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Abstract: The detection of brain metastases (BM) in their early stages could have a positive impact
on the outcome of cancer patients. The authors previously developed a framework for detecting
small BM (with diameters of <15 mm) in T1-weighted contrast-enhanced 3D magnetic resonance
images (T1c). This study aimed to advance the framework with a noisy-student-based self-training
strategy to use a large corpus of unlabeled T1c data. Accordingly, a sensitivity-based noisy-student
learning approach was formulated to provide high BM detection sensitivity with a reduced count
of false positives. This paper (1) proposes student/teacher convolutional neural network architec-
tures, (2) presents data and model noising mechanisms, and (3) introduces a novel pseudo-labeling
strategy factoring in the sensitivity constraint. The evaluation was performed using 217 labeled and
1247 unlabeled exams via two-fold cross-validation. The framework utilizing only the labeled exams
produced 9.23 false positives for 90% BM detection sensitivity, whereas the one using the introduced
learning strategy led to ~9% reduction in false detections (i.e., 8.44). Significant reductions in false
positives (>10%) were also observed in reduced labeled data scenarios (using 50% and 75% of labeled
data). The results suggest that the introduced strategy could be utilized in existing medical detection
applications with access to unlabeled datasets to elevate their performances.

Keywords: brain metastases; noisy student; semi-supervised training

1. Introduction

Brain metastases (BM) are cancerous lesions indicating an advanced and disseminated
state of disease. The early detection of BM may enable a treatment utilizing targeted
radiotherapy that (1) allows for a less-invasive and less-costly procedure when compared
to surgery and (2) leads to fewer adverse neurologic symptoms when compared to whole-
brain radiation [1]. Contrast-enhanced 3D magnetic resonance imaging is the key modality
for the detection, characterization, and monitoring of BM. However, the task can become
challenging when BM lesions are very small; their low contrast and structural similari-
ties with surrounding structures (in some slice angles) may obstruct/limit their visual
detection [2].

The automated detection/segmentation of BM in MRI data via machine learning
(ML) was investigated in several studies [3–8]; Cho et al. [9] provided a literature review
study on the topic comparing state-of-the-art (SOTA) approaches based on the Checklist
for Artificial Intelligence in Medical Imaging (CLAIM) [10] and Quality Assessment of
Diagnostic Accuracy Studies (QUADAS-2) criteria [11]. The authors previously introduced
a framework for T1-weighted contrast-enhanced 3D MRI [4] (analyzed among other SOTA
approaches in [9]) for the detection of BM with diameters less than 15 mm to assist early
detection of disease.

The noisy student (NS)-based self-training approach was first introduced in [12] to
enable the usage of large amounts of unlabeled (i.e., not segmented or annotated for ML
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training) datasets to improve the accuracy of existing ML-based solutions. While the
approach is still new as of the writing of this manuscript, it has already been utilized in
various domains, including medical imaging. In [13], the NS method was employed for
abdominal organ segmentation in 3D computed tomography (CT) datasets. The study
utilized 3D nnU-Net [14] as both the teacher and student models, which were trained with
41 labeled and 363 unlabeled datasets. The study reported ~3% improvement in the Dice
similarity coefficient (DSC) due to unlabeled data. Rajan et al. [15] used the approach for
multi-label classification of chest X-ray images. In addition to classical image augmenta-
tions, the method also utilized mixup [16] and confidence-tempering regularizations for
the noisy student model’s training. Their results showed that a ResNet-18 [17] trained
via their scheme with 12.5k labeled and 15k unlabeled samples could outperform a sim-
ilar model trained using a 138k labeled set. In [18], Shak et al. proposed an NS-based
lung cancer prediction framework for CT images, where a DeepSEED network [19] was
trained using labeled Lung Image Database Consortium image collection (LIDC) [20] and
unlabeled National Lung Screening Trial (NLST) [21] datasets. The applicability of the
NS for the segmentation of intracranial hemorrhages in CT was presented in [22]. The
study included 456 labeled and 25k unlabeled head CT exams for the semi-supervised
training of a PatchFCN [23], producing a ROC area under the curve (AUC) of 0.939 for the
CQ500 dataset [24]. Kim et al. [25] utilized the NS for the quantification of severity and
localization of COVID-19 lesions on chest radiographs. Their framework consisted of a
vision transformer-based [26] backbone, trained using ~1000 labeled and ~190k unlabeled
images collected from public datasets (i.e., [27,28]), and provided results comparable to
those of expert radiologists. Lastly, Ref. [29] proposed a cascaded learning approach for
whole heart segmentation in CT angiography data. The method employed a V-net-based
backbone [30] and advanced the NS with a shape-constrained training, producing a Dice
coefficient of 0.917 with only 16 labeled and 64 unlabeled 3D images.

The goal of this study is to advance the BM detection framework [4] via an NS-based
self-training strategy to utilize a large corpus of unlabeled T1c data in a semi-supervised
fashion. The BM detection sensitivity in connection with the number of false detections has
been the main criteria for various BM detection solutions [3,4,6]. Thus, the study introduces
a sensitivity-based noisy-student training approach to factor in the BM detection sensitivity.
To this end, the advanced framework uses (1) the CropNet-based architectures as the
teacher and student models, (2) model and data noising procedures to enable knowledge
expansion, and (3) a novel pseudo-labeling strategy to factor in the BM detection sensitivity
during the models’ training. The proposed models are trained in an iterative fashion
using a smaller group of labeled and a larger group of pseudo-labeled data; the proposed
adaptation of the detection framework is illustrated in Figure 1.

This manuscript first provides a brief overview of the BM detection framework. Then,
it describes (1) the model architectures, (2) noising mechanisms, and (3) a novel NS-based
semi-supervised training setup that introduces a pseudo-labeling strategy. The results
section summarizes the experiments performed using two-fold cross-validation (CV) on
217 labeled and 1247 unlabeled T1c exams. It presents comparative analyses for (1) the
frameworks trained with and without the given NS-based strategy and (2) hyperparameters
regarding the NS-based training process. Next, the results are discussed, where the frame-
work is compared with other SOTA approaches via metrics including the BM detection
sensitivity and false BM detection count. The report concludes with a summary of the
novelties of the introduced study and future work considerations.
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Figure 1. Adaptation of the NS-based self-training for the BM detection framework. The labeled T1c 
data is used for the training of a lower-capacity teacher model (a). Based on the labeled data (b-1) 
and a target sensitivity (b-2), the teacher model’s threshold for pseudo-labeling is determined. Via 
this threshold and unlabeled data (c-1), the teacher model generates paired pseudo-labeled data(c-
2). The higher-capacity student model is trained using labeled (d-1) and pseudo-labeled (d-2) T1c 
data. The training of teacher and student models could be performed iteratively, where the final 
student model is utilized as the deployment model. 

2. Materials and Methods 
2.1. BM Detection Framework Overview 

The BM detection framework consists of two major stages: (1) candidate tumor de-
tection and (2) classification of the candidates. The candidate selection procedure adapts 
the Laplacian of Gaussian (LoG) [31] approach for maximizing the BM detection sensitiv-
ity while minimizing the number of candidates [4]. The detected candidates are then used 
as centers of the volumetric region of interests (ROIs) for processing by the CropNet, a 
convolutional neural network, to classify a given ROI as BM or not. 

The CropNet model architecture was first introduced in [4]. The model processes iso-
tropically sampled cubic ROIs, with each voxel representing 1 mm3. It inherits a contract-
ing network architecture, where (1) each resolution level is processed via a set of blocks 
consisting of convolution, rectified linear activation unit (i.e., ReLU), and dropout layers, 
and (2) the resolution downsampling is performed via max-pooling layers. The input vol-
ume’s dimensions and the network’s blocks per resolution level are denoted in the 
model’s name; e.g., CropNet-bX-Ymm describes a network with X blocks per resolution 
level that processes cubic regions with the edge length of Y mm. 

Figure 1. Adaptation of the NS-based self-training for the BM detection framework. The labeled T1c
data is used for the training of a lower-capacity teacher model (a). Based on the labeled data (b-1)
and a target sensitivity (b-2), the teacher model’s threshold for pseudo-labeling is determined. Via
this threshold and unlabeled data (c-1), the teacher model generates paired pseudo-labeled data(c-2).
The higher-capacity student model is trained using labeled (d-1) and pseudo-labeled (d-2) T1c data.
The training of teacher and student models could be performed iteratively, where the final student
model is utilized as the deployment model.

2. Materials and Methods
2.1. BM Detection Framework Overview

The BM detection framework consists of two major stages: (1) candidate tumor detec-
tion and (2) classification of the candidates. The candidate selection procedure adapts the
Laplacian of Gaussian (LoG) [31] approach for maximizing the BM detection sensitivity
while minimizing the number of candidates [4]. The detected candidates are then used
as centers of the volumetric region of interests (ROIs) for processing by the CropNet, a
convolutional neural network, to classify a given ROI as BM or not.

The CropNet model architecture was first introduced in [4]. The model processes
isotropically sampled cubic ROIs, with each voxel representing 1 mm3. It inherits a con-
tracting network architecture, where (1) each resolution level is processed via a set of blocks
consisting of convolution, rectified linear activation unit (i.e., ReLU), and dropout layers,
and (2) the resolution downsampling is performed via max-pooling layers. The input
volume’s dimensions and the network’s blocks per resolution level are denoted in the
model’s name; e.g., CropNet-bX-Ymm describes a network with X blocks per resolution
level that processes cubic regions with the edge length of Y mm.

The LoG approach produces thousands of candidates (i.e., ~70k) for each 3D dataset;
hence, the ROIs with BM are under-represented. Thus, the framework employs a paired
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training strategy, where each training data batch has an equal number of positive and
negative samples (i.e., ROIs with 1-BM and 0-non-BM). The binary cross-entropy loss for
this classification problem is minimized during CropNet’s training.

2.2. Teacher–Student Models and Noising Mechanisms

During the NS training, the student model capacity needs to meet or exceed that of the
teacher model to enable knowledge expansion (e.g., EfficientNet-B7 and EfficientNet-L2
were used as the teacher–student pair in [12], presenting a seven-fold network capacity
scaling). Accordingly, dedicated BM classification models CropNet-b2-16mm and CropNet-
b4-16mm are utilized as the teacher–student pair in this study. The network architectures
for these models are shown in Figure 2.
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Figure 3. The data noising process. (a) Mid-axial slice of an original cropped sample. (b) Random 
elastic deformation, (c) random gamma correction, (d) random image rotation, and (e) random im-
age flip are applied. 

2.3. Technical Contribution: Sensitivity-Based NS Algorithm 
The labeled data set is initially processed via the constrained LoG algorithm to gen-

erate BM candidates for the given data. The candidates and the manual BM annotations 
are then used for producing a set of ROI volumes 𝑋 with their corresponding labels 𝑌(1: 
BM, 0: non-BM), where 𝑋 is a paired set with an equal number of positive and negative 

Figure 2. Framework-specific teacher–student models. The network architectures of CropNet-
b4-16mm (all blocks) and CropNet-b2-16mm (blocks excluding the blue ones). The input is a
16 mm × 16 mm × 16 mm isotropic region of interest (ROI), where the output is a scalar in the
range of [0, 1] giving the probability of input ROI including a BM lesion. The proposed solution
utilizes CropNet-b2-16mm (lower-capacity) as the teacher and CropNet-b4-16mm (higher-capacity)
as the student models.

The noising mechanisms are necessary for improving the generalizability of the neural
networks, especially in limited-data scenarios [32]. They are critical for NS-based self-
training strategies to enforce invariances in the decision function during the training of
the student model. Both the model and data noising mechanisms are deployed: the data
noising is applied via random Simard-type 3D deformations, gamma corrections, rotations,
and image flips, whereas the model noising is provided via dropout layers (see Figure 3).
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elastic deformation, (c) random gamma correction, (d) random image rotation, and (e) random image
flip are applied.

2.3. Technical Contribution: Sensitivity-Based NS Algorithm

The labeled data set is initially processed via the constrained LoG algorithm to generate
BM candidates for the given data. The candidates and the manual BM annotations are
then used for producing a set of ROI volumes X with their corresponding labels Y(1: BM,
0: non-BM), where X is a paired set with an equal number of positive and negative samples.
The teacher model θt is trained with the data noised version of the extracted ROIs by
minimizing the binary cross-entropy type loss function ` as:

argminθt
(
`
(
θt(Xnoised), Y

))
. (1)
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After the training of the teacher model, the unlabeled data is processed using the
constrained LoG algorithm to generate BM candidates. As there are no annotations for
the unlabeled data, the pseudo-labels need to be generated. The framework produces BM
detections based on a model response threshold ¯, determined using the BM detection
sensitivity. Thus, the relationship between the threshold and the teacher model sensitivity
(ts) can be learned from the training data. Accordingly, the sensitivity in relation to the
false BM detections (generated by θt on X) was computed, and a response threshold µ was
set based on this value; for the unlabeled ROIs X̂ = {x̂1, x̂2, · · · x̂N}, pseudo-labels Ŷ are
determined by (see Figure 4),

ŷi =

{
1 θt(x̂i) > µ,
0 else.

(2)
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The student model is optimized using both labeled and pseudo-labeled data as

argminθs
(
`(θs(Xnoised), Y) + λ`

(
θs(X̂noised

)
, Ŷ

))
, (3)

where λ determines the weight of the unlabeled data on the final loss. In [12], their loss
equally weighted the labeled and pseudo-labeled parts of the equation by normalizing
these with the corresponding sample counts. Hence, their solution could be considered as
a special case of our formulation with λ = 1.

After the generation of the student model, it replaces the teacher model. A new student
model(s) could be trained iteratively following the same procedures. The suggested algo-
rithm has three hyperparameters; µ, λ, and student model iterations. As µ is determined
based on the teacher model’s sensitivity for the training data, the usage of a value derived
for the model’s peak sensitivity is suggested. The motivation behind this choice is to allow
the detection of most of the BM; even this may lead to more false-positive pseudo-labels.
The alternative choice of setting µ for a lower sensitivity would lead to highly accurate
pseudo-labels, whereas the challenging BM detections with low θt(x̂i) are excluded from
the student model’s training.

The adoption of λ value of 1.0 and performance of a single student model iteration
are suggested, as each iteration requires an extensive amount of computational resources,
where the resulting performance boost decays significantly after the first iteration. The
effects of changing these parameters are presented via experimental studies.

2.4. Database

The data were collected retrospectively following Institutional Review Board Approval
with a waiver of informed consent (institutional IRB ID: 2016H0084). The labeled data
included 217 post-gadolinium T1-weighted 3D MRI exams (contrast agent: gadoterate
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meglumine—0.1 mmol/kg of body weight) and their corresponding BM segmentation
masks. The exams were acquired between January 2015 and February 2016 from 158 pa-
tients; 113 patients had a single, 33 patients had two, 10 patients had three, and two
patients had four imaging exams. The group had (1) a mean age of 62 (σ = 10.5) and
(2) a sex ratio (males:females) of 0.89. They were selected based on finalized brain MRI
reports generated by a neuroradiologist, where the exams with reports detailing primarily
parenchymal enhancing metastases, ideally those undergoing surveillance for radiation
therapy/radiation treatment planning, were selected. Patients with metastases larger than
15 mm in diameter, primary brain neoplasms, central nervous system lymphoma, extra-
axial disease, leptomeningeal disease, or equivocally enhancing foci were excluded. The
BM segmentation masks were then generated by a fourth-year radiology resident, using
the finalized examination report and/or annotated Picture Archiving and Communication
System (PACS) images to ensure all BM were correctly delineated. The segmentation
data included 932 annotated BM, where (1) the mean number of BM per patient was
4.29 (σ = 5.52), (2) the mean BM diameter was 5.45 mm (σ = 2.67 mm), and (3) the mean
BM volume was 159.58 mm3 (σ = 275.53 mm3).

The unlabeled data included 1247 post-gadolinium T1-weighted 3D MRI exams,
acquired between November 2016 and December 2019 from a non-overlapping group of
867 patients (i.e., no common patients between the labeled and unlabeled data). Of these,
579 patients had a single, 208 patients had two, 68 patients had three, and 12 patients
had four MRI exams. The group had (1) a mean age of 56 (σ = 14.5) and (2) a sex ratio of
1.09. These patients were selected based on the diagnosis codes for malignant neoplasm(s)
and/or secondary malignant brain neoplasm(s). A selected group of information of the
labeled and unlabeled datasets is summarized in Table 1.

Table 1. Labeled and unlabeled data summary.

Labeled Data Unlabeled Data

Exam count 217 1247
Patient count 158 867

Acquisition date from January 2015 November 2016
Acquisition date to February 2016 December 2019
Mean patient age 62 56

Sex ratio 0.89 1.09

2.5. Validation Metric

The average number of false positives AFP (i.e., the count of falsely detected tumor
locations) in connection with the detection sensitivity (i.e., the percentage of the actual
BM detected) was used as the validation metric. A tumor was tagged as detected if the
framework generated a detection up to 1.5 mm apart from the tumor’s center. The metric
provides a relevant measurement for the algorithm’s applicability in real-life deployment
scenarios, as (1) the sensitivity of a detection system is critical, and (2) the number of false
positives needs to be low to ensure the system’s feasibility for optimal clinical workflow.
Accordingly, it was employed in various SOTA BM detection studies, including [3,4,6,33].

3. Results
3.1. Validation Study

The approach was validated using a two-fold CV. The CV bins were set based on
patients (i.e., the data from each patient can only occur in either the training or testing bin),
where each bin included the labeled data from 79 patients. For each CV-fold, with the LoG
candidate detector tuned as in [4], the setup generated ~72K BM candidates and captured
~95% of the actual BM centers in the training bin. The teacher model was paired-trained
using the labeled data in the training bin with its corresponding BM candidates. The teacher
model’s response threshold (µ) was determined by targeting the detection sensitivity (ts) of
90% for the training bin. Next, the student model was paired-trained using (1) the labeled
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data in the training bin, (2) the unlabeled data that was pseudo-labeled by the teacher
model, and (3) their corresponding BM candidates. The λ hyperparameter of the student
model loss was set to 1.0. Finally, both the student and teacher models were tested for
the testing bin (having no overlapping patients with the training bin and unlabeled data),
generating the AFP versus sensitivity charts (see Figure 5). The teacher model produced
AFPs of 2.95, 5.74, and 9.23 for the 80%, 85%, and 90% detection sensitivities, respectively.
The student model produced AFPs of 2.91, 4.82, and 8.44 at the same sensitivity levels
(please note that teacher model performance closely mimics the BM detector proposed
in [4] as they both employed identical model architectures and were trained using similar
labeled data). Accordingly, the AFP reduction for the 90% BM detection sensitivity was
~9% (from 9.23 to 8.44) for the introduced strategy. Figure 6 presents a set of example BM
detections for the framework.
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(a) and student (b) models. The mean curve (shown as the thick-line curve) represents the average of
the CV folds.
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Figure 6. A set of detection examples. (a–i) Correct BM detections, (j,k) small vessels are wrongly
detected as BMs, and (l) a formation in a surgical region is detected as a BM. The framework processes
a given exam by first generating candidates and then processes these via CropNet, where the high
response candidates are presented as the detection results.

The teacher (CropNet-b2-16mm) and student (CropNet-b4-16mm) networks consisted
of ~14M and ~32M trainable parameters, respectively. The networks had architectures
described in Section 2.2, processing cubic ROIs with 16 mm edges. The models’ dropout
rates were set at 0.15. The model optimizations were performed using the Adam algo-
rithm [34] with (1) a learning rate of 0.00005 and (2) exponential decay rates for the first-
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and second-moment estimates of 0.9 and 0.999, respectively. Both models were trained
using 12,000 batch-training iterations, without an early stopping condition. Each batch
included (1) 150 positive and 150 negative samples for the teacher models and (2) 75 posi-
tive, 75 pseudo-labeled positive, 75 negative, and 75 pseudo-labeled negative samples for
the student models. The implementation was performed using the Python programming
language (v3.6.10), and the neural networks were created using the TensorFlow (v1.12.0)
library. The training times for the teacher and student models were ~7.25 and ~10.5 h,
respectively, using an NVIDIA Tesla V100 graphics card with 32 GB RAM.

3.2. Experiments with System Parameters

The introduced noisy-student-based self-training strategy has three input parameters
(i.e., µ, λ, and student model iterations); the reasoning behind their default values was
provided previously. Three analyses were performed to illustrate the effects of these
parameters, and an additional analysis was performed to present the impact of labeled
data amount in our application.

3.2.1. Teacher Model Sensitivity

The response threshold (µ) for setting the pseudo-labels is determined based on the
teacher model’s detection sensitivity (ts) for the training data (see Equation (2)). In our
proposed solution, ts was set as 90%, as the value is close to the maximum BM detection
sensitivity the teacher model can achieve. In this analysis, µ values were determined by
setting the teacher model’s detection sensitivity to 80% and 85% for the training bin; hence,
the impact of more-specific yet less-sensitive pseudo-labeling was evaluated. The other
parameters (i.e., λ = 1 and a single student model iteration) were kept unchanged during
the experiment. Figure 7 and Table 2 present the findings of this analysis.
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Table 2. AFP vs. sensitivity for different ts values.

Detection Sensitivity Teacher Student ts = 90% Student ts = 85% Student ts = 80%
80% 2.94 2.91 3.18 3.82
85% 5.74 4.82 5.41 6.37
90% 9.23 8.44 9.97 10.84

3.2.2. Unlabeled Data Weights (λ)

The analysis aimed to represent the impact of reducing pseudo-labeled data weight
during the student model’s training. This was achieved by evaluating the student models
derived with λ = 0.8 and λ = 0.6 (λ = 1.0 is the default value, see Equation (3)). The other
parameters were kept at their default values during the experiment (i.e., ts = 90% and a
single student model iteration). Please see Figure 8 and Table 3 for the results.
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these setups are presented.

Table 3. AFP vs. sensitivity for different λ values.

Detection Sensitivity Teacher Student λ = 1.0 Student λ = 0.8 Student λ = 0.6
80% 2.94 2.91 3.19 2.97
85% 5.74 4.82 5.36 5.55
90% 9.23 8.44 8.71 9.12

Results with ts = 90% and a single student model iteration. The gray column corresponds to the default setup.

3.2.3. Student Model Iterations

The experiment was targeted to assess the effect of further student training iterations,
which are not part of our default solution due to low expected performance gains with a
high additional computational cost. More explicitly, the student model from iteration-n
(i.e., θs

n) was used as the teacher model in the next iteration; θs
n becomes θt

n+1 and generates
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pseudo-labeled data for the training of θs
n+1. Two additional training and testing iterations

were performed for the experiment (i.e., the student model iterations 2 and 3), where the
other default parameters were kept unchanged (ts = 90% and λ = 1.0). Please see Figure 9
and Table 4 for the corresponding results.
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Table 4. AFP vs. sensitivity for different student model iterations.

Detection Sensitivity Teacher Student Iter = 1 Student Iter = 2 Student Iter = 3
80% 2.94 2.91 2.89 3.03
85% 5.74 4.82 5.20 5.09
90% 9.23 8.44 8.35 8.46

Results with ts = 90% and λ = 1.0. The gray column corresponds to the default setup.

3.2.4. Labeled-Data Utilization

Finally, the teacher and student models with a reduced number of labeled training
data were evaluated. First, a random selection of 75% of patients were kept in the training
bins (i.e., 60 patients), and the teacher and student models were trained using the labeled
data collected from these patients and the complete set of unlabeled data. The test bins
were kept unchanged, and the default noisy-student parameters were used during the
analysis (i.e., λ = 1, ts = 90%, and a single student model iteration). Next, the experiment
was repeated by randomly keeping 50% of patients in the training bins (i.e., 40 patients).
Figure 10 and Table 5 present the findings of this experiment.
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Figure 10. The impact of the amount of labeled data on the AFP metric. The teacher (a-1) and student
(a-2) models were trained using 75% of the labeled data. The teacher (b-1) and student (b-2) models
were trained using 50% of the labeled data. The teacher (c) and student (d) models were compared
for different labeled-data utilization percentages.

Table 5. AFP vs. sensitivity for different amount of labeled-data (LD) utilization percentages.

Detection
Sensitivity

Teacher
LD:100%

Student
LD:100%

Teacher
LD:75%

Student
LD:75%

Teacher
LD:50%

Student
LD:50%

80% 2.94 2.91 3.74 3.73 5.36 4.46
85% 5.74 4.82 6.60 6.15 8.05 7.65
90% 9.23 8.44 12.19 10.79 13.89 12.37

Results with ts = 90%, λ = 1.0, a single student model iteration. The gray column corresponds to the default setup.
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4. Discussion

The validation study showed that the sensitivity-based NS training improves the
framework performance by reducing the AFP count (i.e., 9.23 to 8.44 at 90% and 5.74 to
4.82 at 85% BM detection sensitivities). The algorithm’s parameters need to be set properly
to exploit its potential: (1) using the peak teacher model sensitivity (ts) for the training data
to determine µ, (2) adopting λ = 1, and (3) performing a single student training iteration
led to satisfactory results in our experiments; the motivations for each of these choices and
relevant experiments are provided.

The first experiment showed that reduced teacher model sensitivity during pseudo-
labeling (i.e., yielding more-accurate yet less-sensitive pseudo-labeled data) leads to higher
AFP counts. As shown in Table 2, setting ts value to 80% caused the framework to produce
the AFP value of 10.84 at 90% detection sensitivity (AFP values for 80% and 85% detection
sensitivities for this setup were also relatively higher compared with the results acquired
for ts = 90%). The NS-based training’s effectiveness is partly due to the implicit data
augmentation/enrichment it introduces. Accordingly, one may argue that keeping the
teacher model highly sensitive allowed student model training with pseudo-labeled data,
representing high variability. Thus, this higher level of implicit data augmentation led to
an improved BM detection performance.

The second experiment aimed to find the effect of reducing the weight of pseudo-
labeled data during the student model training. Two alternative outcomes for this analysis
were hypothesized before the experiment: (1) λ value behaves as an interpolator parameter
between the teacher and student models, and (2) a reduced λ (<1.0) may cause the student
model to outperform the default setup (using λ = 1.0) by limiting the drift towards pseudo-
samples, which have limited accuracy. The analysis’ outcome supported the first of these
(i.e., interpolation hypothesis). Table 3 shows that the students generated with λ = 0.6 and
λ = 0.8 had performances bounded by the teacher and default student models, where the
λ = 0.6 performed closer to the teacher model and λ = 0.8 performed closer to the default
student model, respectively. Thus, the experiment’s result also complements the first
experiment by supporting the notion that a higher amount of novel information contributes
to a better student model performance.

The third experiment examined the student model’s performance with further student
training iterations. The highest framework performances were observed after the first and
second student model iterations, whereas the performance did not improve significantly
after the third iteration (see Table 4). Our finding is consistent with [12], showing that the
student model performance converges to a value at an arbitrary student model iteration,
beyond which the accuracy does not change noticeably.

The final experiment aimed to quantify the impact of labeled training data amount on
the framework’s accuracy. Accordingly, the teacher/student model training and validation
procedures were repeated using reduced percentages of the labeled data (i.e., 75% and 50%).
The results show that the amount of labeled data is critical to the final performance; the
student models produced 8.44, 10.79, and 12.37 false BM detections by utilizing 100%, 75%,
and 50% of the labeled training data. Furthermore, a valuable performance improvement
with the use of proposed NS-based training was observed; it led to ~9% (from 9.23 to 8.44),
~12% (from 12.19 to 10.79), and ~11% (from 13.89 to 12.37) reduction in AFP counts in these
experiments (see Table 5).

Table 6 presents comparative information between a group of SOTA BM detection
frameworks (i.e., [3–8,33]) and the proposed one. It provides (1) study patient counts,
(2) neural network architectures, (3) data acquisition types, (4) dimensional information on
detected tumors, (5) data partitioning during validation studies, and (6) test performances
with regards to AFP and sensitivity. Please note that the table includes results from [4] that
used a similar dataset during its validation as this study. The data show that the potential
advantages of our framework include (1) the detection of particularly small BM lesions
with relatively low AFP and high sensitivity and (2) the capability to utilize unlabeled
datasets during its model training via NS-based strategy.
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Table 6. Overview of selected group of SOTA BM segmentation/detection approaches.

Study Patient # Network Acq. BM Volume
(mm3) Validation Type Sens % AFP

Charron et al. [3] 182-labeled DeepMedic Multi seq. a Mean: 2400
Median: 500 Fixed train/test 93 7.8

Liu et al. [5] 490-labeled En-DeepMedic Multi seq. b Mean: 672 5-fold CV NA NA

Bousabarah et al. [8] 509-labeled U-Net Multi seq. c Mean: 1920
Median: 470 Fixed train/test 77–82 <1

Grøvik et al. [6] 156-labeled GoogleNet Multi seq. d NA Fixed train/test 83 8.3
Cao et al. [7] 195-labeled Asym-UNet T1cMRI NA g Fixed train/test 81–100 k NA

Zhou et al. [33] 266-labeled Custom + SSD T1c MRI e NA h Fixed train/test 81 6

Dikici et al. [4] 158-labeled i CropNet T1c MRI Mean: 160
Median: 50 5-fold CV 90 9.12

This study 158-labeled
867-unlabeled CropNet+NS T1c MRI f Mean: 160 j

Median: 50 2-fold CV 90 8.44

a T1-weighted 3D MRI with gadolinium injection, T2-weighted 2D FLAIR, and T1-weighted 2D MRI sequences.
b T1c and T2-weighted FLAIR sequences. c T1c, T2-weighted, and T2-weighted FLAIR sequences. d Pre- and
post-gadolinium CUBE, post-gadolinium T1-weighted 3D axial IR-prepped FSPGR (BRAVO), and 3D CUBE
FLAIR sequences. e 3D T1-weighted contrast-enhanced spoiled gradient-echo MRI sequence. f The same dataset
was used for training and validation in this study and [13]. g Tumor volumes were not reported. The testing
was conducted for 72 smaller tumors (1–10 mm in diameter) and 17 larger tumors (11–26 mm in diameter)
separately. h Tumor volumes were not reported. The average size of tumors in the study were 10 mm ± (standard
deviation: 8 mm). j The volumetric stats are for the labeled data. k Sensitivity was 81 percent for smaller tumors
and 100 percent for larger ones. i The labeled dataset used in the study is similar with the one used in this
current study.

5. Conclusions

In this study, a novel formulation of the NS-based self-training strategy, which is
applicable for detection systems prioritizing low false-positive counts for arbitrary detection
sensitivities, was introduced. Next, the BM detection framework for 3D T1c data was
extended with the introduced strategy. The analyses showed that the method reduced AFP
by 9% (from 9.23 to 8.44) for 90% tumor-detection sensitivity by utilizing 1247 unlabeled
T1c exams. Future studies may (1) further validate the approach with larger and multi-
institutional unlabeled datasets and (2) investigate the algorithm’s integration into other
medical applications, such as the detection of primary brain tumors [35].

The noising procedure is essential in NS-based training strategies as it enables knowl-
edge expansion. In data-limited clinical applications, its importance becomes even more
prominent: the utilized highly parametric models could greatly benefit from the process,
which provides data and model noise, to reduce the overfitting and hence improve their
generalizability [36]. A wide range of noising mechanisms can be employed during the
NS-based training, and the most appropriate selection may depend on (1) the data (i.e.,
type, amount, and characteristics) and (2) the deployed ML models. For instance, [12]
utilized the stochastic depth approach for model noising [37], which is applicable for very
deep neural networks (e.g., [38]), unlike the CropNet. The impact of a set of pertinent
mechanisms such as (1) Mixup [16], (2) constrained GAN ensembles [39], and (3) stochastic
dropouts [40] represent potential avenues for future research on the model noising aspect
of the framework.

The applicability of artificial intelligence (AI) in medicine (among other fields) has
increased significantly due to advancements in ML over the recent years. Accordingly,
there have been various efforts to integrate AI in radiology workflows [41,42], where the
AI-based medical imaging algorithms are deployed and updated periodically by utilizing
a constant flow of annotated/labeled data. These workflows may also be adapted to use
unlabeled data by adopting self-training methodologies, such as the one described in this
study. Hence, the deployed medical imaging models are highly relevant to radiology AI
systems that could benefit from the massive collection of unlabeled data sets stored in
PACS systems.
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