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Abstract: In the past two years, medical researchers and data scientists worldwide have focused their
efforts on containing the pandemic of coronavirus disease 2019 (COVID-19). Deep learning models
have been proven to be capable of efficient medical diagnosis and prognosis in cancer, common
lung diseases, and COVID-19. On the other hand, artificial neural networks have demonstrated
their potential in pattern recognition and classification in various domains, including healthcare.
This literature review aims to report the state of research on developing neural network models to
diagnose COVID-19 from cough sounds to create a cost-efficient and accessible testing tool in the
fight against the pandemic. A total of 35 papers were included in this review following a screening of
the 161 outputs of the literature search. We extracted information from articles on data resources,
model structures, and evaluation metrics and then explored the scope of experimental studies and
methodologies and analyzed their outcomes and limitations. We found that cough is a biomarker,
and its associated information can determine an individual’s health status. Convolutional neural
networks were predominantly used, suggesting they are particularly suitable for feature extraction
and classification. The reported accuracy values ranged from 73.1% to 98.5%. Moreover, the dataset
sizes ranged from 16 to over 30,000 cough audio samples. Although deep learning is a promising
prospect in identifying COVID-19, we identified a gap in the literature on research conducted over
large and diversified data sets.

Keywords: cough audio signals; COVID-19; neural networks; deep learning

1. Introduction

The coronavirus disease 2019 (COVID-19) is an infectious disease caused by the
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). At the time of writing,the
World Health Organisation (WHO) has reported more than 510 million confirmed cases,
including more than 6 million deaths [1]. Two years after the coronavirus outbreak, the
virus continues to spread around the world. Therefore, prompt and precise identification of
the virus is indispensable. Various testing methods are available to detect the hallmarks of
the virus. Among them, reverse transcription-polymerase chain reaction (RT-PCR) testing
is currently considered the gold standard. However, none of the existing tests are 100%
accurate [2]. Moreover, RT-PCR tests can be time-consuming, unaffordable, unavailable at
times or in some areas, and pose a risk of transmitting the virus to healthcare workers and
others. In light of the foregoing, fast and accessible prescreening tools are urgently needed
to limit the spread of COVID-19.

To this end, there have been increased efforts to construct predictive diagnostic systems
using a wide range of media, including mechano-acoustic signatures of vital signs such as
heart rate, respiratory rate, temperature, and other respiratory biomarkers such as breath,
speech, or cough. Notably, the field of healthcare is undergoing a digital health revolution,
in which artificial intelligence (AI), big data, mobile devices, and other technological
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innovations are giving rise to new horizons. Machine learning techniques, such as artificial
neural networks, are already widely used for medical applications.

Modeled on the propagation of biological neurons, a neural network is a sequence
of node layers. Given enough data about a feature x and the corresponding data label y,
neural networks succeed remarkably in solving mapping from x to y. Through learning by
example, neural networks can detect diseases without stipulating a specific way to identify
them, making them singularly valuable. In our survey, we examine how cough sounds
have been utilized for the training, evaluation, and validation of neural network algorithms
aimed at helping healthcare workers detect the coronavirus.

Cystic fibrosis, pulmonary edema, pneumonia, chronic obstructive pulmonary disease,
and bronchitis are all respiratory diseases with a common symptom: cough. Notably, they
have been the center of deep learning multi-classification algorithm development. Research
in the last few decades has shown outstanding performance results (reaching higher than
90% in accuracy [3] and sensitivity values [4–6]).

When a cough is produced, it is generally composed of three phases [7]: inhalation,
exhalation against a closed glottis, and release of air from the lungs following the opening
of the glottis [8]. There are two types of coughs: wet, mucus-productive cough and dry
(nonproductive) cough. These have been repeatedly analyzed and characterized by phase
duration or frequency for classification tasks [9].

Figure 1 shows insights into the amplitude shapes of the raw data of two distinct coughs.
Coughs from COVID-19-positive and COVID-19-negative patients can appear different; how-
ever, no information or interpretation can be read from this single graph, and only statistical
analysis is relevant. For instance, Pahar et al. [10] statistically found that COVID-19 coughs
are 15–20% shorter in duration than non-COVID-19 coughs. Singh et al. [11] stated that for
involuntary healthy coughs, the energy distribution has values in all frequencies, and two
to three harmonics are visible; for other coughs, there is no clear pattern in the structure of
harmonics, and the second phase has two to three harmonics below one kilohertz.
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Figure 1. Raw data of cough signals extracted from the crowdsourced publicly available dataset
Coughvid [12]. The dataset’s recordings were collected from participants using their built-in computer
microphone, the sampling rate of the data is 48 kHz. (Left panel) COVID-19-positive: symptomatic
40-year-old male; (Right panel) COVID-19-negative: healthy 46-year-old male.

Despotovic et al. [13] listed the 10 most informative acoustic patterns in cough and
breath sound among hundreds of extracted attributes with the help of a mutual information
criterion. They later identified the most relevant features in cough signals that can detect
COVID-19, such as spectral harmonicity, root mean square energy, and spectral slope.
They explained that the energy spectrum of the cough of a COVID-19 patient shows low
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frequencies at the beginning and a shift in frequency values later, perhaps due to the pain
and effort required for the patient to cough.

In sum, the total or phase duration, peak frequency, location, intensity, pattern,
energy spectrum, and power ratio can help distinguish between healthy and COVID-19-
positive patients.

2. Methods
2.1. Study Guidelines

This review was conducted according to the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses statement (PRISMA) [14]. A review protocol was
drafted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
Protocols [15] for internal use amongst the research team but it was not externally
published or registered prospectively.

2.2. Search Strategy and Study Eligibility

The focus of the search had to be limited to cough and neural network uses for the
classification of COVID-19 using cough signals. To find pertinent research on this topic, the
following search terms were employed verbatim: cough, COVID-19/coronavirus/SARS-
CoV, detection/classification/predict/diagnosis/testing/screening, and neural/deep net-
work/learning. Other extensively used abbreviations, such as convolutional neural network
(CNN), recurrent neural network (RNN), and deep neural network (DNN), were also uti-
lized. To ensure the thoroughness of the review, PubMed, Embase, Science Direct, Google
Scholar, IEEE, and ResearchGate were searched for papers published between 1 January
2012 and 1 January 2022. Gray literature was not included in this review in an attempt
to only include peer-reviewed studies. This timeframe was chosen to reflect advances in
smart sensors, artificial intelligence technologies, and their kiosk applications in medicine.
The search for this review was completed in April 2022.

2.3. Inclusion and Exclusion Criteria

In the first pre-screening phase, duplicate records and papers published in languages
other than English or that were not accessible were discarded. The screening phase con-
sisted of several steps. First, all the reviews, case reports, or corrigenda papers were
removed. Then, all the studies considered irrelevant based on their title were discarded.
Finally, the abstracts of the papers were reviewed, and the key information was extracted
from the main text. The criteria for screening were as follows:

• papers using neural network methods to diagnose COVID-19 on biomedical imaging;
• papers using cough audio signals to diagnose COVID-19 through classical methods of

machine learning classification; and
• papers using cough to diagnose COVID-19, not as an audio signal but as a symptom

feature, were filtered out.

Once all the papers were selected and grouped, the last step was to go through the
results again, ensuring that nothing was omitted erroneously.

Although the use of cough and neural networks for the classification is a requisite
and paramount criterion, papers including breathing or other acoustic signals along
with coughs, as well as papers that include shallow or “classical” classification ma-
chine learning algorithms along with neural networks, were still considered in the
screening. Similarly, articles that aimed to perform multi-class classifications of COVID-
19-positive vs. healthy individuals and other illness classes were used in the synthesis.
One reviewer (SG) conducted the literature search, and two reviewers (SG and ME)
independently screened the titles, abstracts, and full texts for potentially eligible studies.
Reference lists of eligible studies were also hand-searched, but no additional studies
were included.
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2.4. Data Extraction and Risk of Bias

One author (SG) conducted the literature search, and two authors (SG and ME) inde-
pendently screened the titles and abstracts for potentially eligible studies. Each potential
study for inclusion underwent full-text screening and was assessed to extract study-specific
information and data. For each of the included articles, the information gathered was
the title of the model(s) used for the classification, the models’ performances, a rough
description of the data, and extracted features without all the details. However, the number
of layers, type of layers, loss of function, and others used to train or validate a model,
the pre-processing of the data, or the implementation steps taken within the papers were
not reported. If other tasks were executed during the implementation steps aside from
the diagnosis of COVID-19 from cough and if several attempts at neural network model
tuning were described, these were also not present. Finally, in retrieving the performance
metric results, some evaluation methods, such as unweighted average recall (UAR), Kappa
coefficient, and F1-score, were scarcely used and, thus, were not reported.

3. Results
3.1. Study Selection

In this section, we present our findings regarding the selection of studies. The flow
diagram in Figure 2 visually summarizes the screening process. Initially using broad terms
and then moving to more specific keywords, the searches generated more than 200 results.
Several criteria were applied during the screening to gather the literature for review.
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Figure 2. Literature search.

Out of hundreds of search results, 33 scientific articles were reviewed, as shown in
Table 1. These articles differed in the scope of their studies. Some articles aimed to compare
classical machine learning vs. deep learning models (e.g., support vector machine (SVM) vs.
DNN), distinct types of deep learning models (e.g., CNN vs. RNN), distinct architectures
of one type of model (e.g., CNN vs. residual neural networks (ResNet)), or hyperparameter
tweaking of a single model. Numerous articles examined the impact of feature extraction
on the performance of their model(s). Other articles compared the modalities of cough,
breath, and voice audio signals to assess the performance of their model(s).

The dataset sizes ranged from 16 to over 30,000 samples. Among the most frequently
used datasets were open-source Coswara [16], Virufy [17] and Coughvid [12]. Each dataset
has attributes and metadata, usually collated from users’ survey information via web
platforms or smartphone apps. For instance, some datasets included supplementary
metadata and features, such as symptoms, smoking habits, and other respiratory illnesses
for each audio sample. While some of these were used as additional features for training,
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others were applied as labels for different classification tasks (e.g., symptomatic COVID-19-
negative vs. COVID-19-positive). These features created an opportunity to use metadata
for further investigations and more closely reflected the reality during the training and
validation of the model. In the vast majority of cases, the datasets were imbalanced: the
pool of COVID-19-negative samples was considerably larger than that of the COVID-19-
positive samples.

Process Description

The flowchart in Figure 3 illustrates the simplified pipeline of procedures followed by
the studies that were examined during the survey. The first step was gathering and defining
the classification task data. Besides a few instances where the extraction of cough sounds
was sourced from hospital patients or publicly available videos (interviews on YouTube [18]
of COVID-19 patients), the datasets of the cough sounds were mostly crowdsourced via
website platforms or smartphone apps. The most common bit rate was 24 bits; the sampling
rates were 44.1 and 48 kHz, which can be altered and down-sampled. The main pre-
processing steps were bandpass filtering, noise reduction, and other data filtering figures.
After the selection and pre-processing of the data, feature extraction was undertaken. In
addition to raw audio signals, spectrogram images and vectorial features can be fed into
neural networks. For instance, spectrograms are extensively used and considered sound
fingerprints in audio recognition. Music identification apps, such as Shazam, are leveraged
in this context. The mel spectrogram is non-linear, with frequencies converted to the mel
scale. The mel scale is a logarithmic scale of frequencies judged as equal in distance from
one another.
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Figure 3. Pipeline of the general experimental procedures.

The mel-frequency cepstrum (MFC) is a power spectrum based on frequencies in
the mel scale. Cepstrum computation is a tool to study periodic structures in frequencies.
Since they are an inverse Fourier transform, MFCs are the coefficients of amplitude that
concisely describe the overall shape of a spectral envelope [19]. Audio cepstral coefficients
include features such as gammatone cepstral coefficients, log-energy, delta, and delta-
delta coefficients. Gammatone cepstral coefficients are defined as a biologically inspired
modification of the MFCCs using gammastone filters, the log-energy measures the sum
of energy of each frame of a signal in the logarithmic scale, the coefficients delta and
delta-delta, are the change in gammastone cepstral coefficients and the change in delta
values, respectively [20]. The latter coefficients, spectrograms, scalograms, and extracted
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features are either concatenated or passed onto some method for feature selection (e.g.,
cross-validation). The results are intended to be fed into the appropriate model for training.

During this preliminary phase, the Visual Geometry Group (VGG) [21], a CNN that is
well-known for image classification, is the primary neural network architecture utilized for
feature extraction purposes, but not as a model for training or classification [22]. There are
not enough results to effectively conclude that without feature extraction, the performance
of a deep learning strategy is consequently attenuated. However, deep learning architecture
can combine feature extraction with classification. Indeed, it has been used with or without
deep learning for classification. For this reason, one can ask, “Why extract features at all?”.
However, few articles compared the implementation and combination of features for a fixed
model. Performing sequential forward selection to select 13 features led to an improvement
in the area under the receiver operating characteristic curve (AUC) from 77.9% to 93.8% [10].
Although all features are not the main focus of our study, their presence is essential to
understanding the full scope of the task. For any machine learning exercise, the choice of a
model depends on the data, data size, and data representation.

3.2. Models
Definition of Models

Not all neural network architectures are created equally.

CNN: CNN is notably powerful for image classification tasks, as the execution of dimen-
sionality reduction suits many parameters in an image. CNN takes four-dimensional inputs
(a two-dimensional image, depth, and batch size) to which convolution operations are
applied, outputting a feature map. The latter is then flattened (1D) to fully connected layers.
ResNet: ResNets are a type of CNN that introduces skip layers to avoid the vanishing
gradient problem; the layers are gradually restored as the feature space is learned. Among
the neural network architectures, especially for visual object classifications, such as AlexNet,
DenseNet, Inception, and EfficientNet, ResNet is the most predominant among the models
encountered during this study, particularly ResNet-50.
RNN: While CNNs use convolution layers to filter data, RNNs reuse anterior activation
functions from other nodes to produce the next output in a sequence. They are designed
for temporal and sequential input and are widely used for speech recognition.
Long Short-Term Memory (LSTM): One prevalent example of RNN is the LSTM algorithm,
which is equipped with specific gates, such as the forget gate, to remedy the vanishing
gradient problem with RNNs.
Transfer Learning: When only a small dataset is at hand, it is generally useful to avail
oneself of models that are pretrained on large datasets, from freezing the weights of the
first input layers of the pretrained model—training the softmax function with the small
dataset—to re-initializing the entirety of the pretrained weights.

In the context of transfer learning, Pahar et al. [23] utilized a total of 11,202 cough
sounds from the datasets TASK, Brooklyn, Wallacedene, and Google Audio Set &Freesound.
Dentamaro et al. [24] made use of an open-source dataset, UrbanSound 8K, which is
comprises 10 classes of street sounds and no cough [25]. With transfer learning, their
model’s AUC improved by approximately 9%.

Based on the histogram in Figure 4, we can review the models that have been used for
COVID-19 classification and their counts. We can see that CNNs are a large majority. The
count of CNN usage comprises the instances where CNNs were used in research regardless
of their shape but does not include known architectures cited within articles under the
CNN category, such as ResNet-50. The latter is also a popular architecture among the
studies surveyed, but it is not the only “borrowed” architecture implemented, In fact, Loey
and Mirjalili [26] juxtaposed ResNet-50 with ResNet-18, ResNet-101, GoogleNet, NASNet,
and MobileNet V2. In two articles, CNN and RNN architectures were used and compared.
LSTM showed higher overall results than ResNet-50 in the first study [10], while the LTSM
showed lower results overall than CNN and ResNet-50 in the second [23].
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The popularity of CNN models can be explained by the fact that sound recognition can
be translated into a visual recognition task for which CNN has demonstrated great success.
Amoh and Odame [27] detailed two methods in the context of a cough detection task,
namely, CNN for visual recognition and RNN for sequence-to-sequence labeling, reporting
in their performance results that CNN yields a higher specificity than RNN. Pahar et al. [10]
broached the discussion of the evaluation of shallow, or “classical,” machine learning
classifiers, namely, logistic regression (LR), k-nearest neighbor (KNN), and SVM, against
deep neural networks: multilayer perceptron (MLP), CNN, LSTM, and ResNet-50-based
neural network architecture. Notably, LR, KNN, and SVM reached AUC values of 73.6%,
78.1%, and 81.5%, respectively, whereas the neural network models reached 89.7%, 95.3%,
94.2%, and 97.6% for MLP, CNN, LSTM, and ResNet-50, respectively.

Figure 4. Count of the deep learning models.

For the evaluation and validation of the performances of the models, a few strategies
have been established. As a baseline, Soltanian and Borna [28] used classical machine
learning (SVM, random forest, KNN), Coppock et al. [29] used a classical SVM binary clas-
sifier without pre-processing, and Andreu-Perez et al. [30] applied Auto-ML. Meanwhile,
Chaudhari et al. [31] presented a multi-branch ensemble architecture of ResNet-50, a sim-
ple feedforward network, and DNN against the ResNet-50 model performance. Soltanian
and Borna [28] showed that quadratic-based CNNs could provide higher accuracy when
compared to “ordinary” CNN. Often, studies used their models to compete against the
existing ones in the literature [26,32].

3.3. Existent Bias Reported

The gender of a patient’s cough is perceptible to the human ear. [33] For machines,
this difference is also evident in the data. Moreover, when the performance of one neural
network model is assessed for several separate subgroups, differences arise. Han et al. [34]
thoroughly detailed the performance of a CNN for distinct subgroups of gender, age, symp-
tom manifestation, medical history, and smoking status. When separated, the subgroups
yielded higher performance (the difference was approximately 10% on average). Against
a control group of nonsmokers, the AUC performance of the model trained on smoker
subgroups was roughly lower. Similarly, against a control group of patients with no medical
history, the AUC performance of the model trained on the subgroup of patients suffering
from respiratory ailments was also lower. Han et al. [34] concluded that the fluctuations
in a model’s performance are due to the volume of the subgroups, that medical history
cannot confuse their model, and that the model generally performs better in predicting
symptomatic COVID-19.

In the study of Chowdhurry et al. [35], the values of relative closeness scores were
calculated, with an average 54.0% for the asymptomatic category of cough samples and
67.4% for the symptomatic category. These results indicate that their model is more accurate
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at predicting symptomatic or greater infections of COVID-19. Imran et al. [36] validated
their architecture’s ability to predict COVID-19 from two diseases (i.e., bronchitis and
pertussis). Additionally, Pahar et al. [23] placed side by side their specificity, sensitivity,
accuracy, and AUC computations for ResNet-50, LTSM, CNN, MLP, SVM, and KNN for
each of the datasets from Coswara, Sarcos, and ComParE. The datasets differed in their
sampling rates, labels, and subject sizes. For example, the dataset Sarcos was used as a
validation set for classifiers trained on the Coswara data, and an AUC of 95.4% was attained.
The Sarcos dataset’s sampling rate was 44.1 kHz, but it contained 26 COVID-19-negative
and 18 COVID-19-positive audio samples. Finally, Han et al. [37] collated separate cough,
voice, and breath segment model performances with the fusion of all respiratory data
using VGGish, the pretrained CNN from Google. The best performances recorded were
for the three modalities combined—AUC, sensitivity, and specificity—with a difference of
about 4–6%.

4. Discussion

The evaluation of a model consists of computing a model’s predictions for a specific
dataset using different evaluation metrics, as shown in Table 1. However, does a high
evaluation metric score indicate that a model is better than one with a lower score, or is
this due to statistical bias or improper metric calculation? In the context of the research
surveyed, the datasets used for the evaluation step were too small or did not provide
enough information for us to form an opinion on their validity. Additionally, at the time of
writing, the datasets used in the encountered articles did not span a period long enough to
include all COVID-19 variants. Thus, in appraising a machine learning model, one needs
to understand its dependency on data, including the date of a paper’s publication, the data
collection interval, and the diversity and ethnicity representation in the cough sounds.

A straightforward yet in-depth comparison of the neural network models is challeng-
ing to formulate. They generally lacked subject counts from different ethnicities, ailments,
and smoker statuses. While some articles elucidated all the steps to describe the number of
layers experimented with, others denoted using a simple CNN or RNN. Likewise, some
articles referenced the name of the architecture used, whereas others detailed how it was
incorporated. While popular CNNs have proven their efficacy, they also entail the use
of fully connected layers, the added complexity of which makes them prone to overfit
data. Although we noticed that some strategies had been used to overcome this, such as
L2-regularization, overfitting remains a challenge but could not be addressed in this survey.

To assess a model’s performance, one needs to choose the appropriate evaluation
metrics and the data to apply them. Although it constitutes the basis of the paper’s results,
the assessment of model performance ought to be taken with a grain of salt by the reader.
Some immediate limitations are as follows:

(1) having just one metric presented in a paper provides us with one understanding
of performance and leads to the impossibility of establishing a comparison with
other work;

(2) an article might have a higher value for one metric than another paper and a lower
value for another metric.

Therefore, the reader cannot deduce from a straightforward comparison of values
in metrics. A head-to-head comparison of the results presented in Table 1 would be
hasty and unwise as the evaluation metrics were not reported consistently. For instance,
Chaudhari et al. [17], Coppock et al. [29], Ponomarchuk et al. [38] and Nguyen et al. [39]
used only the AUC metric, while Lella and Pja [40] used accuracy only. Different evaluation
metrics are used as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FN
(2)
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Specificity =
TN

FP + TN
(3)

Sensitivity =
TP

TP + FN
(4)

F1-score = 2 × Precision × Recall
Precision + Recall

(5)

AUC =
∫ 1

0
TPR(FPR)dFPR (6)

where FP refers to false positive, FN refers to false negative, TP refers to true positive, and
TN refers to true negative.

Other metrics are rarely used and too scarce for their computations to be reported
in this review. Among such metrics, the Mathews correlation coefficient considers all
four true and false positives and negatives and is thus regarded as a balanced measure in
binary classification. In the case of imbalanced data, using the metric UAR (or balanced
average) is suggested, while using accuracy is inadvisable or deemed inappropriate. Since
a model’s training is conducted using more negative values than positive ones, comparing
their numbers during the performance computation provides a skewed ratio. Accuracy
is equal for both TPs and TNs divided by all predictions. Therefore, for minimal positive
numbers and a greater magnitude of negatives, even though there could be a high rate
of FPs, the TNs will dominate. This results in a high accuracy score, poor sensitivity, and
possibly high specificity. UAR is the average of sensitivity and specificity, giving an already
fairer estimation of a model’s performance. In the same way, the F1 score is defined by the
harmonic mean between precision and sensitivity. Additionally, the binary classification
model’s essential role is identifying the positive class within the data; naturally, we want to
obtain a high rate of correctly predicted positives. Precision and sensitivity help compute
the correct overall predicted positives ratio and all elements belonging to the positive class.
However, as this task entails a medical diagnosis, predicting an FN is more significant and
judged more seriously than an FP. Thus, the FN rate (FNR) might be more appropriate for
evaluating one’s model during this task. In addition, the FNR can be straightforwardly
computed as FNR = 1 − Sensitivity. We note that the confusion matrix, a matrix that
counts the TN, FN, TP, and FP from actual target and predicted values, is often available,
which can provide the reader with all the necessary tools to make a judgment [24,40–42].

Overall, the datasets were highly imbalanced: the number of COVID-19-positive
samples was much smaller than the negatives and often equaled 1:10. The problem of
imbalanced data is consistent in the machine learning field. Having an imbalanced dataset
skews a model’s performance evaluation. Among the strategies available to overcome
this obstacle, Zhang et al. [43] trained their model after trimming the data. The trained
data were filtered to have a perfectly proportioned and “clean” 1:1 the ratio of positives
to negatives. The limitation of this curation is that cutting off data will reduce its size,
which results in a similar problem. Analogous to data set imbalance, the insufficiency
and scantness of a dataset, whether for training or evaluation, is a common problem from
which many articles suffer. The reader generally is not provided enough information about
the algorithm development to determine if the results are impacted by underfitting or
overfitting. Indeed, because of their complexity and layers of abstraction, neural networks
are prone to overfitting. Neural networks usually are more data-hungry than classical
machine learning algorithms. Hence, data scarcity increases the risk of overfitting occurring.
Dataset size also can be the cause of data being too “similar,” meaning that data samples
are similar to one another, which also induces a lack of real-world representativeness. It is,
for example, the case in Mohammad and Borna [28] who, to overcome this problem, use
repeated random split and cross-validation on the Virufy dataset (of 121 samples).
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Table 1. Summary of all included articles on COVID-19 diagnosis from cough using deep learning algorithms.

Author [Year]
Number of Cough
Segment and Source
of Data

Event Type Processing Model AUC
[%]

Sensi-
tivity
[%]

Speci-
ficity
[%]

Preci-
sion
[%]

Accu-
racy
[%]

F1-
Score
[%]

Rashid et al.
[2022] [44]

15,218
Coughvid

Symptomatic and COVID-19
labels both considered for
positive class

Medical information as features passed for
training MFCC function of time

CNN 88.9 85.6 85.8 86.3 N/R 86.7

Andreu-Perez
et al. [2021]
[30]

8380 All PCR tested MFCC, Mel spectrogram, LPCS into 3D tensor CNN 98.8 96.43 96.2 96.54 N/R N/R

Nguyen et al.
[2021] [39]

7371
AICovidVN

Feature representations from log-mel
spectrograms by EfficientNet-V2

Pre-trained CNN from
PANNs

92.8 N/R N/R N/R N/R N/R

Lella and PJA
[2022] [40]

256
Covid-19 Sounds App

Modified MFCC CNN N/R N/R N/R N/R 92.32 N/R

Schuller et al.
[2020] [45]

1427
Covid-19 Sounds App

Concatenation of raw audio and MFCC CNN 80.7 69.7 80.2 N/R 73.1 N/R

Ponomarchuk
et al. [2021]
[38]

23,360 Coughvid, Coswara,
and Covid19-Cough;

Partly clinically curated

Mel spectrogram CNN 80.5 N/R N/R N/R N/R N/R

439 clinical data
1395 new for testing

VGGish embedding cochleagram LightGBM 74.9 N/R N/R N/R N/R N/R

Lella and Pja
[2022] [42]

5000
Covid-19 Sounds App

De-noising Auto Encoder, GFCC, IMFCC,
data augmentation

CNN N/R N/R N/R N/R 93.12 94.13

Chaudhari et
al. [2020] [17]

Training
1441 Coughvid,
1442 Coswara
Testing
362 Clinical data,
178 Crowdsourced

Training
Symptoms,
Intensity of symptoms
Testing
All PCR tested,
N/R

- MFCC
- Mel spectrogram

Ensemble of
- 2 separate NN (on MFCC)
- CNN (on Mel spectrogram)

72 N/R N/R N/R N/R N/R

Imran et al.
[2020] [36]

543
COVID-19
Bronchitis
Pertussis

Mel spectrogram CNN multiclass classification N/R 89.14 96.67 89.91 92.64 89.52

MFCC, PCA projections SVM multiclass classification N/R 91.71 95.27 86.6 88.76 89.08

Mel spectrogram CNN binary classification N/R 94.57 91.14 91.43 92.85 92.97
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Table 1. Cont.

Author [Year]
Number of Cough
Segment and Source
of Data

Event Type Processing Model AUC
[%]

Sensi-
tivity
[%]

Speci-
ficity
[%]

Preci-
sion
[%]

Accu-
racy
[%]

F1-
Score
[%]

Akinnuwesi et
al. [2021] [46] 600 patient records Clinical data Random over and under-sampling

MLP N/R 86.3 N/R N/R 88.3 86.9

FCM N/R 79.5 N/R N/R 79.2 82.3

Jayachitra et
al. [2021] [41]

289 Virufy, Coswara MFCC CNN N/R 94.11 N/R 96.96 97.12 96

Soltanian and
Borna [2022]
[28]

121
Virufy

All PCR tested MFCC

CNN N/R 90 100 100 95 94.7

Two Separable Quadratic
Convolutional Layers
(inspired by LeNet-1)

N/R 95.2 100 100 97.5 97.6

Mohammed et
al. [2021] [32]

1502
Coswara

Spectrogram, mel spectrum, raw data, MFCC,
power spectrum, chromatogram

CNN ensemble 77 71 N/R 80 N/R 75

Lella and
PJA [2021]
[47]

1539
Covid-19 Sounds App

Data augmentation,
DAE, IMFCC, GFCC

CNN N/R N/R N/R N/R 95.45 96.96

Tawfik et al.
[2022] [48]

1171 Coswara
121 Virufy

Chroma, ZCR, QCT, MFCC CNN N/R 99.6 99.7 N/R 98.5 98.4

Zhang et al.
[2021] [43]

321 hospitalized
positive patients
NR from ESC50,
DCASE2016, Virufy,
Coswara and Coughvid

MFCC CNN 98.1 95.3 95.8 97.0 95.8 96.1

Dentamaro et
al. [2022] [24]

49 Covid Sounds App Cough symptomatic healthy
control class

4 SE-ResNet blocks
and 4 CBAM blocks
trained on UrbanSound 8K

92.57 80.39 N/R 88.81 92.56 89.8

Dentamaro et
al. [2022] [24] 1118 added with Coswara

4 SE-ResNet blocks
and 4 CBAM blocks
trained on UrbanSound 8K

81.86 76.88 N/R 73.26 76.88 70.98
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Table 1. Cont.

Author [Year]
Number of Cough
Segment and Source
of Data

Event Type Processing Model AUC
[%]

Sensi-
tivity
[%]

Speci-
ficity
[%]

Preci-
sion
[%]

Accu-
racy
[%]

F1-
Score
[%]

Pahar et al.
[2022] [23]

1171 Coswara, 44 Sarcos
517 Compare, 11202
TASK, Google Audio
Set, etc.

MFCC, filterbank energies, kurtosis, ZRC,
Voluntary coughs dataset fed for
pre-training and transfer learning

CNN 97.2 98 92 N/R 95 N/R

LTSM 96.4 95 93 N/R 94 N/R

ResNet-50 98.2 98 97 N/R 97

Sabet et al.
[2022] [49]

N/R Coughvid Data augmentation,
MFCC

CNN 94 94 N/R 93 93 92

Loey and
Mirjalili
[2021] [26]

1457
Coughvid

Scalogram

ResNet-18 N/R 94.44 95.37 95.33 94.9 94.88

ResNet-50 N/R 92.59 88.89 89.29 N/R 90.91

ResNet-101 N/R 97.22 86.11 87.5 N/R 92.11

MobileNet N/R 91.67 86.11 86.84 N/R 89.19

NasNet N/R 89.81 89.81 89.81 N/R 89.81

GoogleNet N/R 93.52 87.96 88.6 N/R 90.99

Fakhry et al.
[2021] [31]

5749
Coughvid

Asymptomatic COVID-19
negative, Symptomatic,
COVID-19 negative

Gaussian noise data augmentation, pitch
shifting, MFCC

Multi-branch ensemble
ResNet-50 DNN SFFN 99 85 99.2 N/R N/R N/R

COVID-19 positive Spectrogram ResNet-50 97 64 97.1 N/R N/R N/R

Laguarta et al.
[2020] [50]

4256
MIT Open Voice MFCC

3 pre-trained parallel
ResNet-50 97 98.5 94.2 N/R 98.5 N/R

Coppock et
al. [2021] [29]

517 (from 355 patients)
Covid-19 Sounds App

Spectrogram extraction ResNet 84.6 N/R N/R N/R N/R N/R

SVM 72.1 N/R N/R N/R N/R N/R

Pahar et al.
[2021] [10]

1171 Coswara
44 Sarcos

Clinically tested
MFCCs, log frame energy, ZCR
and kurtosis

ResNet-50 74.2 93 57 N/R 74.58 N/R

LSTM and features sequential
forward selection

93.8 91 96 N/R 92.91 N/R
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Table 1. Cont.

Author [Year]
Number of Cough
Segment and Source
of Data

Event Type Processing Model AUC
[%]

Sensi-
tivity
[%]

Speci-
ficity
[%]

Preci-
sion
[%]

Accu-
racy
[%]

F1-
Score
[%]

Bhanusree et
al. [2022] [51]

549
Covid-19 Sounds App

Data augmentation with Gaussian noise
Architecture of CNN1d and
bidirectional LSTM layers N/R 77.93 96.18 97.16 86 86.49

Al-Dhlan
[2021] [52]

N/R Noise reduction using LMS
MFCC

GAN classifier N/R 96.15 N/R 96.54 98.56 97

Hamdi et al.
[2022] [53]

16,082
Coughvid

Mel spectogram, pitch-shifting, spectral data
augmentation

Attention-based hybrid
CNN-LTSM 89.28 87.74 90.81 89.46 89.35 88.56

Hassan et al.
[2020] [54]

80
Hospitals

20 Hospitalised Covid-19
patients

MFCC LSTM 97.4 96.4 N/R 99.3 97 97.9

Khriji et al.
[2021] [55]

6593
ESC-50, AudioSet

Datasets annotated with
BMAT

MFCC LSTM N/R 78.75 N/R 79 80.26 79

Feng et al.
[2021] [56]

200 Coswara
16 Virufy

Virufy clinically curated
ZRC, energy, entropy;
spectral centroid, spectral
spread, entropy, MFCCs

SimpleRNN 92.82 N/R N/R N/R 90 N/R

Han et al.
[2022] [34]

5240 (2478 patients)
Covid-19 Sounds App

Recent tests VGGish feature extraction CNN 66 59 66 N/R N/R N/R

Xia et al. 38,869 Filter out noisy data with Pre-trained VGGish 62 69 45 N/R N/R N/R

[2021] [37] Covid-19 Sounds app YAMNet VGGish 66 59 66 N/R N/R N/R

Chowdhury
et al. [2021] [35]

1039 Asymptomatic and Mel frequency, cepstral AdaBoost 80 55 94 82 84 66

Covid-19 Sounds App, symptomatic coefficients, mel spectrogram, MLP 83 51 95 84 81 63

Nococoda, Coswara, Virufy chromagram, spectral contrast HGBoost 83 56 98 92 84 70

Islam et al.
[2022] [57]

100
Virufy

Spectral centroid, spectral entropy, spectral
flux, spectral roll-offs, MFCC, and
chroma vector

DNN N/R 95 N/R 100 97.5 97.4

Bagad et al.
[2020] [58]

3117
CoughDetect app 376 PCR tested positive Mel spectrogram ResNet-18 (ImageNet) 68 N/R 31 N/R N/R N/R



Diagnostics 2022, 12, 2142 14 of 17

Moreover, an imbalance in the data can significantly impact the overall performance
of models. There are not enough studies in the literature where COVID-19 classification
models are tested against possible biases. Han et al. [34] determined that it was a worthy
measure to ensure that their model is indeed resilient and does not confuse ailments and
other health issues with COVID-19. Another gap in the literature is the absence of studies
testing COVID-19 detection models against other types of coughs, without which there is
no concrete proof that a neural network indeed detects COVID-19 or another respiratory
illness from a patient’s cough. Fakhry et al. [31] contrasted different age intervals and
genders in their study. In comparing gender, the performance metrics were recorded as
higher for the female group: 81.12% vs. 74.4% for sensitivity and 85% vs. 77% for AUC. In
comparing age, the highest sensitivity, specificity, and AUC were attained for the coughs
of patients under 20 years old (85%, 100%, and 92%, respectively). The performance of
the model on the group of patients aged 20–40 years old was 73% for AUC, 75.8% for
sensitivity, and 97.9% for specificity. The model’s performance on the group of patients
aged 40–60 years old was 91% for AUC, 72.7% for sensitivity, and 100% for specificity. The
performance of the model on the group of patients older than 60 years was 50% for AUC,
75% for sensitivity, and 100% for specificity. Bias could occur if the dataset is unbalanced
regarding age, gender, and sample size. Therefore, Imran et al. [36] introduced a third
prediction category for their algorithm called “inconclusive”.

Going through the included articles, we can see that the ground truth to which the
performance of models is computed is not exact. Moreover, almost all articles’ datasets
used during training neural networks are prone to label noise. First, they are crowdsourced,
which is a source of the unreliability of data. Indeed, crowdsourcing leads to inconsis-
tencies and inaccuracies in labels and other metadata information extracted from data.
Furthermore, we note that even PCR tests still present a risk for FPs.

Evaluating a model’s capacity and performance requires a dataset with considerable
sample size and different types of acoustics. To answer the question, “Does the algorithm
work?” one must test an algorithm on a large and diversified dataset. For example, one
should try their model outputs in cases where there is no cough present in the audio file at
all or with an increasing amount of noise, among others, and determine to what extent the
machine predicts the truth, bearing in mind that the objective is ultimately to build an ideal
model for real-world healthcare applications.

An idea for testing a deep learning model against unfairness is to train the said model
with all the subgroups separated by age, gender, ethnicity, language, COVID-19 duration,
COVID-19 recovery, intensity status, other illnesses, whether the cough is symptomatic
or voluntary, frequency bandwidths, and quality of audio. Finally, some matters remain
unanswered. Are neural networks capable of overcoming all biases? What metrics ought
to be used to evaluate their performance objectively? How does data fidelity impact the
analysis? For instance, the impact of sampling rate is still uncertain: Nguyen et al. [39]
model’s scores were 95%, 97% and 99% for a sampling rate set to 4 Hz, 8 kHz, and 48 kHz,
respectively. Is this due to the loss of data and overfitting? We can sum up a list of
recommendations for future research to address the identified limitations aforementioned:

• Collect audio signals from a large population (n > 1000) of clinically tested for both
negative and positive COVID-19.

• Include cough signals from a more diverse set of respiratory diseases, including
different variants of the coronavirus.

• Develop a balanced dataset with a diverse population of age, gender, and ethnicity.
• Evaluate developed algorithm using the follow metrics: specificity, sensitivity, accu-

racy, AUC, MCC and F1-score.

5. Conclusions

We conclude that cough sounds can be used as biomarkers for identifying coronavirus
and respiratory diseases and can be complemented by breath and speech sounds to improve
detection accuracy. We also highlighted current limitations in the existing methods and
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recommended a few steps to move this technology forward. Modern healthcare tools,
such as automated diagnostics devices, have drawn more focus thanks to the increased
computational power and medical data. There still are different barriers to accumulating
large clinical data, notably patient privacy concerns. However, datasets’ quality and size are
crucial to healthcare services’ success. Moreover, in machine learning, transfer learning and
the availability of large public datasets significantly increase neural networks’ performances.
Nonetheless, further research with more diverse datasets, especially regarding respiratory
diseases, is warranted to test neural network architectures against all forms of biases.
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