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Abstract: Rapidly growing mycobacteria (RGM) cause an increasing international concern, mainly
due to their natural resistance to many antibiotics. The aim of this study was to conduct species
identification and determine the antimicrobial susceptibility profiles of RGM isolated in Poland.
Antimicrobial susceptibility was tested using broth microdilution and the RAPMYCOI panel. A total
of 60 strains were analysed, including the following species: M. fortuitum complex (30), M. abscessus
subsp. abscessus (16), M. abscessus subsp. massiliense (7), M. chelonae (5), and M. mucogenicum (2).
For 12 M. abscessus subsp. abscessus strains, the presence of the erm 41T28 genotype associated with
inducible macrolide resistance and a functional erm gene was confirmed. A MUT2 mutation in the rrl
gene (constitutive resistance) was identified for two strains from the subtype M. abscessus subsp. mas-
siliense. Among the 15 tested antibiotics, amikacin and linezolid had the strongest antimycobacterial
activity. Most of the tested strains were resistant to doxycycline and trimethoprim/sulfamethoxazole.
Tigecycline MICs were low for all tested strains. Findings from our study highlight the importance of
correct identification of clinical isolates and antimicrobial susceptibility testing.

Keywords: rapidly growing mycobacteria; antimicrobial resistance; broth microdilution; minimal
inhibitory concentration (MIC)

1. Introduction

Nontuberculous mycobacteria (NTM), also known as mycobacteria other than tu-
berculosis (MOTT), are ubiquitous environmental microorganisms [1]. Currently, more
than 150 species are known worldwide and many of them are increasingly recognized as
important human pathogens [2,3]. Based on their growth rate, NTM species are divided
into slowly growing mycobacteria (SGM) and rapidly growing mycobacteria (RGM) [4]. To
date, more than 75 RGM species have been identified, which represents approximately 50%
of all known mycobacterial species [5]. Due to advances in molecular research, the number
of newly discovered species continues to increase.

RGM species are classified into six main taxonomic groups, distinguished based on
genetic relatedness and the presence of pigment. These are:

(1) M. fortuitum (M. fortuitum, M. peregrinum, M. sengalense, M. porcinum, M. neworleansense,
M. boenickei, M. houstonense, M. brisbanense, M. septicum, and M. setense),

(2) M. chelonae/M. abscessus complex (M. chelonae, M. immunogenum, M. franklinii, M.
salmoniphilum, M. abscessus subsp. abscessus, M. abscessus subsp. Massiliense, and M.
abscessus subsp. bolletii),

(3) M. smegmatis (M. smegmatis and M. goodii),
(4) M. mucogenicum (M. mucogenicum, M. phocaicum, and M. aubagnense),
(5) M. mageritense/M. wolinskyi,
(6) pigmented RGM species (M. neoaurum, M. canariasense, M. cosmeticum, M. monacense,

and M. bacteremicum) [6–12].

Tuberculosis caused by Mycobacterium tuberculosis complex remains a serious global
health problem in developing countries [13]. However, in recent decades, the number of
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reported cases of mycobacteriosis, a disease caused by atypical mycobacteria, has increased
significantly [14]. Factors contributing to the increased incidence of NTM infections include:
demographic changes, ageing of the population, increased incidence of comorbidities, and
immunosuppression [15]. However, the epidemiology of NTM infections remains unknown
as the reporting of mycobacterial cases to public health authorities is not mandatory in
most countries [16]. Undoubtedly, the diagnosis of the disease is facilitated by recently
improved testing methods [17].

Epidemiological statistics indicate that people living in Asia are particularly suscep-
tible to NTM infections. In 2014, the incidence of NTM in the Japanese population was
estimated at 14.7/100,000 [18–20]. In Great Britain, the incidence of NTM infection in-
creased from 0.9 to 2.9/100,000 between 1995 and 2006 [21]. Studies from North America
and Australia revealed that the annual incidence of NTM in these regions in 1997–2010
was 3.2–9.8/100,000 [14]. In Denmark, the incidence of NTM increased between 2003 and
2008 from 0.6 to 1.5/100,000 [22]. In Poland, statistics published by the National Institute
of Public Health (PZH) and the Chief Sanitary Inspectorate show that the incidence rate of
mycobacteriosis was 0.69 in 2017, 0.63 in 2018, and 0.61/100,000 in 2019 [23].

Atypical mycobacteria are opportunistic pathogens, ubiquitous in the environment,
and are found in fresh and marine water, soil, and on biofilms [24]. Infections mainly
concern the population of high-risk patients, which includes patients with cystic fibro-
sis (CF), bronchiectasis, emphysema, chronic obstructive pulmonary disease (COPD),
and immunoincompetence (human immunodeficiency virus (HIV) infection, organ trans-
plant, diabetes mellitus, renal failure). Among rapidly growing mycobacteria, the highly
pathogenic non-pigmented species include M. fortuitum, M. abscessus, and M. chelonae,
which are responsible for more than 80% of all clinical cases [25].

The clinical manifestations of RGM infections are very diverse. They most often
concern the respiratory tract, skin, soft tissues, bones and joints, lymphadenitis, or dissem-
inated infections [26]. Chronic lung infections are usually caused by M. abscessus subsp.
abscessus and M. abscessus subsp. massiliense [25,27]. In patients with cystic fibrosis, these
pulmonary infections are associated with a very high mortality. M. fortuitum complex is
most frequently isolated from infected skin after accidental injuries, cosmetic procedures,
and laser surgery. Reportedly, M. abscessus is responsible for 90% of respiratory diseases
caused by RGM, and M. fortuitum is responsible for 60–80% of postsurgical and catheter-
related infections [26]. The most common symptoms of infection caused by M. chelonae are
diseases of the skin, bones, and soft tissues as well as ophthalmic infections, including ker-
atitis. Rapidly growing mycobacteria are also isolated from patients with catheter-related
bloodstream infection. In this case, the causative pathogens are M. mucogenicum and M.
fortuitum, but also M. neoaurum and M. bacteremicum [28–31].

To determine the etiological factors of mycobacteriosis, it is necessary to correctly
identify atypical mycobacteria to the species level. This is due to the different antimicrobial
susceptibilities of mycobacteria. The management of a wide spectrum of NTM infections is
a serious challenge worldwide. The selection of the appropriate antibiotic therapy for the
patient should be based on the results of in vitro antimicrobial susceptibility testing.

However, the suitability of antimicrobial susceptibility testing in the treatment of
patients with mycobacteriosis remains controversial due to the discrepancy between test
results and clinical response [27,32]. Good correlations demonstrated in the studies carried
out to date have been shown for two groups of antibiotics: macrolides and aminoglycosides.

Macrolides (clarithromycin and azithromycin) are among the basic antibiotics used
in the treatment of mycobacteriosis. All macrolides bind to the V domain in 23S rRNA
on the 50S ribosome subunit [33]. Two mechanisms of resistance to this class of drugs
have been identified so far among atypical mycobacteria. The first mechanism is the
constitutive resistance associated with a point mutation at either the A2058 or A2059
position of the 23S rRNA (rrl gene). The second mechanism, defined as inducible macrolide
resistance, is associated with functional erm genes encoding ribosomal methyltransferase.
The erm genes have been identified in the following species: erm (41) in M. abscessus subsp.
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abscessus (serovars I, VI, VII (80% of isolates)) and M. abscessus subsp. bolletii; erm (39) in M.
fortuitum, M. houstonense, M. porcinum, and M. neworleansense; erm (38) in M. smegmatis and
M. goodie; erm (40) in M. mageritense and M. wolinskyi. Clarithromycin-sensitive strains lack
or have damaged erm genes. This group includes the following species: M. abscessus subsp.
abscessus serovar II (Mab30), M. abscessus subsp. massiliense, M. chelonae, M. immunogenum,
M. mucogenicum group, M. peregrinum, and M. senegalense [13,34,35].

The aminoglycosides (amikacin and tobramycin) act by binding stably to the 30S
ribosomal subunit in bacterial cells, leading to misreading of the genetic code and inhibition
of protein synthesis and consequently to cell death. Resistance to aminoglycosides in
atypical mycobacteria is associated with single-point mutations in the 16S rRNA (rrs
gene) [36].

According to the Clinical and Laboratory Standards Institute (CLSI), the broth microdi-
lution method is considered the gold standard for testing the drug sensitivity of atypical
RGM strains. Antimicrobial susceptibility testing should include the following antibiotics:
clarithromycin, amikacin, moxifloxacin, linezolid, imipenem, cefoxitin, ciprofloxacin, doxy-
cycline, trimethoprim/sulfamethoxazole, and tobramycin (only for M. chelonae). It is also
recommended to determine the minimal inhibitory concentration (MIC) value for tigecy-
cline, but to date there are no consensus breakpoints or guidelines for the interpretation of
results [34,37].

There is a commercially available RAPMYCOI test for RGM from Thermo Fisher Scien-
tific (Waltham, MA, USA) that includes all the antibiotics recommended for the treatment
of RGM infections. M. fortuitum complex, M. abscessus subsp. abscessus, M. abscessus subsp.
massiliense and M. chelonae are the most common rapidly growing mycobacteria (RGM)
isolated in Poland.

In the presented study, the susceptibility of 60 RGM strains to 15 antibiotics was
determined using the RAPMYCOI panels. The obtained results were compared with data
published worldwide, which made it possible to obtain a complete picture of the drug
resistance in this group of mycobacteria.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

The study was conducted on 60 strains of atypical mycobacteria (RGM) originally
isolated from respiratory specimens (sputum, bronchial washings), in the period from 2019
to 2020 in mycobacterial laboratories in Poland.

The respiratory specimens were decontaminated with the sodium hydroxide and N-
acetyl-L-cysteine (NaOH/NALC) (Chempur, Poland) method. The strains were cultured on
solid media: egg-based Lowenstein-Jensen medium, Stonebrink medium, and in automated
system MGIT (Becton Dickinson, Franklin Lakes, NJ, USA).

2.2. Strain Identification

For DNA extraction, the GenoLyse (Hain Lifescience, Nehren, Germany) kit was used
according to protocol.

The strains were identified using the GenoType Mycobacterium CM assay ver. 2.0
(Hain Lifescience, Nehren, Germany) in accordance with the manufacturer’s instructions.

Mycobacteria from the Mycobacterium abscessus complex (MABC) were identified using
the GenoType NTM-DR assay (Hain Lifescience, Nehren, Germany). M. mucogenicum was
identified using the GenoType Mycobacterium AS assay (Hain Lifescience, Nehren, Germany).

The collection of RGM strains from patients with suspected tuberculosis included the
following species: M. abscessus subsp. abscessus (16), M. abscessus subsp. massiliense (7), M.
fortuitum complex (30), M. chelonae (5), and M. mucogenicum (2).

2.3. Molecular Determination of Antimicrobial Susceptibility to Macrolides and Aminoglycosides

GenoType NTM-DR assay enabled the detection of resistance to macrolides (erm (41)
and rrl genes) and aminoglycosides (rrs genes).
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Erm (41) gene was only detected in members of the M. abscessus complex.
The above test detected mutations at position 28 of the erm (41) gene:

• If the strain had a genotype in which C was at position 28 it meant that the tested
strain was sensitive to macrolides.

• If the strain had a genotype in which T was at position 28 it meant that the tested
strain was resistant to macrolides.

In the Tables 1 and 2 below, the mutations detected by the applied test was shown.

Table 1. Mutations determining resistance to macrolides detected using the GenoType NTM-DR
assay within the rrl gene.

Absence of Wild-Type
Band

Analysed Nucleic Acid
Positions

Mutation Bands
Present Mutation Phenotypic Resistance

rrl WT 2058–2059

rrl MUT1 A2058C

macrolides

rrl MUT2 A2058G
A2058T

rrl MUT3 A2059C
rrl MUT4 A2059G

A2059T

Table 2. Mutations determining resistance to aminoglycosides detected using the GenoType NTM-DR
assay within the rrs gene.

Absence of Wild-Type
Band

Analysed Nucleic Acid
Positions

Mutation Bands
Present Mutation Phenotypic Resistance

rrs WT 1406–1409

rrs MUT1 A1408G
aminoglycosidesT1406A

C1409T

2.4. Phenotypic Determination of Antimicrobial Susceptibility Profile

Antimicrobial susceptibility was tested using broth microdilution. For this purpose,
96-well RAPMYCOI Sensititre ™ titration plates (Thermo Fisher Scientific, Waltham, MA,
USA) were used, which allow for the simultaneous determination of susceptibility to
15 antibiotics.

RAPMYCOI plates contain freeze-dried antibiotics in a range of concentrations (µg/mL).
The plate design and the tested antibiotic concentrations are presented in Figure 1.

At the first stage of the test, an inoculum of a mycobacterial suspension at the optical
density of 0.5 McFarland scale was prepared. A total of 50 µL of inoculum was transferred
to 10 mL of CAMHB medium (cation-supplemented Mueller-Hinton broth and TES buffer)
(Thermo Fisher Scientific, Waltham, MA, USA). The 100 µL suspension prepared according
to this protocol was pipetted onto a 96-well titration plate and incubated at 30 ◦C ± 2 ◦C.
Plates with RGM were incubated for 3 to 5 days. Only for clarithromycin, the incubation
period was prolonged to 14 days in order to detect inducible resistance associated with
the presence of the erm genes. If microbial growth in the positive control sample was
sufficient, MICs were measured. In cases of difficulties with visual reading, 10 µL of
Alamar Blue (BIO-RAD, Hercules, CA, USA) reagent and 25 µL of 5% Tween 80 (Fisher
Scientific, Hampton, NH, USA) were added. A colour change from blue to pink indicated
the growth of a strain. Measured MICs were interpreted and each strain was classified into
one of three groups (sensitive (S), intermediate (I), and resistant (R)) in accordance with the
CLSI guidelines (document M62, 1st edition) (37) (Table 3).
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Figure 1. RAPMYCOI plate design: positive control (POS), amikacin (AMI), amoxicillin/clavulanic
acid (AUG2), cefepime (FEP), cefoxitin (FOX), ceftriaxone (AXO), ciprofloxacin (CIP), clarithromycin
(CLA), doxycycline (DOX), imipenem (IMI), linezolid (LZD), minocycline (MIN), moxifloxacin (MXF),
trimethoprim/sulfamethoxazole (SXT), tigecycline (TGC), and tobramycin (TOB). The number under
the antibiotic abbreviation shows its concentration in µg/mL.

Table 3. Antimicrobial agents and susceptibility breakpoints (MICs) for testing rapidly growing
mycobacteria.

Antimicrobial Agent MIC (µg/mL) Comment

S I R

AMI ≤16 32 ≥64 M. abscessus complex isolates with MIC of ≥64 µg/mL should be
retested and/or the 16S rRNA gene sequenced to check for mutation

FOX ≤16 32–64 ≥128

CIP ≤1 2 ≥4 Ciprofloxacin and levofloxacin are interchangeable, but both are less
active than the newer B-methoxy-fluoroquinolones

CLA ≤2 4 ≥8 See text for information on the erm gene; clarithromycin and
azithromycin are interchangeable clinically

DOX ≤1 2–4 ≥8

MIN ≤1 2–4 ≥8

IMI ≤4 8–16 ≥32
All isolates of M. fortuitum, M. smegmatis, and the M. mucogenicum

group are presumed imipenem susceptible; imipenem MICs do not
predict meropenem or ertapenem susceptibility

LZD ≤8 16 ≥32

MXF ≤1 2 ≥4

TMP-SMX ≤2/38 ≥4/76 MIC is 80% inhibition

TOB ≤2 4 ≥8 Predominantly for M. chelonae; if MIC >4 µg/mL, the test should be
repeated and/or the identification confirmed by rpoβ gene sequencing

TGC Insufficient data to establish breakpoints; only MIC should
be reported

3. Results

Table 4 below presents the percentage of strains that are sensitive, intermediate, and
resistant to particular antibiotics. The classification was made on the basis of the obtained
MIC values.
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Table 4. Classification of analysed RGM species into groups: (S)-sensitive, (I)-intermediate, and
(R)-resistant, based on the measured MIC values.

M. abscessus subsp.
abscessus

n = 16

M. abscessus subsp.
massiliense

n = 7

M. chelonae
n = 5

M. mucogenicum
n = 2

M. fortuitum
complex

n = 30

ANTIBIOTIC
AGENT values in (%)

AMI 100 (S) 86 (S)
14 (R) 100 (S) 100 (S) 100 (S)

FOX 100 (I) 86 (I)
14 (S)

80 (S)
20 (R) 100 (S) 67 (I)

33 (S)

CIP 81 (R)
19 (I) 100 (R) 100 (R) 100 (S) 97 (S)

3 (I)

CLA 75 (R)
25 (S)

71 (S)
29 (R) 100 (S) 100 (S) 77 (R)

23 (S)

IMI 100 (I) 100 (I) 80 (R)
20 (I)

50 (S)
50 (I)

63 (I)
27 (S)
10 (R)

LZD 75 (S)
25 (I) 100 (S) 100 (S) 100 (S) 93 (S)

7 (I)

DOX 100 (R) 100 (R) 100 (R) 50 (S)
50 (R)

56,6 (R)
43,3 (S)

MIN 100 (R) 57 (S)
43 (R) 100 (R) 50 (S)

50 (I)
56,6 (R)
43,3 (S)

MXF 81 (R)
19 (I)

86 (R)
14 (I)

80 (R)
20 (S) 100 (S) 100 (S)

SXT 100 (R) 100 (R) 100 (R) 100 (S) 70 (R)
30 (S)

TOB 100 (S)

The data obtained in the performed antimycobacterial susceptibility test showed that
amikacin and linezolid had the strongest antituberculotic activity against RGM. Most of
the analysed strains were resistant to doxycycline and trimethoprim/sulfamethoxazole.

The following tables (Tables 5–9) present the obtained results separately for each
RGM species.

Table 5. Results of in vitro susceptibility testing for M. abscessus subsp. abscessus strains.

M. abscessus subsp. abscessus (n = 16)

AMI FOX CIP CLA DOX IMI LZD MIN MXF TGC SXT

1 4 (S) 32 (I) 2 (I) 0.5 (S) >16 (R) 16 (I) 8 (S) >8 (R) 4 (R) 0.5 >8/152 (R)
2 8 (S) 32 (I) 4 (R) >16 (R) 16 (R) 16 (I) ≤1 (S) >8 (R) 2 (I) 0.5 8/152 (R)
3 4 (S) 32 (I) 4 (R) >16 (R) >16 (R) 16 (I) 16 (I) >8 (R) 4 (R) 0.5 >8/152 (R)
4 2 (S) 32 (I) 4 (R) >16 (R) >16 (R) 16 (I) 8 (S) >8 (R) 4 (R) 0.5 >8/152 (R)
5 4 (S) 32 (I) 4 (R) >16 (R) >16 (R) 16 (I) 8 (S) >8 (R) 4 (R) 0.12 >8/152 (R)
6 2 (S) 32 (I) >4 (R) >16 (R) >16 (R) 8 (I) 8 (S) >8 (R) 8(R) 0.5 >8/152 (R)
7 4 (S) 32 (I) 4 (R) >16 (R) >16 (R) 16 (I) 2 (S) >8 (R) 4 (R) 0.06 8/152 (R)
8 4 (S) 32 (I) 2 (I) 2 (S) >16 (R) 8 (I) 8 (S) >8 (R) 4 (R) 1 8/152 (R)
9 8 (S) 32 (I) 4 (R) 1 (S) >16 (R) 8 (I) 4 (S) >8 (R) 4 (R) 0.25 >8/152 (R)

10 4 (S) 32 (I) 4 (R) >16 (R) >16 (R) 8 (I) 8 (S) >8 (R) 4 (R) 0.25 >8/152 (R)
11 4 (S) 32 (I) >4 (R) >16 (R) >16 (R) 16 (I) 16 (I) >8 (R) >8(R) 1 >8/152 (R)
12 8 (S) 32 (I) >4 (R) >16 (R) >16 (R) 16 (I) 16 (I) >8 (R) >8 (R) 1 >8/152 (R)
13 4 (S) 32 (I) 2 (I) >16 (R) >16 (R) 16 (I) 2 (S) >8 (R) 2 (I) 0.25 4/76 (R)
14 4 (S) 32 (I) 4 (R) >16 (R) >16 (R) 16 (I) 4 (S) >8 (R) 2 (I) 0.25 >8/152 (R)
15 4 (S) 64 (I) 4 (R) >16 (R) >16 (R) 16 (I) 16 (I) >8 (R) 8 (R) 0.5 >8/152 (R)
16 4 (S) 32 (I) >4 (R) 0.12 (S) >16 (R) 16 (I) 4 (S) >8 (R) 4 (R) 0.25 >8/152 (R)
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Table 6. Results of in vitro susceptibility testing for M. abscessus subsp. massiliense strains.

M. abscessus subsp. massiliense (n = 7)

AMI FOX CIP CLA DOX IMI LZD MIN MXF TGC SXT

1 4 (S) 32 (I) 4 (R) 0.25 (S) >16 (R) 16 (I) 8 (S) >8 (R) 8 (R) 1 >8/152 (R)
2 >64 (R) 16 (S) 4 (R) ≤0.06 (S) >16 (R) 16 (I) 2 (S) >8 (R) 2 (I) 0.12 8/152 (R)
3 4 (S) 32 (I) 4(R) 0.12 (S) 8 (R) 16 (I) 8 (S) 2 (S) 4 (R) 0.25 >8/152 (R)
4 8 (S) 32 (I) >4 (R) 0.25 (S) >16 (R) 16 (I) 8 (S) >8 (R) >8 (R) 0.5 >8/152 (R)
5 4 (S) 32 (I) 4 (R) >16 (R) 16 (R) 16 (I) 8 (S) 2 (S) 8 (R) 0.5 8/152 (R)
6 4 (S) 32 (I) 4 (R) >16 (R) 16 (R) 16 (I) 8 (S) 2 (S) 8 (R) 0.5 8/152 (R)
7 8 (S) 32 (I) >4 (R) 0.25 (S) >16 (R) 16 (I) 8 (S) 2 (S) >8 (R) 0.5 >8/152 (R)

Table 7. Results of in vitro susceptibility testing for M. chelonae strains.

M. chelone (n = 5)

AMI FOX CIP CLA DOX IMI LZD MIN MXF TGC TOB SXT

1 16 (S) >128 (R) 4(R) 0.5 (S) >16 (R) 16 (I) 4 (S) >8 (R) 1 (S) 0.5 2 (S) 8/152 (R)
2 8 (S) 64 (I) 4(R) ≤0.06 (S) >16 (R) 32 (R) 4 (S) >8 (R) 4(R) 0.25 ≤1 (S) 8/152 (R)
3 4 (S) 64 (I) 4(R) 0.25 (S) >16 (R) 32 (R) 4 (S) >8 (R) 4(R) 0.5 ≤1 (S) >8/152 (R)
4 4 (S) 64 (I) 4(R) 0.25 (S) >16 (R) 32 (R) 4 (S) >8 (R) 4(R) 0.5 ≤1 (S) 8/152 (R)
5 8 (S) 64 (I) 4(R) 0.25 (S) >16 (R) 64(R) 4 (S) >8 (R) 4(R) 0.25 ≤1 (S) >8/152 (R)

Table 8. Results of in vitro susceptibility testing for M. mucogenicum strains.

M. mucogenicum (n = 2)

AMI FOX CIP CLA DOX IMI LZD MIN MXF TGC SXT

1 2 (S) 16 (S) 0.25 (S) 0.25 (S) >16 (R) 8 (I) 2 (S) >8 (R) ≤0.25 (S) 0.25 1/19 (S)
2 ≤1 (S) 8 (S) 0.5 (S) 0.12 (S) ≤0.12 (S) 4 (S) 2 (S) ≤1 (S) 0.5 (S) 0.12 0.5/9.5 (S)

3.1. Mycobacterium abscessus subsp. abscessus

All strains representing Mycobacterium abscessus subsp. abscessus were sensitive only
to amikacin. Of the 16 strains, 12 (75%) were also sensitive to linezolid. However, they
were all resistant to minocycline, trimethoprim/sulfamethoxazole, and doxycycline. Of the
16 strains, 13 (81%) were resistant to ciprofloxacin and moxifloxacin. Among the 16 strains
from this subtype, 12 (75%) were clarithromycin-resistant (MIC > 16 µg/mL) (Table 5). The
GenoType NTM-DR assay confirmed the presence of the functional erm (41) gene in these
strains, associated with inducible macrolide resistance (erm41T28 genotype). Another four
strains were sensitive to clarithromycin (erm41C28 genotype).

3.2. Mycobacterium abscessus subsp. massiliense

Strains representing Mycobacterium abscessus subsp. massiliense were sensitive to line-
zolid (100%) and amikacin (86%). They were all resistant to trimethoprim/sulfamethoxazole,
doxycycline, and ciprofloxacin. Of the 7 strains, 2 (29%) representing the above subtype
were resistant to clarithromycin (Table 6). The GenoType NTM-DR assay revealed the
presence of the MUT2 mutation in the rrl gene (constitutive resistance) (Table 1). One strain
representing Mycobacterium abscessus subsp. massiliense and sensitive to clarithromycin,
with the MUT1 mutation in the rrs gene, was resistant to amikacin (MIC > 64 µg/mL)
(Table 2).

3.3. Mycobacterium chelonae

All Mycobacterium chelonae strains (5) were sensitive to amikacin, clarithromycin,
linezolid, and tobramycin, but resistant to trimethoprim/sulfamethoxazole, ciprofloxacin,
and doxycycline (Table 7).
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Table 9. Results of in vitro susceptibility testing for M. fortuitum complex strains.

M. fortuitum Complex (n = 30)

AMI FOX CIP CLA DOX IMI LZD MIN MXF TGC SXT

1 ≤1 (S) 16 (S) 0.5 (S) 0.5 (S) 0.5 (S) ≤2 (S) 4 (S) ≤1 (S) ≤0.25 (S) 0.12 2/38 (S)
2 ≤1 (S) 16 (S) ≤0.12 (S) 0.12 (S) >16 (R) ≤2 (S) 2 (S) >8 (R) ≤0.25 (S) 0.5 4/76 (R)
3 ≤1 (S) 32 (I) ≤0.12 (S) >16 (R) >16 (R) 4 (S) 2 (S) >8 (R) ≤0.25 (S) 0.25 0.5/9.5 (S)
4 ≤1 (S) 16 (S) ≤0.12 (S) 0.12 (S) >16(R) 4 (S) ≤1 (S) >8 (R) ≤0.25 (S) 0.25 1/19 (S)
5 ≤1 (S) 16 (S) ≤0.12 (S) >16 (R) ≤0.12 (S) 8 (I) ≤1 (S) ≤1 (S) ≤0.25 (S) 0.25 2/38 (S)
6 ≤1 (S) 32 (I) ≤0.12 (S) >16 (R) >16 (R) 8 (I) 16 (I) >8 (R) ≤0.25 (S) 0.5 8/152 (R)
7 ≤1 (S) 16 (S) 0.25 (S) >16 (R) 0.5 (S) 4 (S) ≤1 (S) ≤1 (S) ≤0.25 (S) 0.25 1/19 (S)
8 ≤1 (S) 16 (S) ≤0.12 (S) 0.25 (S) >16(R) 4 (S) ≤1 (S) >8 (R) ≤0.25 (S) 0.25 1/19 (S)
9 ≤1 (S) 64 (I) 2(I) >16 (R) 0.5 (S) 64(R) 8 (S) >8 (R) 1 (S) 1 >8/152 (R)
10 ≤1 (S) 64 (I) 0.25 (S) >16 (R) >16 (R) 16 (I) 8 (S) >8 (R) ≤0.25 (S) 0.25 >8/152 (R)
11 2 (S) 64 (I) 0.25 (S) >16 (R) >16 (R) 16 (I) 8 (S) >8 (R) 0.5 (S) 0.25 4/76 (R)
12 4 (S) 64 (I) 0.25 (S) >16 (R) 0.25 (S) 64 (R) 4 (S) ≤1 (S) ≤0.25 (S) 0.06 2/38 (S)
13 ≤1 (S) 32 (I) ≤0.12 (S) >16 (R) ≤0.12 (S) 4 (S) 4 (S) ≤1 (S) ≤0.25 (S) 0.03 0.5/9.5 (S)
14 ≤1 (S) 32 (I) 0.25 (S) >16 (R) >16 (R) 8 (I) 8 (S) >8 (R) ≤0.25 (S) 0.25 8/152 (R)
15 ≤1 (S) 32 (I) ≤0.12 (S) >16 (R) >16 (R) 8 (I) 8 (S) >8 (R) ≤0.25 (S) 0.03 2/38 (S)
16 ≤1 (S) 8 (S) ≤0.12 (S) >16 (R) 8 (R) 4 (S) 2 (S) ≤1 (S) ≤0.25 (S) 0.12 4/76 (R)
17 ≤1 (S) 32 (I) 0.25 (S) >16 (R) >16 (R) 8 (I) 8 (S) >8 (R) ≤0.25 (S) 0.25 >8/152(R)
18 ≤1 (S) 32 (I) 0.25 (S) 16 (R) >16 (R) 8 (I) 8 (S) >8 (R) ≤0.25 (S) 0.03 >8/152(R)
19 ≤1 (S) 32 (I) 0.25 (S) 16 (R) >16 (R) 8 (I) 8 (S) >8 (R) ≤0.25 (S) 0.06 >8/152(R)
20 ≤1 (S) 32 (I) ≤0.12 (S) >16 (R) 0.25 (S) 16 (I) 4 (S) ≤1 (S) ≤0.25 (S) 0.06 4/76 (R)
21 ≤1 (S) 32 (I) ≤0.12 (S) >16 (R) >16(R) 8 (I) 2 (S) >8(R) ≤0.25 (S) 0.12 4/76 (R)
22 ≤1 (S) 32 (I) 0.25 (S) >16 (R) 0.5 (S) 8 (I) 8 (S) ≤1 (S) ≤0.25 (S) 0.5 >8/152(R)
23 ≤1 (S) 32 (I) ≤0.12 (S) >16 (R) 0.12 (S) 8 (I) 4 (S) ≤1 (S) ≤0.25 (S) 0.25 4/76 (R)
24 ≤1 (S) 32 (I) ≤0.12 (S) >16 (R) 0.25 (S) 8 (I) 4 (S) ≤1 (S) ≤0.25 (S) 0.25 8/152 (R)
25 ≤1 (S) 16 (S) 0.5 (S) 1 (S) 0.25 (S) 8 (I) 8 (S) ≤1 (S) ≤0.25 (S) 0.25 4/76 (R)
26 ≤1 (S) 32 (I) ≤0.12 (S) >16 (R) >16 (R) 16 (I) 16 (I) >8 (R) ≤0.25 (S) 0.25 4/76 (R)
27 ≤1 (S) 32 (I) 0.5 (S) 0.25 (S) 0.25 (S) 32R 8 (S) ≤1 (S) ≤0.25 (S) 0.25 4/76 (R)
28 ≤1 (S) 16 (S) ≤0.12 (S) >16 (R) 0.25 (S) 16 (I) 4 (S) ≤1 (S) ≤0.25 (S) 0.25 8/152 (R)
29 ≤1 (S) 16 (S) ≤0.12 (S) 0.12 (S) 16 (R) 8 (I) 8 (S) 8 (R) ≤0.25 (S) 0.12 4/76 (R)
30 ≤1 (S) 32 (I) ≤0.12 (S) >16(R) >16(R) 16 (I) 8 (S) >8(R) ≤0.25 (S) 0.06 >8/152 (R)

3.4. Mycobacterium mucogenicum

Two tested Mycobacterium mucogenicum strains (100%) were sensitive to clarithromycin,
amikacin, cefoxitin, ciprofloxacin, moxifloxacin, and trimethoprim/sulfamethoxazole. One
strain was resistant to doxycycline (MIC >16 µg/mL) (Table 8).

3.5. Mycobacterium fortuitum Complex

All strains representing Mycobacterium fortuitum complex (30) were sensitive to amikacin
and moxifloxacin, 29 out of 30 strains were also sensitive to ciprofloxacin, 23 (77%) were
resistant to clarithromycin, 17 (57%) were resistant to doxycycline, and 21 (70%) were
resistant to trimethoprim/sulfamethoxazole (Table 9).

In the analysed collection of RGM, all 60 (100%) strains had low MIC values (from 0.06
to 1 µg/mL) for tigecycline, an antibiotic considered as a potential therapeutic agent and a
drug of last resort in the treatment of severe cases of mycobacteriosis.

4. Discussion

With advances in molecular techniques and genetic tools, including whole genome
sequencing (WGS), knowledge about the genetic diversity of NTM species and genes
determining resistance to antibiotics continues to grow. Long treatment (18 to 24 months on
average) and the need to use a combination of antibiotics with multiple side effects increase
the importance of drug resistance testing, especially in RGM strains naturally resistant to
first-line antituberculotic drugs.
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Guidelines on antimicrobial susceptibility testing (AST) of atypical mycobacteria
were developed by the CLSI and last updated in December 2018. Currently, CLSI M24
(3rd edition) provides recommendations on AST for slowly growing non-tuberculous
mycobacteria, including M. avium complex (MAC), M. kansasii, and M. marinum, as well as
rapidly growing mycobacteria (RGM) [34]. Since atypical mycobacteria may colonize the
respiratory tract, their isolation from clinical specimens does not always correlate with the
identification of an etiological factor responsible for the observed changes. This primarily
refers to single sputum cultures. A negative sputum smear indicates a small number of
microorganisms that are unlikely to be clinically significant, i.e., insufficient to establish a
diagnosis of NTM. Therefore, detailed criteria for the diagnosis of mycobacteriosis have
been developed for clinically significant isolates from the respiratory tract [27,38]. These
criteria include the following:

• at least two NTM culture-positive sputa or one bronchial wash or lavage sample,
• a transbronchial or lung biopsy specimen with supporting mycobacterial histopathol-

ogy and a positive NTM culture.

According to the current CLSI recommendations, AST includes antimicrobial agents
for RGM such as amikacin, cefoxitin, ciprofloxacin, clarithromycin, doxycycline (or minocy-
cline), imipenem, linezolid, moxifloxacin, trimethoprim-sulfamethoxazole, and tobramycin
(for M. chelonae only) (Table 3). Worth noting is the fact that there are insufficient data to
establish MIC breakpoints for tigecycline and clofazimine, and therefore for these agents a
MIC without interpretation should be given [34].

The results of AST with selected drugs may concern specific species of atypical my-
cobacteria. For this reason, CLSI and most experts in RGM recommend identifying RGM
strains at the species or even subspecies level (Table 10), especially for the M. abscessus
complex, before performing a new AST RAPMYCOI and initiating treatment [5,34,39,40].

Table 10. Interpretation of AST results for M. abscessus complex and clarithromycin.

Sensitivity to Clarithromycin
on Days 3–5 of Incubation

Sensitivity to Clarithromycin
on Day 14 of Incubation

Genetic
Mechanisms

Subspecies of M.
abscessus

Phenotypic Sensitivity
to Macrolides

sensitive sensitive non-functional
erm gene (41) M. a. massiliense sensitive to macrolides

sensitive resistant functional
erm gene (41)

M. a. abscessus
M. a. bolletii

inducible resistance to
macrolides

resistant resistant 23S point
mutation in rRNA any of the above listed high constitutive

resistance to macrolides

Because the incubation period for most RGM species ranges from 2 to 5 days, the
final MIC reading in the RAPMYCOI test should be performed <5 days. This is mainly
due to the instability of some drugs, including carbapenems and tetracyclines. There are
only two exceptions where this incubation time should be extended when performing
the RAPMYCOI test. The first case concerns strains representing M. abscessus complex
isolated from patients who had a history of long-term treatment, including patients with
cystic fibrosis. Mycobacterial strains isolated from this population of patients need a longer
incubation period; therefore, in some cases it may be helpful to change the incubation
temperature or to establish a culture in a shaking incubator. However, if the culture
incubation period is longer than 5 days, results are only reliable for AST related to two
drugs: clarithromycin and amikacin. The CLSI recommends a comment on the AST report
such as: this NTM strain required extended incubation and results for only clarithromycin
and amikacin are reliable after incubation for >5 days (Table 10) [34].

The second exception in the RAPMYCOI test to the incubation period longer than
5 days is clarithromycin. Phenotypical detection of inducible resistance to macrolides
is achieved by extending the incubation of clarithromycin to 14 days unless the MIC
is ≥16 µg/mL at an earlier time point. If the clarithromycin MIC is 4 or 8 µg/mL after
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14 days of incubation, the test should be repeated. If the MIC is 4 or 8 µg/mL in the retest,
sequencing of the erm gene for the given strain is recommended.

Worth noting is the fact that several RGM species have a non-functional or absent
erm gene and are naturally sensitive to clarithromycin [41]. Therefore, sensitivity to clar-
ithromycin can be reported at the initial MIC reading as no prolonged incubation is required
for these specific species [42].

In the presented study, we identified 60 rapidly growing mycobacterial strains and
determined their antimicrobial susceptibility in accordance with CLSI guidelines.

The most frequently isolated species was Mycobacterium fortuitum complex, which
accounted for 50% (30/60) of all identified strains. The tests demonstrated that among
all RGM species this group is characterized by high sensitivity to antibiotics. Our study
confirmed this thesis and showed that 100% (30/30) of the strains from this group were
sensitive to amikacin and moxifloxacin, 97% (29/30) were also sensitive to ciprofloxacin,
and 93% (28/30) were sensitive to linezolid. In contrast, tests with clarithromycin showed
a high level of resistance for 77% (23/30) of the strains. This resistance is higher compared
to that reported by Sriram et al. (100% of sensitive strains among 30 tested) and Bhalla et al.
(94.1% of sensitive strains among 17 tested) [43,44].

A low rate of drug resistance according to CLSI was also found for Mycobacterium
chelonae. In our study, 100% of the strains (5/5) were sensitive to amikacin, clarithromycin,
linezolid, and tobramycin. Our findings are consistent with those reported by Bhalla et al.
In the cited study, no resistance to the four above-mentioned antibiotics was found for the
three tested isolates [43].

Mycobacterium chelonae and Mycobacterium mucogenicum are classified into the group
of species lacking functional erm genes. In our study, all strains of M. chelonae (5/5) and
M. mucogenicum (2/2) were sensitive to clarithromycin and no erm genes were detected.
However, Esteban et al. detected resistance to clarithromycin associated with the presence
of erm genes in two strains of M. chelonae [45]. In a study by Davalos et al., 100% (2/2)
of M. chelonae strains were sensitive to clarithromycin. However, one strain (25%) of
M. mucogenicum resistant to this antibiotic was detected [46]. In our study, two strains
representing M. mucogenicum were sensitive to most of the tested antibiotics. Only one
strain was resistant to doxycycline and minocycline. A different antimicrobial susceptibility
profile for this species was found by Faridah et al., who reported resistance to ciprofloxacin,
doxycycline, clarithromycin, and tobramycin in a strain isolated from blood [47].

Isolates representing the Mycobacterium abscessus complex accounted for 38% (23/60)
of all identified strains and it was the second largest group. Most strains (16) represented
M. abscessus subsp. abscessus subtype, while M. abscessus subsp. massiliense subtype was less
frequently identified (seven strains). We did not identify M. abscessus subsp. bolletii. In our
study, most strains of M. abscessus subsp. abscessus (75%) were resistant to clarithromycin
(MIC >16 µg/mL). This resistance was associated with the presence of a functional erm
gene. The situation was different for M. abscessus subsp. massiliense. Only 28% of strains
representing this subtype were clarithromycin-resistant, and the MUT2 mutation in the rrl
gene was responsible for the resistance mechanism. Our findings confirm the worldwide
reports on the more frequent resistance of M. abscessus subsp. abscessus to clarithromycin
compared to M. abscessus subsp. massiliense [48–50]. Considering amikacin, the vast majority
of strains were sensitive to this antibiotic. Only one strain (4%) was resistant to amikacin
(MIC > 64 µg/mL) and had the MUT1 mutation in the rrs gene. Similar findings were
reported by Bhalla et al., who found 92.3% of sensitive strains [43].

Among the three tested tetracyclines (doxycycline, minocycline, and tigecycline), the
lowest MICs (from 0.06 to 1 µg/mL) were found for tigecycline. If we assume the criteria
for interpretation proposed by Wallace et al. (resistant strain when MIC ≥ 8 µg/mL),
all tested strains (60/60) were sensitive to tigecycline [51]. Similar relationships were
observed by Pang et al.: sensitivity to tigecycline was found for 96% (53/55) of strains
from the M. abscessus complex, 91% (10/11) of M. fortuitum strains, and 100% (3/3) of M.
chelonae strains [52]. Similarly, in a study by Comba et al., the MIC value was <0.25 µg/mL
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for 45.7% of the strains (16/35), and from 0.25 µg/mL to 0.5 µg for 54.3% of the strains
(19/35) [53]. According to worldwide reports, tigecycline is used in the treatment of the
most severe infections with RGM mycobacteria, but to date there are no CLSI guidelines
for the interpretation of MIC values in the AST.

5. Conclusions

The new RAPMYCOI test is a rapid tool for the determination of drug resistance
profile in RGM. The obtained results are reliable and reproducible, and the test setup is
not time-consuming. The broth microdilution method on which the test is based and the
selection of antibiotics are consistent with the CLSI guidelines.

Taken together, the findings from the presented study highlight the importance of a
correct identification of clinical isolates to the species and subtype level and the role of
antimicrobial susceptibility testing, especially for highly resistant rapidly growing mycobac-
teria (RGM). The obtained results confirm previous assumptions published worldwide
according to which there are predictable drug resistance profiles depending on the identi-
fied mycobacterial species. However, there are some exceptions to this rule, and therefore
the drug resistance of individual strains should be tested as standard practice. The correla-
tion between data obtained from AST with clinical findings proving the effectiveness of
treatment will enable the development of new therapeutic regimens. As a result, effective
drugs can be selected and the patient’s treatment optimized at an early stage.
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