accuracy scores of the model for the four kernels were: 72.72% (quadratic),
22.72% (linear), 63.64% (gaussian), and 90.91% (polynomial). The results indicate that the
polynomial kernel function looks to be more suitable for DR classification [15].

Using a CNN model, K. Xu et al. (2019) automatically classified 1000 retina images
in the Kaggle dataset as healthy or DR images. Before feeding the images to the CNN,
the images were scaled to a size of 224 × 224 × 3. Additionally, the authors applied
image augmentation techniques to populate the original dataset. Eight Conv layers, four
max-pooling layers, and two FC layers made up the CNN architecture. For classification,
the SoftMax function was applied to the final layer of CNN. The accuracy of this approach
was 94.5% [16].

E. Dhiravidachelvi et al. (2019) introduced an approach for detecting and classifying
microaneurysms in diabetic retinopathy fundus scans. Initially, a median filter is applied to
the images, followed by contrast-constrained adaptive histogram equalization (CLAHE)
as a preprocessing step. The authors then used the GLCM algorithm to extract features
before feeding them to a k-nearest neighbor (KNN) binary classifier. On the test datasets,
the model had a maximum accuracy of 93%. The model had maximum sensitivity and
specificity of 95.7% and 90.56%, respectively. According to the researchers, the proposed
method could be used to detect a variety of pathologies in retinal images of varying quality
levels in the future [17].

Elveny M. et al. (2020) introduced a probabilistic neural network (PNN) ML classifier to
identify diabetes retinopathy using fundus pictures. The raw images were first preprocessed
using operations such as resizing, getting green channel, and contrast stretching in this
work. To extract image features, the researchers applied GLCM in the second stage. Finally,
to create the predictions, the probabilistic neural network was used. According to the test
findings, the approach identified diabetic retinopathy with an accuracy of 86.8 % [18].

Ramzi A. et al. (2021) suggested an ML technique for identifying and categorizing DR.
The authors adopted local binary patterns (LBP) as a feature extractor and investigated the
performance of several state-of-the-art pre-trained deep learning models for classification.
The best three models, ResNet, DenseNet, and DetNet were found to have accuracies of
96.35%, 84.05%, and 93.99%, respectively. The ResNet model took 34 min on an NVIDIA®

GeForce GTX 1050Ti with a memory 4 GB (NVIDIA Corporate, 2788 San Tomas Expressway,
Santa Clara, CA 95051) [19].

We observed from the above research articles that the datasets used in these studies
were not unique; they differed in terms of the number of images, resolution, and the devices
used to capture the images. In addition, we learned that the researchers tried out different
types of feature extraction techniques, such as GLCM, LBP, and Resnet (CNN); however,
the most explored feature extraction technique was the GLCM. To build the DR classifier,
the researchers adopted traditional ML algorithms such as SVM and KNN and neural
network models such as PNN and DNN. We noticed that the highest accuracy using SVM
and KNN algorithms was 90.91% and 93%, respectively. The KNN model that used GLCM
had a maximum sensitivity and specificity of 95.7% and 90.56%, respectively. The ResNet
model based on LBP features achieved 96.35% accuracy.

The following are some of the limitations of the research studies mentioned above:
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(a) Many researchers used accuracy as the only metric to evaluate the performance of
their models. However, sensitivity and specificity are essential when examining how
well ML classifier models work.

(b) The state-of-the-art model, the ResNet, has a complex structure and has to calculate
millions of parameters while being trained. This means that a powerful computer
(GPU) is needed to build the model.

(c) Most authors did not cross-validate the model’s test scores; instead, they used maxi-
mum accuracy scores based on fixed test samples, which may not be realistic.

Therefore, the main goal our research is to create lightweight ML models that use
GLCM features of fundus images to accurately classify DR with higher accuracy, sensitivity,
and specificity. To accomplish the stated objectives, we adopted relatively less complex but
efficient fundus image segmentation algorithm and extracted ten salient GLCM features
(as compared to five features in the relevant studies). We also experimented using a SVM
and a DNN to find the best performing DR classifier model.

2. Materials and Methods
2.1. Data

To create a dataset for the proposed DR classifier, we acquired pre-recorded normal
and retinopathic fundus images from four reliable public data repositories: Kaggle [20],
DDR [21], Zenodo [21], and Mendeley [22]. Table 1 outlines the key characteristics of the
images used in our investigation. There are 560 images in this collection, separated into two
categories (normal and DR), each with 280 images. Figure 2 depicts two image examples
from each of the two classes.

Table 1. Details of dataset.

Image Dataset No. of Images Image Size Total Images

Kaggle 38 Normal, 47 DR 3046 × 2572

280 Normal
280 DR

DDR 140 Normal 512 × 512

Mendeley Data 82 Normal 1504 × 1000

Zenodo 20 Normal, 233 DR 2124 × 2056
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2.2. Methodology

An overview of the proposed DR classifier is depicted in Figure 3. The key steps
include preprocessing, segmentation, GLCM feature extraction, data splitting, and making
predictions using a two class ML classifier. The following sections give a quick overview of
each operation.
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2.2.1. Preprocessing and Segmentation

This step is used to improve the overall quality of the fundus images in the datasets
and to separate the different parts of the fundus, such as blood vessels, exudates, and
microaneurysms (MAs). Figure 4 shows the step-by-step procedures for the pre-processing
and segmentation.
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The operation starts with the fundus photos being loaded from an image data folder.
As indicated in Table 1, the size of the fundus images in the data folder is different, so the
next step is to resize the images. A smaller image size allows ML algorithms to run faster;
therefore, experimentally, we found the optimal size at 512 × 512. In the next stage, the
resized images in RGB format are converted to grayscale images, as the grayscale images
retain the most relevant information associated with DR; the resulting reduction of one-
third in the image size further speeds up the computation. To enhance the overall quality
of the image, we then applied histogram equalization to the grayscale images [23,24]. We
then used an averaging filter mask of size 9 × 9 (consisting of all 1 s) to find the average
information and subtract it from the histogram-equalized image. This step removes all the
background information from histogram equalized images and only keeps high-frequency
components, such as blood vessels, exudates, or MAs (if present). We then calculated the
global image threshold using the iterative method recommended by Ridler and Calvard [25].
This threshold can be used to transform a grayscale image into a binary image. The first
step in the thresholding stage is to normalize the intensity value of the input image to
fall between 0 and 1. The histogram is initially divided into two halves using a starting
threshold value and half the maximum dynamic range. The sample mean of the intensity
values related to the foreground and background pixels is then calculated. These two
sample averages are used to calculate a new threshold value. Until the threshold value
becomes constant, the process is repeated depending on the new threshold. Binary images
are then derived from the subtracted image using the above threshold, and the pixel below
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the threshold forms black dots; if it is equal to or above the threshold, it forms the white
dots of the resulting binary image. In the next step, we reduce the noise from the binary
image by discarding the pixel clusters with 50 or fewer white pixels (we fix this value using
several rounds of experimental trials). The next step was a complement operation, which
converts black to white and vice versa, such that all the blood vessels appear black with a
white background. In the last stage, segmentation DR images are realized by overlaying an
inverted image on the grayscale image. As a result, the output image only contains blood
vessels, exudates, and MAs.

2.2.2. GLCM Feature Extraction

We can adopt multiple methods to perform texture analysis of digital images, but the
most common is GLCM. The GLCM can be used to compare the difference in gray levels
between any two pixels next to each other in any given direction of an image. The GLCM
is a square matrix representing the frequency of specified pairings of gray levels, G(i, j)
co-occurring in a given image or an image segment horizontally, vertically, or diagonally.
In texture feature calculations, the GLCM matrix is used to figure out how the intensity
changes at the pixel of interest [26,27]. Figure 4 illustrates the computation of GLCM for
a given image. To best explain the GLCM algorithm, we consider an image patch of size
9 × 9 shown in Figure 5a, which consists of gray levels 0 to 3. The typical GLCM directions
for any reference pixel are indicated in Figure 5b. As shown in Figure 5c, the GLCM can be
found by figuring out how often pairs of pixels in the image {(3, 2), (2, 3), (3, 1), (2, 0), (0, 1),
(1, 3), (2, 1), (1, 2)} appear together. For convenience, we then divide each GLCM element
by the sum of all GLCM elements to get a normalized GLCM with elements in the range 0
to 1.
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In the proposed methodology, the GLCM algorithm takes the segmented gray level
images as input and outputs the following statistical features [26–28].

(a) Contrast

The contrast of an image is defined as the difference between the highest and lowest
values of a pixel. This feature provides how much local variation there is in the picture.
Equation (1) can be used to calculate the contrast of an image, where Gi,j is an element of
the given GLCM matrix at (i, j), N number of gray levels in the segmented gray level image.

Contrast =
N−1

∑
i, j=0

Gi,j(i − j)2 (1)

(b) Energy

Energy is a statistical measure used to quantify texture uniformity. An image that has
a steady gray levels or periodic pattern provides high energy. Equation (2) defines energy.

Energy =
N−1

∑
i, j=0

G2
ij (2)

(c) Entropy

Entropy is a measure of randomness in the distribution of intensity levels in an image.
This statistic can be used to understand the texture of an image. Entropy can be found
using Equation (3).

Entropy = −
N−1

∑
i, j=0

Gi,j ln Gi, j (3)

(d) Homogeneity

The local gray level homogeneity is determined by this metric. It has the maximum
value when all elements in an image are the same, indicating that the image is highly
homogeneous. Homogeneity can be calculated using Equation (4).

Homogeneity =
N−1

∑
i, j=0

Gi,j

1 + (i − j)2 (4)

(e) Correlation

Correlation is a statistical measure that gives pixel pair connection or reliance in an im-
age. Equation (5) shows the correlation equation, where µ and σ denotes mean and standard
deviations of GLCM matrix, respectively, and can be estimated using Equations (6)–(9).

Correlation =
N−1

∑
i, j=0

Gi,j
(i − µi)

(
j − µj

)
σiσj

(5)

µi =
N−1

∑
i, j=0

i Gi,j (6)

µj =
N−1

∑
i, j=0

j Gi,j (7)

σi =

√√√√ N−1

∑
i, j=0

Gi, j(i − µi)
2 (8)
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σj =

√√√√ N−1

∑
i, j=0

Gi, j
(

j − µj
)2 (9)

(f) RMS

The RMS is the root mean square value of each input row or column, along with
vectors of a chosen input dimension, or for the whole input. Equation (10) may be used to
compute RMS.

RMS =

√√√√ 1
(N − 1)

N−1

∑
i,j=0

Gi,j
2 (10)

(g) Skewness

The degree of asymmetry in the pixel distribution in the specified window around its
mean is referred to as skewness. Skewness is a single metric that describes the shape of a
distribution. The following is the formula for determining skewness:

RMS =

√√√√ 1
(N − 1)

N−1

∑
i,j=0

Gi,j
2 (11)

(h) Kurtosis

Kurtosis measures how stable a distribution is in comparison to a normal distribution.

Kurtosis =
1

(N − 1)σ4

N−1

∑
i,j=0

(Gi,j − µ)4 (12)

2.2.3. Data Splitting by K-Fold CV

One of the most important steps in constructing ML models is organizing data into
a training set and a test set. The training set is used to train an empty model, whereas
the test set is used to evaluate the correctness of the model. The random 70:30 method
is the most common data split method, in which 70% of the data is randomly chosen as
the training set and the remaining 30% is used as test data. This method is imprecise
and inconsistent when the dataset is limited, and such models are prone to overfitting.
However, we employed a stratified k-fold cross-validation strategy, in which the entire data
is divided into k segments (k is an integer > 1), with k-1 slices being used to train the model
and the remaining slices being used to test the model, as illustrated in Figure 6. The mean
scores of the model are calculated by repeating the process k times with k different training
and test sets. We picked k = 10, which means there would be ten training cycles with ten
separate training and test sets. Cross-validation produces more consistent and accurate
ratings, allowing for a more exact assessment of model quality [29].
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2.2.4. Two-Class ML Classifier

A binary ML classifier is the final stage in the proposed model, and it is responsible
for providing predictions based on test data properties. We explored a number of machine-
learning classifier algorithms before deciding that SVM and DNN were the most effective.
The next section goes over the two algorithms.

(1) SVM

SVM is a well-known supervised machine learning algorithm that may be used to clas-
sify and predict data. It is a linear classifier that can tell the difference between two classes
of linearly separable data with high accuracy. As shown in Figure 7a, many hyperplanes
can be created to partition linearly separable data into two groups. The SVM method, on the
other hand, finds an ideal hyperplane with a maximum margin between support vectors,
as shown in Figure 7b. The support vectors sample data points closer to the hyperplane
from both classes that influence the hyperplane’s position and the margin [30–32].
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Because the SVM classifier requires feature scaling, the data ranges from +1 to −1. The
support vector machine produces a real-valued output that is either negative or positive
depending on which side of the decision boundary it falls on [27]. The hyperplane distance
can be used as a confidence indicator. The more distance between an observation and the
plane, the more precise the classification. The SVM classifier’s loss function is hinge loss,
which is a type of cost function that determines the cost based on a hyperplane margin. For
a target t and prediction p, the loss function L(y) is defined in Equation (13). Equation (14)
gives p, where W is the model weight matrix, b is the bias, and X is the feature inputs. An
observation placed directly on the boundary would lose one regardless of whether the
ground truth was +1 or −1 [31].

L(y) = max(0, 1 − p.t) (13)

p = wTX + b (14)

Although the SVM is a linear model, kernel functions that translate two-dimensional
data into higher-dimensional space allow it to handle non-linear datasets [33,34]. The
kernel functions are selected based on the dataset’s attributes and must be carefully chosen
for high classification accuracy, making it a hyperparameter of the SVM [33]. The most
common kernels are linear, polynomial, Gaussian, radial basis, and sigmoid. The SVM
algorithm has two other hyperparameters: the regularization coefficient C and gamma
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factor, γ [34]. C is used to control the model’s overfitting, with typical values ranging from
0.1 to 100. Regularization is higher when C is low, and the model tries to optimize the
margin by permitting misclassifications. The γ coefficient decides the curvature of the
decision border in non-linear applications. The typical values of γ are within the range of
0.0001 to 10. Low gamma values indicate a broad similarity radius, meaning that each class
has many data points. A high Gamma causes the model to overfit by requiring the data
points to be substantially close to each other to be deemed the same group. To get high
accuracy, C must be tuned for linear classifiers, whereas C and γ must be optimized for
non-linear classifiers [34,35].

(2) DNN

A DNN is a feed-forward artificial neural network (ANN) built using numerous
artificial neurons, each of which mimics a biological neuron [36]. As described in Figure 8a,
an artificial neuron has N number of inputs (Xi) to collect the input data and a processing
unit with a summing and an activation function to produce an output (Y) [37], using
Equation (15), where Wi*Xi is the weighted inputs, B is the bias, and ϕ is an activation
function, yields the output Y. The activation function specifies how the weighted sum
of the input is turned into an output. The activation function chosen has a significant
impact on the neural network’s capabilities and performance. There are various activation
functions to choose from, but the most popular are sigmoid, tanh, and rectified linear unit
(ReLU) [37].

Y = ϕ(
N

∑
i=1

Wi ∗ Xi + B) (15)
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The architecture of a typical DNN network is shown in Figure 8b, which includes an
input layer, many hidden layers, and an output layer. The input layer receives the data
features, which are subsequently processed by hidden layers to produce an output at the
output layer. The learnable parameters of every neural network model are the weights Wi
and the bias B, which are learned during the model’s training iterations [38]. Tuning a set
of DNN hyperparameters is essential to attain optimal performance from these models.
The number of neurons, activation function, number of hidden layers, optimizer, learning
rate, batch size, and number of epochs are all important hyperparameters.

Table 2 gives the architecture of the proposed DNN classifier. It consists of an input
layer to receive the ten GLCM features, followed by five hidden layers and an output binary
classifier layer. Each hidden layer is built using a dense layer, a dropout layer, and a batch
normalization layer in cascade. The output dimensions and the number of parameters
at each layer are given in Table 2. The dropouts in the dense layers limit the overfitting
tendency of the model; similarly, batch normalization layers provide the DNN model with
better regularization.
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Table 2. Configuration of the DNN model.

Layer (Type) Type of Layer Output Shape Number of
Parameters

Inpur_1 Input layer (None, 10) 0

Dense layer_1
Hidden layer_1

(None, 1024) 11,264

Dropout_1 (None, 1024) 0

Batch Normalization layer_1 (None, 1024) 4096

Dense layer_2
Hidden layer_2

(None, 512) 524,800

Dropout_2 (None, 512) 0

Batch Normalization layer_2 (None, 512) 2048

Dense layer_3
Hidden layer_3

(None, 256) 131,328

Dropout_3 (None, 256) 0

Batch Normalization layer_3 (None, 256) 1024

Dense layer_4
Hidden layer_4

(None, 128) 32,896

Dropout_4 (None, 128) 0

Batch Normalization layer_4 (None, 128) 512

Dense layer_5
Hidden layer_5

(None, 64) 8256

Dropout_5 (None, 64) 0

Batch Normalization layer_5 (None, 64) 256

Dense_6 Output layer (None,1) 65

2.2.5. Metrics for Model Evaluation

The following metrics were used to evaluate the model scores [39,40].

(a) Sensitivity

Sensitivity is also called recall or True positive rate (TPR). It is a ratio of true positives
(TP) to the sum of TP and false negatives (FN). A model with high TPR will have few false
negatives (FN), which means missing a few positive instances.

(b) Specificity

Specificity is also called true negative ratio (TNR). It is a ratio of true negative (TN) to
the sum of TN and false positives (FP). A model with high TNR means that the model is
correctly identifying most of the negative results.

(c) Precision

Precision measures the accuracy of a model’s positive prediction. Precision is cal-
culated by dividing the TP by the total number of positive cases (TP + FP) in the test
samples.

(d) F1-Score

F1-score is determined using the sensitivity and precision scores of a model, and its
value ranges from 0 (min) to 1 (max). F1-score can be calculated using Equation (16).

F1 = 2 x
Precision ∗ Sensitivity
Precision + Sensitivity

(16)

(e) Accuracy

The model’s accuracy is defined as the ratio of correct predictions (TP+TN) to the total
number of samples utilized to test the model. Because the default threshold for determining
the TP, TN, FP, and FN is 50%, the above three metrics may be approximate.

(f) The area under the receiver operating characteristics (AUROC or AUC)
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AUC is a better measure of accuracy since it is a cumulative model score across all
classification thresholds [40]. The ROC is a two-dimensional plot with the FPR (complement
of TNR) on the horizontal axis and the TPR on the vertical. Area under the ROC curve
gives AUC that tells how well the model discriminates the negative and positive classes.

2.2.6. Implementation of DNN Model

The following hyperparameters were chosen as the best for training the model: activa-
tion function: ReLU, dropout: 0.5, momentum = 0.95, epsilon = 0.001, optimizer: Adam,
batch size: 32, epochs: 100, and learning rate: 0.001. We used the training data to perform
DNN training and plot the model’s accuracy and loss curve. We ran tests on the trained
DNN model using the test data, displayed the ROC, and calculated model scores. We
utilize Google Drive for data storage and implemented the algorithm in python on Google
Colaboratory and a Dell XPS 15 9500 laptop with an Intel(R) Core (TM) i7-10750 H processor
running at 2.60 GHz, 2592 MHz, 6 Cores, and 12 Logical Processors as a local computer
(US Corporate Headquarters, 1 Dell Way, Round Rock, TX 78664).

3. Results

As mentioned earlier, GLCM feature extraction, data splitting, training, and testing of
SVM and DNN models are the primary steps involved in the proposed approach. The initial
stage GLCM features are extracted from the entire dataset, which consisted of 560 images
divided into two categories. The extracted features were saved in an excel file and later
used to train and test the models.

The stratified k-fold CV was used to make the required training and test data with
k = 10, providing a training set of size 504 × 11 and test data of size 56 × 11. Feature
columns and target column were isolated from these data splits, providing two feature sets
(x-train, x-test) and two target arrays (y-train, y-test). The x-train and y-train arrays were
used to train the model; the x-test and y-test arrays were used to test the trained model.

The hyperparameter settings used to train the SVM model were: kernel type: polyno-
mial, C = 1, and γ = 1. We carried out training using the training data and then tested the
trained SVM model using the test data and recorded the model scores.

As described in the preceding section, we first segmented the entire collection of
retinal images in the dataset. Figure 9a shows a sample image from the healthy class;
Figure 9b depicts a gray version of the image; Figure 9c provides the image after contrast
enhancement operation; Figure 9d is the image after averaging operation; Figure 9e is the
image after subtraction; Figure 9f is the image after thresholding operation; Figure 9g is
the image after noise removal; Figure 9h is the image after complementing operation; and
Figure 9i is the segmented image. Figure 10a–i show a DR image and its transformations at
different phases of the segmentation algorithm.

The GLCM algorithm took the segmented images and computed ten GLCM features,
as described in Section 2.2.2. Figures 11 and 12 presents visualization of the GLCM features
for a normal and a DR sample, respectively.

As described in the preceding section, the next stage was the data splitting, in which
the GLCM features are divided into training and test sets. Ten training rounds with ten
different training sets and test sets were carried out to cross-validate the model’s score. The
performance indicators (mean score with SD) of both models are summarized in Table 3.
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Figure 9. Transformations of input image (normal fundus) at various stages of the segmentation
algorithm; (a) shows a sample image from the healthy class; (b) depicts a gray version of the image;
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after noise removal; (h) is the image after complementing operation; and (i) is the segmented image.
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Figure 10. Transformations of input image (DR fundus) at various stages of the segmentation al-
gorithm. (a) shows a sample image from the DR class; (b) depicts a gray version of the image;
(c) provides the image after contrast enhancement operation; (d) is the image after averaging opera-
tion; (e) is the image after subtraction; (f) is the image after thresholding operation; (g) is the image
after noise removal; (h) is the image after complementing operation; and (i) is the segmented image.
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Table 3. Model’s scores on test data.

Model % Acc. % Sens. % Spec % Prec. % F1-Score % AUC

SVM 94.59
+/−0.018

93.65
+/−0.038

95.13
+/−0.016

90.28
+/−0.035

91.88
+/−0.028

97.11
+/−0.023

DNN 95.77
+/−0.017

95.02
+/−0.017

95.17
+/−0.019

93.10
+/−0.037

93.72
+/−0.026

99.15
+/−0.008

The SVM model achieved the following cross-validated scores: accuracy 94.59%,
sensitivity 93.65%, specificity 95.13%, precision 90.28%, F1 91.88%, and AUC 97.11%. The
model’s accuracy and loss plots during training and validation or testing of the DNN model
are shown in Figure 13.
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Figure 13. Accuracy and loss plots of DNN model.

It is evident from the plots that the DNN model began to converge at epoch 40 and
reached its maximum convergence at epoch 63. The following scores (mean) were obtained
using the DNN model: accuracy 95.77%, sensitivity 95.02%, specificity 95.17%, precision
93.10%, F1-score 93.72%, and mean AUC: 99.15%. Figure 14 shows the ROC plots, mean
ROC plot, AUC scores, and mean AUC score of both the models.
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4. Discussion

DR is a progressive eye disease induced by diabetes that can result in vision loss or
blindness if left untreated. Getting checked early is the best way to avoid the problem. A
comprehensive dilated eye exam is the best way to diagnose diabetic retinopathy. A eye
specialist uses an ophthalmoscope to look for abnormalities such as damage to blood vessels
to diagnose DR. Furthermore, fundus images captured by specialized imaging devices
support an eye specialist in manually assessing and diagnosing the disease. However,
manually administered DR diagnosis has a high degree of subjectivity, is prone to errors,
and creates significant delays.

In this study, we investigated the applicability of ML algorithms for detecting DR
using digital fundus images, thereby improving the efficacy of the ongoing DR diagnosis.
Using the GLCM features obtained from 560 fundus images, we build two classifier models:
the SVM and DNN. We trained the models using 504 images and then carried out tests
on 56 images to evaluate the model’s performance. The DNN classifier outperformed the
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SVM classifier on all the performance metrics and achieved a mean AUC of of 99.15%
against 97.11%. DNN models are complex models with many hyperparameters that may
be tuned to achieve optimal classification accuracy. Though the DNN model includes
715521 parameters, 711553 of which are trainable, it is less dense than the state-of-the-art
ResNet model, which has around 11 million parameters. Contrarily, the SVM is a compact,
simple-to-implement model that only needs a few hyperparameters to be adjusted, making
it appropriate for usage even on low-power computers. The SVM model performed
significantly faster, completing ten rounds of training and tests in 5 s compared to 196 s
for the DNN model. It is challenging to draw broad comparisons since, as Table 4 shows,
there are differences in the datasets utilized by the previous authors such as the quantity
of training, test images and its resolution, techniques adopted, and metrics employed to
evaluate the model’s performance.

Table 4. Comparison of the proposed DR classifier with state-of-the-art approaches.

Author Methods Number of Images Training and Test
Data

%Acc. %AUC %Sens %Spec

Ahmed Z. et al., 2018 [16] GLCM,
SVM

Training: 27
Test: 17

70: 30
split

82.35 N.A. 76.92 72.58

K. Xu et Al., 2019 [17] CNN Test:1000 70: 30
split

94.50 N.A. N.A. N.A.

Dhiravidachelvi et al.,
2019 [18]

GLCM,
KNN.

Test: 100 Fixed test samples 93.0 N.A. 95.70 90.56

Elveny M. et al.,
2020 [19]

GLCM,
Prob. NN.

Normal: 470,
DR: 555

80: 20 split 86.80 N.A. N.A. N.A.

Ramzi et al., 2021 [20] LBP,
CNN-ResNet

Training: 3662
Test: 1928

Fixed test samples 96.35 N.A. N.A. N.A.

Proposed Method -1 GLCM, SVM Normal: 280,
DR: 280

10 Fold CV 94.59 97.11 93.65 95.13

Proposed Method -2 GLCM. DNN Normal: 280,
DR: 280

10 Fold CV 95.77 99.15 95.02 95.17

It is important to note that the dataset we adopted was perfectly balanced (meaning
an equal number of normal and DR images), allowing the model to make a unbiased
prediction. We evaluated the model’s performance using accuracy, AUC, sensitivity, and
specificity. We also considered the training time of the models. Our GLCM-SVM model
outperformed the previously published GLCM-SVM model, with an accuracy of 94.59%
(vs. 82.35%), AUC of 97.11%, sensitivity of 93.65% (vs. 76.92%), and specificity of 95.13%
(vs. 72.58%). Our GLCM-SVM model completed training and cross-validation in 5 s. As we
learned, the state-of-the-art model achieved a test accuracy of 96.35% using a ResNet model;
the model took 31 min to complete the training. However, the authors did not estimate
AUC, sensitivity, or specificity. Our DNN-based DR classifier achieved an accuracy score of
95.77%, an AUC of 99.15%, a sensitivity of 95.02%, and a specificity of 95.17%; all the scores
were cross-validated using 10-fold CV. The training of our DNN model was completed in
121 s (about 2 min), nearly 16 times faster than the ResNet model. The suggested DNN
model would be appropriate for clinical applications because, in medical environments,
prediction scores of 95% or higher are considered acceptable.

We believe that the proposed method would aid an ophthalmologist in developing
a speedy and accurate diagnosis because it just takes a few seconds to screen a fundus
image. According to us, the proposed models have the following limitations. Although
the proposed technique has an AUC of above 99% for detecting DR, it does not provide
information regarding the severity of the sickness. Furthermore, for low-income people,
fundus imaging is extremely expensive. As a result, we plan to create a low-cost retinal
imaging device that combines a lens and a smartphone with an ML algorithm to provide
accurate DR classification and grading, allowing patients to conduct retinal screenings at
home and seek further referrals as needed.
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5. Conclusions

This study developed two ML approaches for identifying DR using pre-recorded
colored retinal images. The major processes in the offered methodologies are image seg-
mentation, feature extraction, and classification. DR relevant areas were identified using
segmentation techniques and then extracted GLCM features from it to develop an SVM and
a DNN model. The DNN model excelled both the proposed SVM and the state-of-the-art
models on test data. The DNN-based DR classifier takes a few seconds to produce the test
result for a given retinal image. With the use of a low-cost fundus image acquisition appa-
ratus that uses a lens and a smartphone, we plan to develop a user-friendly DR classifier
for home usage in the future.
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