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Abstract: Targeted therapy is an effective treatment for non-small cell lung cancer. Before treatment,
pathologists need to confirm tumor morphology and type, which is time-consuming and highly
repetitive. In this study, we propose a multi-task deep learning model based on a convolutional
neural network for joint cancer lesion region segmentation and histological subtype classification,
using magnified pathological tissue images. Firstly, we constructed a shared feature extraction
channel to extract abstract information of visual space for joint segmentation and classification
learning. Then, the weighted losses of segmentation and classification tasks were tuned to balance
the computing bias of the multi-task model. We evaluated our model on a private in-house dataset
of pathological tissue images collected from Qilu Hospital of Shandong University. The proposed
approach achieved Dice similarity coefficients of 93.5% and 89.0% for segmenting squamous cell
carcinoma (SCC) and adenocarcinoma (AD) specimens, respectively. In addition, the proposed
method achieved an accuracy of 97.8% in classifying SCC vs. normal tissue and an accuracy of
100% in classifying AD vs. normal tissue. The experimental results demonstrated that our method
outperforms other state-of-the-art methods and shows promising performance for both lesion region
segmentation and subtype classification.

Keywords: histopathological images; lung cancer; medical images; multiple tasks; segmentation;
classification; deep learning; convolutional neural network

1. Introduction and Literature Review

Cancer is a disease with one of the highest death rates. Lung cancer is the leading
cause of cancer death in the world, and its five-year survival rate is very low. According
to the World Health Organization, about 85% of lung cancer cases are patients with non-
small cell lung cancer (NSCLC) [1]. The most common histological subtypes of NSCLC
are adenocarcinoma and squamous cell carcinoma. Recent years have witnessed great
advances in the molecular therapeutic methods based on targeted therapies for NSCLC,
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prolonging not only progression-free survival but also overall survival. It is necessary for
pathologists to identify NSCLC histopathological type by examining pathological tissue
slices. However, the manual inspection process of tissue slices is very time-consuming and
highly depends on the experience of pathologists. In order to improve the histopathological
evaluation, it is possible to use a computer-aided diagnosis (CAD) system [2] that identifies
cancer lesions and classifies them according to their histopathological type.

Two important tasks should be performed by a deep learning model for tumor images:
cancer lesion segmentation and tumor classification. The lesion segmentation task aims to
detect tumor location and boundaries, and the tumor classification task aims to identify
tumor histological subtypes. In previous studies, many traditional machine learning meth-
ods were presented, such as the combination of a probabilistic neural network and support
vector machines (PNN-SVM) [3,4], the Bayesian classifier [5,6] and the neural-like structure
of successive geometric transformations model (SGTM) [7–10] for tumor classification and
Gibbs random field [11], fuzzy C-means [12] and Wavelet Analysis [13] for segmentation.
These methods highly rely on hand-crafted feature engineering and are unable to learn
deep representations from visual levels. In recent years, deep learning has contributed to
significant developments in the field of medical image processing [14]. Most deep learning
frameworks for medical image processing are based on convolutional neural networks
(CNNs), and the formats of medical data are 2-D or 3-D images, in general. A CNN is an
effective multi-layer artificial neural network for the extraction of image characteristics,
popularly used for classification and object detection [15–18]. Classical frameworks of the
convolution network, such as DenseNet [19], ResNet [20], Inception V3 [21] and VGG16, are
very useful for classifying images [22]. Using the above frameworks, Alom et al. [23] per-
formed an elementary classification of pathological tissues images of benign and malignant
breast cancer. Coudray et al. [24] and Wang et al. [25] carried out a complex classification of
histological subtypes. Nevertheless, whole-slide images used as models are too small and
difficult to examine by pathologists, thus the methods offer poor help for physician-assisted
diagnosis. Boumaraf et al. [26] and Ukwuoma et al. [27] classified images of pathologi-
cal breast cancer tissues at various magnifications by visualization, trying to apply the
operating principle of the models [28,29], as simple classification processes cannot help
pathologists analyze medical images. However, the efficacy of image visualization is not
convincing. Segmenting cancer lesions precisely helps pathologists quickly identify key
areas of concern. In addition, pathologists can understand the reasons of model discrimina-
tion errors. Classical frameworks such as U-Net [30,31], Mask R-CNN [32], FCN [33,34]
play an important role in medical image segmentation. The U-Net model itself is proposed
for the segmentation of medical images, but it focuses on the cellular level. Since feature
information in pathological images is too dense, Li et al. [35] utilized multi-level feature
fusion to segment nuclei in digital histopathological images, and Wang et al. [36] randomly
selected millions of patches of pathological images to obtain a dataset, while the model
should be retrained with hand-picked images to avoid a non-uniform distribution of images
with blank areas. Kumar et al. [37] trained the model using a thermal map mask instead of
a binary mask as ground truth to directly locate cancer lesions on histopathological images.
Cell segmentation and the prediction of cancer recurrence probability are achieved using
two models which are complex. Liu et al. [38] and Zhang et al. [39] constructed simple
models for lesion region segmentation and disease classification, but they are effective only
for 3D images.

We established a model for simultaneously segmenting and classifying pulmonary
epithelial tumors on the basis of 2D pathological tissues images of lung cancer. Different
types of tumor cells have different histological features. Thus, tumor segmentation and his-
tological subtype classification are well related in medical diagnosis. The proposed model
consists of a shared feature-extracting channel to obtain multi-scale feature maps, which im-
proves both automatic segmentation and classification. Since they share the same extraction
channel, the segmentation and classification tasks affect the gradient descent backpropa-
gation of parameters. We balanced the two tasks by adjusting the proportion of the loss
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weights of the two tasks. Experiments on our self-collected pathological images dataset
demonstrated that our method achieved a promising performance and outperformed other
state-of-the-art multi-task methods. In summary, this work has three main contributions:

• We propose a novel end-to-end multi-task convolutional neural network (MCN) for
lung cancer lesion region segmentation and tumor histological subtype classification,
achieved by sharing the same extracted spatial information.

• Our model solved the complex problem of multi-class segmentation and classification,
obtaining balanced loss weight ratios.

• Our model recognized and segmented cancer lesions more precisely than manually
annotation, which is boundary-blurry, shape-irregular and location-random.

The remainder of this article is organized as follows. Section 2 illustrates the materials
and the proposed method. Section 3 discusses evaluation indexes and the experimental
results with different weight of losses and compares our approach with other methods.
Section 4 concludes this work and presents prospects for the future.

2. Materials and Methods

Our research included the development of a data pre-processing module, a multi-task
model training module and a testing module, as shown in Figure 1. Firstly, 10x histopathologic
slices were scanned on a computer and annotated by pathologists, and then corresponding
masks for the segmentation task were generated. To reduce the computational complexity,
we cropped the original pathological sections and corresponding masks into image patches
and mask patches. Before computing, input images were standardized. Secondly, we input
standardized image patches and corresponding ground truth including mask patches and
classification labels into the multi-task model for training. Ultimately, we used the test
dataset that was not used in model training to evaluate the segmentation and classification
performance of the model. Details will be explained subsequently.
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Figure 1. Structure of our research. A data pre-processing module was developed to annotate, crop
and standardize original images into image patches and corresponding ground truth. With the
training module and testing module, the multi-task model was trained and tested.

2.1. Data Source

As shown in Table 1, the image and case information data [40] were obtained from
cases demonstrably diagnosed with NSCLC in Qilu Hospital of Shandong University in
2021–2022, and the tissue sections of typical NSCLC images were scanned; all of them were
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surgically resected specimens. We random selected 36 patients, including 15 with SCC,
11 with AD and 10 normal controls (NC), using H&E staining image data of lung epithelial
tumor cases. Basic clinical characteristic included histopathological type, patient age, cancer
staging, representing the clinical Tumor Node Metastasis (TNM) stage [41], and tumor
volume, representing the largest tumor region seen in general. The surgically resected
specimens were paraffin-embedded after general sampling, tissue fixation, dehydration
until transparency, wax immersion and embedding, and then H&E tissue sections were
obtained after sectioning and staining. A Roche digital scanner was used to scan the
screened tissue sections, and a total of 312 original images of 10× pathological tissue
sections were obtained from the H&E scan sections of different cases (open dataset: https:
//github.com/Joyw7070/LungImageAnalysis (accessed on 27 June 2022)). The original
images were very large and thus they would lead to computational parameters of millions
of magnitude in the process of model training. Thus, we randomly cropped the original
images into 480 × 480-pixel image patches and standardized the image patches to accelerate
the convergence of the model in training.

Table 1. Demographic and clinical information (mean ± standard deviation) of the studied lung
cancer subjects.

Diagnosis Age Gender (M/F) 1 Cancer Staging
(I/II/III) 2

Tumor Volume
(cm2)

SCC 64.4 ± 7.8 14/1 10/4/1 10.74 ± 9.5
AD 53.8 ± 12.6 5/6 9/2/0 2.91 ± 2.1
NC 61.1 ± 9.1 8/2 - -

1 M/F: male or female. 2 Cancer Staging: clinical Tumor Node Metastasis stage.

Figure 2 shows pathological H&E original images, expert-annotated pathological
images and masks of SCC samples, AD samples and NC samples. As can be seen from the
original images, the lesion regions were composed of malignant epithelial cells and reactive
stroma. In the original images, NSCLC showed different histological characteristics. In
fact, SCC appeared mostly distributed in nests, while AD mostly formed glandular lumen
structure and infiltrated the hyperplastic fibrous stroma. The invasive growth of cancer
cells can occur in the form of nest sheets, adenoids, sieves, etc., or can involve infiltrating
scattered single cells, so the pathological regions in the pathological sections mostly showed
an irregular shape.
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The annotation work was carried out by two pathologists. After the boundaries
of tumor lesion regions were marked, masks were generated, where the pixel value of
1 represented SCC lesions (yellow areas), the pixel value of 2 represented AD (green area),
and the pixel value of 0 represented the background (black area). These masks were used
for the segmentation.

In this study, we randomly divided the whole dataset into training set (90%) and a
test set (10%). Subsequently, a 5-fold cross-validation method was employed to obtain the
optimal combination of hyper-parameters of the neural network, in which the training set
was evenly divided into 5 subsets; 4 data subsets were used as training data to update the
model weight parameters, and 1 subset as validation data to adjust the hyper-parameters of
the model and carry out the experiment. The test set was not used for training or validation
but to evaluate the final generalization ability of the model.

2.2. Multi-Task CNN for Cancer Lesion Segmentation and Histological Subtype Classification

Different from other methods that segment and classify lung cancer pathological
images separately, we propose a dual-branch multi-task convolution model based on a
single feature extraction channel, as shown in Figure 3. The input of the model was a
480 × 480-pixel image patch, and the output was a 480 × 480-pixel mask which marked
the lesion regions and allowed the prediction of tumor subtype. This model can perform
two tasks including lesion region segmentation and tumor subtype classification and
achieve a synchronous gradient descent. After the extraction of features through the shared
channel, the classification branch inputs the feature maps into fully connected layers,
allowing tumor type classification. On the other hand, the segmentation branch gradually
restores the feature map to the original input size by the up-sampling and the jumping
connection methods and adds a convolution layer to classify each pixel, thus completing
the semantic segmentation task of each pixel in the input image.
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Figure 3. Structure of the MCN. “Double Conv” denotes the two operations of convolution, in
which the kernel size was 3 × 3, the stride was 1, and the padding was 1, batch-normalization and
ReLU. “Down Conv” denotes max-pooling and the operation of “Double conv”. “Up Conv” denotes
up-sampling, in which the kernel size was 2 × 2, and the operation of “Double conv”. “Out Conv”
denotes an operation of convolution in which the kernel size was 1 × 1, the stride was 1, and the
padding was 0. The “flatten” operation denotes the adaptive average pooling and was followed by
two fully connected layers. The “⊕” operation concatenates feature maps in left side and the right
side as input to next “Up Conv” module.
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The ‘contractive channel’ was established to perform down-sampling feature extrac-
tion from pathological images patches including one double convolution module (Double
Conv) and four down convolution modules (Down Conv1-4). In this process, the image
feature map was shrunk step by step. The input of the model was a 480 × 480 three-channel
RGB image patch. The Double Conv module implemented two 2D convolutions, 2D batch-
normalization and ReLU operations on the input image, where the convolution kernel size
was 3 × 3, the stride was 1, and the padding was 1. Each Down Conv module consisted of
a 2D max-pooling and a Double Conv (the same operation method as the Double Conv
module), where the kernel size of the max-pooling layer was 2 × 2, and the stride was 2.
Max-pooling reduced the dimension of the output from the previous layer to reduce the
scale of the parameters while retaining the main features. The ‘contractive channel’ contin-
uously reduced the resolution to obtain image information from different scales. Image
information was gradually transformed from the line, texture, color, etc., in underlying
information about the contour and more abstract information in high-level information.

After the Down Conv4, we believe that the neural network obtained enough multi-
dimensional abstract feature information. Then, during the task of classification, we
performed global average pooling on the high-dimensional feature map through adap-
tive average pooling and a nonlinear calculation through two full connected layers after
spreading, to calculate the probability of the specific tumor subtypes.

However, the semantic segmentation task consists in the classification of tumor cat-
egories at each pixel position in an image (the tissues where the pixels are located are
judged as SCC, AD or NC). Therefore, for the segmentation task, the contraction of feature
maps does not provide enough information; therefore, we used a ‘symmetric’ extended
channel with the contracting channel. The extended channel restored the image resolu-
tion of the output layer to the same resolution as that of the input image by using four
up-sampling convolution modules (Up Conv1-4) and one output convolution module
(Out Conv). The Up Conv module contained an up-sampling convolution and a double
convolution operation (Double Conv). Each up-sampling convolution operation adopted
bilinear interpolation.

In the restoring process, the feature map would be distorted when transforming from
low resolution to high resolution, so it would lose details in the up-sampling process. To
solve this problem, the neural network connected the feature map of the left symmetric
channel with the corresponding up-sampling result through the skip connection method, as
the input of the next module. In other words, skip connection added detailed information
in each pixel of the judgment target and allowed the model to achieve more accurate
segmentation results. Finally, the Out Conv module applied a convolution calculation,
where the convolution kernel size was 1 × 1, the stride was 1, and the padding was 0. The
number of output image channels was 3, that is, the input of a three-layer mask. The same
position on each channel represented the probability that that point in the original image
was SCC, AD or NC tissue.

As shown in Figure 3, the MCN outputted the predicted mask and tumor subtype
probability. For a segmented sample, the objective of optimization is to minimize the cross
entropy loss function, and the calculation formula is as follows:

Lossseg = − log

(
exp(z[c])

∑c−1
j=0 exp(z[j])

)
= −z[c]+ log

(
c−1

∑
j=0

exp(z[j])

)
(1)

where z = [z0, z1, z2] represents the output of the segmentation mask for three classes,
including SCC, AD and background, and c is the ground truth of the sample. For the
classified sample, the loss function is as follows:

Losscls = −ŷ·logy (2)
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where ŷ is the sample label of the subtype, and y is the probability of properly classifying
the subtype of the sample. The loss of MCN is the sum of weighted segmentation and
classification losses:

Loss = Γ1·Lossseg+Γ2·Losscls (3)

where Γ1 and Γ2 are the weight value of segmentation and classification loss, respec-
tively. In the training process of the multi-task model, the weights of the loss values
affect the performance of the corresponding tasks. We will discuss the results in detail
in Section 3.2. All experimental hyper-parameters (including comparable methods) in this
work remained consistent during training, i.e., adaptive learning rate (method: torch.
LambdaLR, original rate = 0.01) and batch size of 4. The optimization of the MCN was
performed with the SGD method (momentum = 0.9, weight decay = 0.0001).

3. Results
3.1. Setting the Valuation Indexes

The performance of both cancer lesion region segmentation and histological subtype
classification is evaluated by several indexes. To evaluate the performance of segmenta-
tion, we used the Dice similarity coefficient (DSC), sensitivity (SEN), precision (PRE) and
Intersection over Union (IoU). DSC and IoU indicate the similarity of predicted segmenting
masks, while ground truth and the DSC pay more attention to pixels correctly predicted as
lesion. SEN represents the proportion of a lesion area which is correctly predicted in ground
truth, and PRE represents the proportion of a lesion area which is correctly predicted in the
predicted mask. We computed the evaluation indexes of SCC, AD and NC, according to
the following formulas:

DSC = Σm
s=1

2TPi
(s)

2TPi
(s)+FPi

(s)+FNi
(s)

(4)

SEN = Σm
s=1

TPi
(s)

TPi
(s)+FNi

(s)
(5)

PRE = Σm
s=1

TPi
(s)

TPi
(s)+FPi

(s)
(6)

IoU =
DSC

2 − DSC
(7)

where m is the number of samples; s is the sth sample; TPi denotes the true positive of
Class i, i.e., the predicted pixels of Class i inside the positive regions of ground-truth; FPi
denotes the false positive of Class i, i.e., the predicted pixels of Class i outside the positive
regions of ground-truth; FNi denotes the false negative of Class i, i.e., the pixels which are
predicted to correspond to other two Classes inside the positive regions of ground-truth. In
addition, we calculated the average of the evaluation indexes of the three classes.

For the classification task, the goal was to distinguish SCC from NC and AD from NC;
this involved three evaluation indexes: classification accuracy (ACC), sensitivity (SEN),
specificity (SPE). ACC is the proportion of correctly classified subjects among all subjects.
SEN is the proportion of correctly classified SCC/AD patients. SPE is the proportion of
correctly classified NC subjects. The formulas are as follows:

ACC =
TPc +TNc

TPc+TNc+FNc+FPc
(8)

SEN =
TPc

TPc+FNc
(9)

SPE =
TNc

TNc+FPc
(10)
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where TPc denotes the number of true positive samples; TNc denotes the number of true
negative samples; FNc denotes the number of false positive samples; FPc denotes the
number of false negative samples.

3.2. Compromising on the Weight of Losses

In our experiments, we assigned different weights to the two tasks’ losses to determine
the best weight ratio of model learning. Γ1 and Γ2 represent the weights of Lossseg and
Losscls. Two parameters influence the calculation in training. We determined the task
whose loss had the larger weight. Table 2 shows the comparison of the segmentation
and classification results by compromising on different Γ1 and Γ2 for single and multi-
task learning. Referring to the classification task, compared to other three values of Γ1
and Γ2, the model performed best when Γ1 was equal to Γ2, achieving 100% accuracy in
AD identification. For single tasks, better performance was achieved than for multi-task
learning with equal Γ1 and Γ2 in SCC classification, obtaining ACC, SEN and SPE of 97.8%,
95.2% and 100%, respectively, worse performance was observed in AD classification. As
for the segmentation task, firstly, according to the means, multi-task learning with equal Γ1
and Γ2 performed best, achieving DSC of 92.3%, SEN of 92.2%, PRE of 91.9% and IoU of
85.2%. Secondly, when the multi-task was carried out using different unbalanced values of
Γ, we observed that model learning with higher Γ1 performed better than model learning
with the lower Γ1. Specifically, the single segmentation task learning achieved the best
performance for SCC, with DSC, SEN, PRE, IoU of 95.6%, 94.2%, 97.8%, 92.3%, respectively.

Table 2. Performance of classification and segmentation after assigning different weights to their
respective losses.

Performance in
Different Γ

Classification
Performance (%)

Segmentation
Performance (%)

ACC SEN SPE DSC SEN PRE IoU

Γ1:Γ2 = 0:1
SCC vs. NC 97.8 95.2 100

Mean — — — —
SCC — — — —

AD vs. NC 90.2 86.1 100
AD — — — —
NC — — — —

Γ1:Γ2 = 0.5:1
SCC vs. NC 92.7 90.5 95

Mean 79.4 84.5 78.7 77.9
SCC 94.0 91.6 96.8 88.9

AD vs. NC 98.1 100 100
AD 68.7 63.3 75.4 52.4
NC 93.8 96.6 91.1 88.2

Γ1:Γ2 = 1:1
SCC vs. NC 95.1 95 95.2

Mean 92.3 92.2 91.9 85.2
SCC 93.5 90.1 97.3 87.9

AD vs. NC 100 100 100
AD 89.0 89.4 88.6 80.2
NC 94.5 97.2 89.7 87.5

Γ1:Γ2 = 1:0.5
SCC vs. NC 92.7 94.7 90.9

Mean 84.4 80.5 88.0 73.0
SCC 89.3 82.7 97.2 80.8

AD vs. NC 95.7 100 90.9
AD 73.6 61.4 83.5 56.6
NC 90.3 97.3 83.3 81.5

Γ1:Γ2 = 1:0
SCC vs. NC — — — Mean 89.4 88.6 90.5 82.1

SCC 95.6 94.2 97.8 92.3

AD vs. NC — — — AD 76.8 73.9 80.1 62.4
NC 95.9 97.6 93.7 91.7

Mean: average of the evaluation indexes of SCC, AD and NC.

3.3. Comparison with Other Methods

We compared our proposed method to two other existing methods for medical image
analysis, i.e., MDCN [38] and MGMLN [39]. MDCN was proposed to segment the hip-
pocampus and classify Alzheimer’s disease using a deep-learning model. The model was
constructed to obtain a 3D DenseNet to learn features of 3D mild cognitive impairment
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patches. We rebuilt the model to adapt it to 2D images without changing its structure.
MGMLN was proposed as a multi-task deep learning model for automatic gastric tumor
segmentation and lymph node classification applied on CT scans. Since the model was
constructed for 2D images, we directly trained and tested it on our dataset. The evalua-
tion results shown in Table 3 contain the segmentation evaluation and the classification
evaluation. Our method outperformed MDCN and MGMLN in both tasks.

Table 3. Comparison of our method with other multi-task methods for segmentation and classification.

Method
Tumor
Type

Segmentation Performance (%) Tumor
Type

Classification
Performance (%)

DSC SEN Pre IoU ACC SEN SPE

MGMLN

Mean 84.1 79.6 91.5 74.6
SCC vs. NC 64.1 100.0 30.0SCC 92.0 88.1 96.4 85.3

AD 65.1 52.2 86.9 48.4
AD vs. NC 96.6 100.0 85.7NC 95.1 98.5 91.3 90.0

MDCN

Mean 81.4 81.7 85.3 71.1
SCC vs. NC 92.7 90.0 95.2SCC 85.2 74.6 99.6 74.4

AD 69.4 80.9 60.2 52.7
AD vs. NC 100.0 100.0 100.0NC 89.7 89.5 96.0 86.3

MCN

Mean 92.3 92.2 91.9 85.2
SCC vs. NC 95.1 95.0 95.2SCC 93.5 90.1 97.3 87.9

AD 89.0 89.4 88.6 80.2
AD vs. NC 100.0 100.0 100.0NC 94.5 97.2 89.7 87.5

3.3.1. Segmentation Evaluation

Figure 4 shows the comparison of the segmentation results using different methods for
two specimens of SCC and AD from the test data. From top to bottom, the Figure shows are
original images, ground truth, segmented results of our method, MDCN and MGMLN. It
is difficult to intuitively distinguish the lesion area based on the contrast between adjacent
cells and stroma in the whole image of pathological tissue, considering image color and
brightness. The lesion region segmentation results achieved by our method showed
smoother edges and more accurate shapes. The segmentation result of SCC obtained with
MDCN showed under-fitting, which means inadequate segmentation of the lesion area,
whereas the segmentation result of AD showed over-fitting, which means misdiagnosing
non-diseased regions as diseased regions. With MGMLN, the segmentation results of both
SCC and AD showed under-fitting. In addition, the segmentation performance reported in
Table 3 indicates that our method outperformed other methods in DSC, SEN, PRE, IoU.

3.3.2. Classification Evaluation

Figure 5 shows the accuracy of the classification results by the three methods. The
more intense the red on the main diagonal of the confusion matrix, the better the prediction
effect. On the contrary, the more distributed the red is in the graph, the worse the prediction
effect. In the confusion matrix of MGMLN, some red squares are present in the lower left
portion, indicating poor specificity, which means that images of normal and AD tissue
are interpreted as indicating SCC; while in the confusion matrix of MDCN, some light
red squares are present on both sides of the main diagonal of the graph, indicating that
the method’s prediction ability is relatively good, though with a little insufficient SEN
and SPE. In the confusion matrix of our method, it can be seen that red color is mostly
concentrated on the main diagonal, and the deviation on both sides is under 6 × 10−2. The
classification results are shown in Table 3 according to the three evaluation indexes. Our
proposed method appeared superior to the examined other methods in general, and the
accuracy of the classification results of SCC and AD was 100% and 95.1%, respectively.
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4. Conclusions

In this paper, we proposed a competitive model based on a multi-task convolutional
neural network for jointly determining cancer lesion area segmentation and histological
subtype classification. By compromising on the weight of losses, the highest classification
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accuracies using our method were between 92.7% and 97.8% for classifying SCC and
between 90.2% and 100.0% for classifying AD, while the obtained classification results
using other methods ranged from 64.1% to 100.0%. The DSCs of segmenting lesions
completed by our method were between 89.0% and 94.5%, while the segmentation results
completed by MDCN and MGMLN ranged from 65.1% to 95.1%. The optimal weight of
losses, with equal Γ1 and Γ2, was considered to achieve a relatively good performance for
both segmentation and classification.

Though the proposed method achieved high performance in classification and segmen-
tation, it presents a few limitations. Firstly, limited by the complexity and time cost of data
collection and annotation, the dataset contained only two types of non-small cell carcinoma;
therefore, the model cannot be widely applied in practical clinical diagnosis. In the future,
we will expand the classification task to identify more types of lung cancer (e.g., large-cell
carcinoma, small-cell lung cancer). Secondly, due to the shortage of computing resources,
original images were cropped into 480 × 480-pixel patches in the training process. We
plan to upgrade our equipment, so that the neural network can be implemented to study
and analyze original images directly. Thirdly, classification and segmentation are the main
functions of CAD system. Future research will address topics such as the flow design of
the system, the achievement of a unified public sample library and seamless and efficient
clinical applications. We will concentrate on the development of computational pathology
software for research and clinical use in order to allow pathologists to focus on higher-
level decisions, such as the design of antineoplastic protocols integrating information of
microscopic anatomy and clinical medicine.
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editing, Z.W., Y.X., L.T. and R.X.; visualization, Z.W., Y.X., Q.C. and F.Z.; supervision, S.Z., J.Z. and
Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Key Research and Development Program of Shandong
Province (No. 2020CXGC010104), the Qingdao science and technology demonstration and guidance
project (No. 21–1-4-sf-1-nsh), the National natural science foundation of China (No. 81972436).
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