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Abstract: The new pandemic caused by the COVID-19 virus has generated an overload in the quality
of medical care in clinical centers around the world. Causes that originate this fact include lack of
medical personnel, infrastructure, medicines, among others. The rapid and exponential increase
in the number of patients infected by COVID-19 has required an efficient and speedy prediction
of possible infections and their consequences with the purpose of reducing the health care quality
overload. Therefore, intelligent models are developed and employed to support medical personnel,
allowing them to give a more effective diagnosis about the health status of patients infected by
COVID-19. This paper aims to propose an alternative algorithmic analysis for predicting the health
status of patients infected with COVID-19 in Mexico. Different prediction models such as KNN,
logistic regression, random forests, ANN and majority vote were evaluated and compared. The
models use risk factors as variables to predict the mortality of patients from COVID-19. The most
successful scheme is the proposed ANN-based model, which obtained an accuracy of 90% and an F1
score of 89.64%. Data analysis reveals that pneumonia, advanced age and intubation requirement are
the risk factors with the greatest influence on death caused by virus in Mexico.

Keywords: COVID-19; mortality analysis; risk factors; machine learning

1. Introduction

Internationally, health sector constantly has a high demand for clinical care; there are
many reasons that influence the overload in the quality of medical care and also cause a
saturation of patients. The factors that generate a clinical saturation are diminished person-
nel, insufficient or well-qualified medical personnel, deficient infrastructure, ventilators,
delay in medical diagnosis, hospitalization time, lack of medicines, among others [1–5].
Nowadays, an example of saturation of the health sector worldwide is the Coronavirus
pandemic (COVID-19), which has caused an overflow in the quality and capacity of medical
care in many of the clinical centers. This situation is also caused due to the high number
of infected patients with COVID-19, until 17 April 2022, over 500 million confirmed cases
and over 6 million deaths have been reported globally [6,7]. These numbers continue to
increase and cause problems in clinical demand. Another problem consists in the difficulty
to give an accurate diagnosis in a short time, without forgetting that this diagnosis can be
somewhat subjective. There are several factors that influence to achieve a correct medical
assessment, such as the professional capacity and specialty of the staff, degree of studies,
own judgment, stress, assessment of the patient, fatigue of personnel, among others [8–11].
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Coronavirus pandemic has led to the demand for the application of various modern
techniques and technologies such as artificial intelligence (AI) tools, which has multiple
applications in fields of science such as medicine, meteorology, astronomical exploration,
including applications in financial systems, among others [12–15]. In this sense, IA makes it
possible to design schemes in order to speed up medical diagnoses, reduce the saturation of
clinical centers, increase the quality of medical care, obtain better medical assessment and
solve various other problems [12–19]. Thus, novel models need to be developed to support
medical personnel, allowing them to be an aid in diagnosing more efficiently health status
of a COVID-19 infected patient.

Accordingly, IA models can use risk factors associated with the death as guideline
and predict the probabilities that a patient will die or recover (health status diagnosis) from
this new Coronavirus. Risk probability results are helpful in making better quality clinical
decisions in a limited time environment and with limited resources, obtaining more detailed
and accurate clinical diagnoses. Consequently, health risk factors plays an important role,
increasing the chances of developing a serious COVID-19 infection (suffering complications)
and causing death, or at least increasing its chances. In addition, these factors can originate
complications, and therefore be taken to an intensive care unit (ICU) [20–34]. A logistic
study with several variables indicated that factors such as chills, body temperature, initial
chest X-ray findings and diabetes were valued as elements that cause the aggravation of
the health status of patients with COVID-19. This is probably because some of these factors
cause hyperglycemic conditions that generate immune dysfunction, as well as impaired
neutrophil function, humoral immunity and antioxidant system function [35]. In other
previous studies, age was reported to be the most important predictor of death in COVID-19
patients. In this sense, infected older people often suffer severe complications, mainly due
to age-dependent functional defects in immune cells that lead to poor suppression of viral
replication [35,36].

Another risk factor to consider in modeling these IA schemes is cardiac injury, where
the mortality rate is higher among patients with this disease in relation to those who do
not have it. COVID-19 patients with cardiac injury experienced greater severity, evidenced
by abnormal radiographic and laboratory results, among which are: NT-proBNP, elevated
levels of C-reactive protein and creatinine levels, as well as more multiple mottling and
opacity in ground glass; where a higher proportion required non-invasive or invasive
ventilation [37]. Severe pneumonia was also independently associated with admission to
intensive care unit, mechanical ventilation, or death in the competitive-risk multivariate
model due to the cause of more severe respiratory problems [38]. Besides, regarding recent
information, obesity is a factor that originates the aggravation of the disease, causing
people to require hospitalization and ventilation mechanisms. In this way, obesity induces
alterations in the microbiota and physiological and immune responses, which are related
to deficient viral responses [39].

Taking into account this information, there are several types of AI applications based on
various variables in the COVID-19 pandemic, in addition to abundant and diverse works for
each type of application [16,17]. For example, the early detection and diagnosis of infection,
which aims to analyze irregular symptoms and other “warning flags”, and thus help make
decisions faster. Another application lies in reducing the workload of healthcare staff,
assisting in the early diagnosis of the virus and providing medication in a timely manner
using some kind of data analysis process [40]. Also this supplies opportunities to improve
abilities of medical workers with respect to the new challenges of the disease [12,16,18].

Regarding the projection of COVID-19 cases and mortality, the aim is to foretell the
number of sick and unrecovered people in a specific country; furthermore, it can help
recognize which type of people is vulnerable. Likewise, there is a great variety of studies of
this type despite the short time that has elapsed since the pandemic began [16,41]. We can
find research around the world about this topic employing IA techniques such as random
forest models [17,42–45], deep learning [46–53], decision trees [43,54], support vector
machine (SVM) [49,55] and logistic regression procedures [49,56]; which are intended to
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predict the health status (mortality risk or disease severity) of a COVID-19 infected patient
employing factors such as the patients age, weight, gender, physiological conditions,
demographic data, travel data, computed tomography, vital signs, symptoms, smoking
history, radiological features, clinical features, genetic variants, platelets, laboratory test,
D-dimer test, chronic comorbidities and general health information. Meantime, other
studies [57] create models using data analysis techniques with the aim of predicting the need
of oxygen therapy in a timely manner in COVID-19 patients; which employed variables
like shortness of breath, cough, age and fever. We can also find related works intended to
design CNN-based models with the purpose of detecting positive cases of COVID-19 using
chest X-ray images [58].

This research defines AI models taking into account risk factors to predict the health
status (chances of recovering or not recovering) of patients infected by COVID-19 in Mexico.
Thus, this proposal can support medical workers to evaluate patients more quickly and
accurately due to overload in hospitals; likewise, they can also provide better quality care
based on priorities for risk of severity or death. To accomplish the task, various machine
learning and learning mathematical models are implemented and compared for prediction
and classification, such as logistic regression, KNN, decision trees, neural networks and
random forests. To the best of our knowledge, there is no AI-based model in the state-of-
the-art review that considers the same predictive variables, thus making it an alternative
support approach. In this sense, the implementation of the algorithms is carried out by
performing the search for squares and cross validation to fit the models, which is applied
on a open dataset provided by the Secretary of Health of Mexico. This corpus of data
collects information on different risk factor variables (16 risk factors and other variables),
which are associated with death in patients with COVID-19. This dataset contains the
accumulated information (epidemiological study) of all suspected and confirmed cases of
the viral disease COVID-19 in Mexico; furthermore, these cases are found within different
units of the Mexican Health Sector [59]. With these proposal, ANN was the suggested
model to predict the health status (risk probability of dying) that patients with COVID-19
have, obtaining an accuracy of 90.02%, a precision of 92.60% and F1 score of 89.64%; while
for the recall a 86.87% was obtained. The suggested results do not present high variance
problems, but high bias problems. The results showed that the variables (risk factors)
with the greatest importance or influence on death caused by COVID-19 are intubation
requirement with 47%, pneumonia with 34% and age with 14%.

Due to the similar objective of other existing works, it is worth mentioning that this
study is under other conditions and has been carried out in different country or region. Each
site has its own circumstances and may differ from place to place (causing a different pattern
in the statistics) in terms of the quality of medical care (hospital infrastructure, quality of
care, professional training). In addition, other factors are involved, such as population with
obesity, eating habits, average age of population, quality of health (diseases suffered by
age), number of infected by age, general habits of population like smoking, among others.
For this reason, the main contributions of this paper are emphasized:

• A mortality predictor model based on risk factors for COVID-19 is presented, which is
trained with data from the open dataset “COVID-19 databases in Mexico” provided
by the Secretary of Health of Mexico. The proposed scheme uses different data and
predictor variables regarding the state-of-the-art, while being applied in different
region and circumstances.

• An analysis of the relationship of variables used and their interpretation is carried out.
• This work proposes an AI model to identify risk factors with the greatest influence on

death from COVID-19 in Mexico.
• This work applies the grid search technique in a nested way with cross validation to

improve performance and evaluate the proposed algorithms.
• This analysis will allow researchers to continue working on the development of new

models to predict the health status of patients, and will allow to identify new variables
with influence on death caused by COVID-19, especially in Mexico.
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The rest of the paper is organized as follows. Section 2 presents the proposal of this
work, which describes the statistical analysis carried out and the basic idea behind the
proposed models. The evaluation and results of the models as well as their comparisons
are shown in Section 3. A discussion of the results and their corresponding comparison
is described in Section 4. Finally, Section 5 concludes the paper with a brief analysis and
future work.

2. Prediction of Health Status in Patients Infected by SARS-CoV-2
2.1. Proposed Framework

After selecting the best subset of features, several machine learning algorithms were
implemented to build a predictive model and perform a comparison. In this research, we
use different algorithms including majority vote, artificial neural networks, random forests,
decision trees, logistic regression, and K-nearest neighbor (KNN).

The general architecture of the proposed model is based on Figure 1, where user
provides clinical information of the patient in turn, and later this input is supplied to the
diagnostic system of patients health status. Within this model, the data reading process
is generated, which interacts with the event handler mechanism. The event handler then
channels the flow to the health state prediction algorithm; later flow is sent to the classifi-
cation model so that it can be channeled back to the event handler. Previous information
generated and accumulated is given in the form of a prediction (probabilities and classifica-
tion) and as output to end user. All this process is reflected through a computer program to
generate/store the respective information, which will be sent as output to user in support
of the requested diagnosis. In order to meet the expected objectives, the computer must
have different required technologies installed showed in the diagram.

Figure 1. General proposal diagram for diagnosis of COVID-19 patients health status.

Figure 2 sequentially describes the data processing, analysis and modeling procedures.
The first step is to manipulate the data, in this phase the data is obtained and cleaned
(eliminating corrupted or unnecessary records), later this data is transformed to make
proper use of it. The second phase is to analyze the data to summarize the properties of
each variable, find relationships between variables and understand their behavior. Later
(phase 3), an intelligent algorithm is applied, within this modeling phase the data is
normalized, hyperparameters are optimized and the model is evaluated. This is repeated
for all models and their different configurations (k models). After obtaining the first model
(random forests), this is used to select the most important features (phase 4); this procedure
is only done once. Once all the models have been obtained, we proceed to phase 5, where
the results are optimized, compared and analyzed. Finally, from the analysis of the results,
the most optimal model is selected and proposed as a solution (phase 6).

Figure 3 details the selection process for the best model. Once the different algorithms
proposed have been modeled (phase 1), the results of these are analyzed. As a final
stage (phase 2) to select the best model, cross-validation is implemented to measure the
performance of different models in unseen data (detect if there is a memorization of the
data). Then, metrics such as confusion matrix, precision, accuracy, recall and F1 score are
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used to individually evaluate these models. Finally, the different algorithms are compared
to select the model that presents the least memorization of data (overlearning) and the
highest precision (reliability) and recall (ability to differentiate).

Figure 2. Overview diagram of data processing, analysis and modeling for the proposal.

Figure 3. Diagram of modeling for the proposal.

2.2. Mobile App COVID-19

In order to address the prediction of mortality from COVID-19 based on risk factors,
the design and implementation of a mobile app has been proposed as a guideline (whose
name is CoronaHealth, see Figure 4), which will serve as support for the diagnosis of patients
at risk of dying due to this disease. This app is made up of the best compared scheme (neural
network) as the proposed predictive model. The application collects only information on the
patient’s risk factors in the form of a short questionnaire. Subsequently, the neural network
model makes the diagnosis based on the risk factors; and finally, the results are shown in a
graph, where it indicates the patient’s chances of dying or recovering.

(a) (b) (c)
Figure 4. Mobile app CoronaHealth (Interfaces). (a) Home; (b) Form; (c) Results.

2.3. Data Overview

For this study, the open dataset “COVID-19 databases in Mexico” was used, which
was obtained from the official web page of the Secretary of Health. This collects information
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on different risk factor variables, which are associated with death in patients with COVID-
19 [7,59]. However, this dataset has been previously processed to meet the needs of this
research. From the extended initial dataset, different subsets processed in this work were
formed. Table 3 presents data features for the subset used, where the possible values of
variables are Yes (1), No (0), Ignored (3). In the first dataset version, patients with some
unknown risk factor were excluded. The second dataset version does consider the patients
with some unknown risk factors; the different causes, for which the suffering of some risk
factor was unknown, were grouped in a new categorical value (ignored).

It is important to note that several cuts were made from the dataset (see Table 1); where
the total classes to predict is always one, the “death” variable (recovered or unrecovered
patients). Each one with different (quantity) data, and some of them (recent versions)
contemplate the hypothesis that some patients were vaccinated (whose information is
unknown). We first present the analysis from the initial cut made until 15 December 2020;
where this cut provides a guideline for the subsequent cuts. Accordingly, in the results part,
the analysis of other cuts made until now (April 2022) are presented.

Table 1. Description of the datasets.

Data Cut (Dataset) Recovered Patients Unrecovered
Patients

Total Patients with
COVID-19

15 December 2020 122,311 116,487 238,798
October 2021 209,317 207,245 416,562

February 2022 239,814 237,440 477,254
April 2022 327,183 323,944 651,127

2.4. Data Processing

These different datasets or data cuts have been previously processed by us to meet
the needs of this research. In this phase, data was adapted for the different models that
will be applied to them, based on the raw data; e.g., merged, sort data and attributes,
besides, incomplete records are also removed, including the mapping of boolean and/or
categorical values from string to numeric. The data corpus used was divided (each one) into
training and testing. The training set contains 75% of the cases in each category (deceased
or recovered persons). For example in first cut, training set has a total of 179,098 COVID-19
cases, of which 87,323 patients died and 91,775 survived [7]. While the testing set contains
the remaining 25%, i.e., it contains 59,700 cases, of which 29,164 patients died and 30,536
recovered. A similar number was maintained between discharged and deceased patients
in both data subsets, avoiding class imbalance as much as possible. However, the number
of elements was filtered to have a more homogeneous number of cases between deceased
and surviving patients in the two sets formed and used.

2.5. Data Analysis

A statistical analysis was carried out to understand the behavior of the data and the
relationship between them.

2.5.1. Correlation

The correlation between the risk factors in the dataset (see Table 2) provides salient
information on the features and the degree of influence they have on the target value
(the variable “death”), according to [60,61]. Thus, there is a strong positive correlation
between the variables pneumonia, ICU and intubated with the variable death, and a strong
negative correlation between the variable age and death. Also, it is observed that these
same variables are highly correlated with each other. Based on this analysis, it can be
deduced that COVID-19 patients with pneumonia and advanced age are more likely to
die, be intubated or enter the ICU. Furthermore, this analysis indicates that people with
diabetes, advanced age, hypertension and pneumonia are more prone to complications and
to be taken to the ICU or to be intubated.
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Table 2 shows a good correlation of the death variable with the intubated, pneumonia,
age, diabetes, hypertension and ICU variables, with correlations of 0.692, 0.675, −0.565,
0.289, 0.311 and 0.651, respectively. Also, there is a low correlation between the gender
variable and the death variable with 0.112. In addition, there is a good correlation of the
age variable with respect to the variables intubated, pneumonia, diabetes, hypertension
and ICU, with correlations of −0.490, −0.470, −0.291, −0.383 and −0.445, correspondingly.
Similarly, there is a good correlation of the ICU variable with the variables intubated,
pneumonia, diabetes and hypertension, with correlations of 0.927, 0.885, 0.248 and 0.249, re-
spectively. The variable diabetes obtains a low correlation with the variables intubated with
0.271 and pneumonia with 0.262. Finally, there is a slight correlation of the hypertension
variable with respect to the variables intubated, pneumonia and diabetes, with correlations
of 0.277, 0.264 and 0.404, correspondingly.

Table 2. Dataset variables with higher correlation.

Death Intubated Pneumonia Age Diabetes Hypertension ICU

Death 1 0.692 0.675 −0.565 0.289 0.311 0.651
Intubated 0.692 1 0.934 −0.490 0.271 0.277 0.927

Pneumonia 0.675 0.934 1 −0.470 0.262 0.264 0.885
Age −0.565 −0.490 −0.470 1 −0.291 −0.383 −0.445

Diabetes 0.289 0.271 0.262 −0.291 1 0.404 0.248
Hypertension 0.311 0.277 0.264 −0.383 0.404 1 0.249

ICU 0.651 0.927 0.885 −0.445 0.248 0.249 1

If any categorical value of the variables is removed, so this would cause loss of data
information and continuity value in the variables, therefore, it results in the loss of a
correlation and existence of arbitrary limits. Also, having a loss of information eliminates
possible false relationships possibly due to: (a) two variables have a relationship that is not
linear, so the relationship is not detected, (b) the data have outliers, (c) the data have two
subgroups with little correlation within them, and (d) the values variability on the Y axis
changes with the corresponding values on the X axis [60,61].

However, it can be concluded that there is a linear relationship between certain
variables. Pneumonia and age tend to aggravate the disease, causing the patient to require
intubation. The worsening of the disease, advanced age and suffering from pneumonia have
a high linear relationship with the death (risk factors with a high influence on it). Finally,
at an older age it can be seen that people tend to suffer from certain diseases with a high
influence on death, such as hypertension, diabetes and pneumonia. By keeping the category
“ignored”, important information related to the mortality of patients with COVID-19 is
preserved. Correlation analysis has several solutions, while feature importance analysis
can be used to check the degree of data relationship.

2.5.2. Basic Analysis

Most of the patients (95%) have an age between 34 and 70 years old; there is a maxi-
mum age of 119 and a minimum of 0 years for babies infected by COVID-19. In addition,
most of the non-recovered patients are between 60 and 80 years old, while most of the
recovered patients are between 30 and 45 years old (see Figure 5d). Moreover, 57.8% of
the patients analyzed in this study are men, while 42.19% of the patients correspond to
women. 36.5% of the deceased people have been female, while 52.3% of the recovered
persons are men. Otherwise, 61.13% of the deceased persons required intubation, 10.97%
of the unrecovered people are unknown if they required any intubation, whilst 27.88%
of the deceased cases did not require any intubation (see Figure 5a). Besides, 80% of the
recovered people do not know precisely if they needed to be intubated; however, 18.7%
of the recovery cases required intubation. In this sense, 66.75% of the deaths presented
pneumonia and only 11.77% of the recovered persons showed pneumonia problems (see
Figure 5b). 38.5% of the patients in this study were diagnosed with pneumonia, 15.1% of
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the patients were negative for pneumonia and 46.3% of the cases is unknown for sure for
different causes.

(a) (b)

(c) (d)

Figure 5. Basic dataset analysis. (a) Intubated patients; (b) Patients with pneumonia; (c) Patients
in ICU; (d) Patients by age.

Relative frequency analysis of categorical data indicates that patients requiring intuba-
tion have pneumonia, and being male, tend to die and rarely recover. However, in most
recovery cases, it is not known for sure whether the patient had pneumonia and required
intubation. A possible limitation of this study is the existence of a possible bias in the
collection of these data in clinical centers. In addition, 22.26% of the deceased patients
do not present pneumonia and 10.98% of the death cases it is unknown if they presented
pneumonia. Also, 8.29% of the recovered patients do not present pneumonia, while in
79.93% of the recovered patients the presence or absence of pneumonia is unknown (see
Figure 5b). In this sense, 79% of the unrecovered patients did not need to be admitted to
the ICU, unlike 10% who needed. On the other hand, 79.93% of the recovered people are
not known if they needed to be admitted to the ICU, unlike unlike the 1.47% who did and
the 18.58% who did not (see Figure 5c).

2.6. Feature Selection

A model based on random forests was trained in order to evaluate the importance of
the dataset features. This technique was used to later choose the most important features
for the formation of alternative prediction models. A random forest has been implemented
in scikit-learn. Feature selection produces simpler models, because fewer parameters are
required to be adjusted. It also allows the dimensionality reduction of the dataset, avoiding
unnecessary variables and overfitting.

Random Forest Model for the Selection of Features and Identification of Their Importance

The higher the value, the more important the feature. The importance of a feature is
calculated as the total (normalized) reduction of the criterion contributed by that feature.
It is also known as the importance of Gini. This technique measures the importance of
features such as the mean decrease in impurities generated from forest decision trees,
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without taking into account assumptions that have to do with whether or not linearly
separable data exist [62–64]. With the purpose of dividing the nodes into more informative
characteristics, a performance index is required, which will be optimized in the learning
phase. The aim of this index is to maximize the information gain in each division of the
tree, known as the Gini index (see Equation (1)) [65].

IG(Dp, f ) = I(Dp)−
m

∑
j=1

Nj

Np
I(Dj), (1)

where f is the feature to define the division, Dp is the dataset of the parent node, Dj is the
dataset of the child node, I corresponds to the measure of impurity, Np indicates the total
number of samples from the parent node and Nj is the total number of samples from the
child node. As expressed in Equation (1), the information gain is the difference between
the impurity of the parent node and the sum of the impurities of the child nodes. The less
the impurity of the child nodes, the greater the information gain. For simplicity and less
computational cost, binary trees are usually defined [65].

Table 3 describes the importance of dataset features, based on this analysis, the 8 most
important features were selected to form different and alternative prediction models. All
the models developed were tested with the 16 original features and the 8 most important
characteristics. In this study, the 8 most important features considered are: sex, intubation,
pneumonia, age, pregnancy, diabetes, hypertension and chronic kidney disease. These
factors are the main causes or complications of death from Coronavirus in our dataset.
Previous studies have reported that age is the most important predictor of death in COVID-
19 patients [66]. On the contrary, in our study, age was not a main predictive factor of
death, which obtained 14.89% of importance. This situation may be due to the fact that
90% of the patients included in our study are between 34 and 70 years old. Another factor
in this circumstance is its high relationship with requiring-intubation variable. However,
although the difference was not statistically significant, there is a tendency in older patients
to progress to a severe stage of the disease, and thus it causes death compared to relatively
younger patients.

Table 3. (%) Dataset features importance.

Feature Importance Feature Importance

SEX 0.217 PNEUMONIA 34.522
INTUBATED 47.702 AGE 14.891

PREGNANCY 0.142 DIABETES 1.140
EPOC 0.099 ASTHMA 0.016

INMUSUPR 0.007 HYPERTENSION 0.770
ANOTHER_COM 0.037 CARDIOVASCULAR 0.048

OBESITY 0.038 CHRONIC KIDNEY 0.331
SMOKING 0.016 ICU 0.015

Apart from age, requiring intubation is the main factor and with the highest mortality
rate, with 47% of importance, since requiring intubation means an aggravation of the disease
for various reasons. Requiring intubation was found as the most important variable because
this variable represents an general abstraction and/or representation of variables associated
with death from COVID-19 that were contemplated in this study; this due to its high
correlation between them caused by the worsening of the illness. Age, pneumonia, diabetes
and hypertension are highly correlated with the worsening of the symptoms or the disease
(requiring intubation or entering the ICU), but especially the respiratory and lung problems
that lead to the worsening of the disease. Pneumonia was also found as the second most
significant risk factor with an importance of 34.5% and a high association with requiring
intubation and/or entering the intensive care unit. This happends because it decreases the
ability to breathe, as well as reduces its ability to allow the entry of oxygen and the expulsion
of carbon dioxide, in addition, it can be caused by the new virus SARS-CoV-2 [66,67].
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2.7. Modeling (Predictions Models)

Different machine learning algorithms were suggested and implemented comparing
their performance. This was performed in order to compare the efficiency of their results,
and thus be able to find the most optimal algorithm as a predictor of the mortality of
people infected. Suggested models were implemented are KNN, decision trees, logistic
regression, ANN and majority vote. With the aim of getting the best performance in each
model, a complete results comparison of the 8 most optimized features as well as the total
of 16 model features is performed. Project dependencies include the following packages
and libraries: Numpy, Pandas, SciPy, Scikit-Learn, Tensorflow, and Matplotlib.

2.7.1. Data Normalization

The normalization process is a crucial step, nevertheless, decision trees and random
forests are one of the few algorithms that we should not worry about scaling features, since
these are invariable to scaling. However, most algorithms work better if the features are on
the same scale [68]. Standardization can sometimes be more practical in machine learning
algorithms. The reason is because many linear algorithms initialize their weights very close
to 0, which is why the columns take the form of a normal distribution and what makes
weights learning more useful. Besides, this keeps useful information from outsiders and
makes the algorithm less sensitive to them; for these reasons standardization was preferred.

2.7.2. Random Forests for Feature Selection

A random forest scheme is composed of several decision trees, which partition a dataset
into smaller parts, aggregating branches to the tree [69,70]. The outcome of this framework
is a tree with leaf nodes and decision nodes. A decision node consists of several branches
representing the value of each feature tested, while the leaf node contains the value of the
result in the prospective condition of the patient (target value). A set of classifier decision
trees provides a better model than a single decision tree in order to correctly predict a target
value. Hence, the random forest averages the result obtained by the set of trees to generate
the outcome [42]. Finally, the decision is the result of the sum of all the base models.

To form the model of random forests, the grid search was used with the purpose of
adjusting its different parameters as best as possible. The precision was adjusted and the
performance of the algorithm was evaluated to reduce overlearning and underfitting as
much as possible. The optimal hyperparameters returned by the grid search algorithm
are max_depth = 8, criterion = Gini, min_samples_split = 2, min_samples_leaf = 2 and
n_estimators = 18, 12, 19 and 18 for the corresponding 4 data cuts. The decision trees that
make up the algorithm have a depth equal to 8; furthermore, the Gini index at all leaf nodes
in all trees is <0.5, indicating that the training dataset is unbalanced. Therefore, to optimize
the performance of the model, it could be considered to reduce the depth of the trees and
increase the number of estimators (decision trees) in the random forest to 100. This would
avoid a high variation in the model and provide more accurate predictions. The application
of the AdaBoost algorithm can also provide a corrective mechanism to improve the model
after each prediction of the patient’s condition.

2.7.3. Decision Tree

The most optimal hyperparameters to build the algorithm consists of max_depth =
(between 8 and 10), criterion = Gini and min_samples_split = 2. Likewise, these parameters
are obtained by grid search, such that the range of values to find the most optimal value of
max_depth was the same, between 1 to 16. The depth of this tree is 9 nodes, which can be
considered high in terms of the model complexity and could apply the pruning technique;
thus somewhat limiting the capabilities of the model to obtain a machine learning model
that is simpler and generalizes better. This current complexity of the model may become
impractical in clinical practice for decision making.

Figures 6a and 7a show the validation curve for the models on first data cut, which
includes 16 and the 8 most important features. Also, with both features type this model
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tends to slightly over-adjust the data as the depth increases; where the decision tree
reached an acceptable depth equal to 9. Furthermore, the Gini index at all leaf nodes in
all trees is also <0.5, indicating that the training data set is also unbalanced. To optimize
the performance of the model, it is proposed to apply the tree pruning technique; this
avoids high variance in the model and provides accurate predictions. The same happens for
configuration-1 of the decision tree and with the random forest algorithm already described.

2.7.4. K-Nearest Neighbors (KNN)

Another proposed algorithm is K-nearest neighbors (KNN); this is a classification
algorithm, as well as being supervised learning and vague. It is called vague not because
of its apparent simplicity, but because it does not obtain any discriminative function from
the training data, but instead memorizes the training dataset [71,72]. Principal component
analysis (PCA) was applied using the sklearn library. Singular value decomposition, used
by linear dimensionality reduction, projects data to a lower dimensional space. Thus,
this input data is centered, but not scaled for each feature. The value of the parameter
n_components = 0.95 indicates that the explained variance is between 95% and 99%, thus
compressing the dataset n components smaller than the original [73].

Figures 6b and 7b present the validation curve for the range of values defined for k
closest neighbors. Essentially, the only interpretive bias that we cannot avoid in model
is the choice of nearest neighbors number (k). Thus, the selection of k is a common
limitation. In predictions where k is small, particularly k = 1, the variance per prediction
is greater, creating a sub-learning. In noisy datasets, where the nearest neighbor is based
on poor quality data, the unknown instance will lead to noisy predictions. However,
in predictions using a large neighborhood, the predictions begin to be skewed (under-fits),
as it happens. After k tests (from 1 to 31) and taking into account these limitations, we
choose k = 31, balancing this value to be small enough to alleviate smoothing and large
enough to reduce noise.

(a) (b) (c)

Figure 6. Validation curve for propounded models with 8 features, first data cut. (a) With decision tree;
(b) With KNN; (c) With Logistic Regression.

(a) (b) (c)

Figure 7. Validation curve for propounded models with 16 features, first data cut. (a) With deci-
sion tree; (b) With KNN; (c) With Logistic Regression.

The election of data analysis algorithm is commonly addressed by performance on a
particular context. Thus, k nearest neighbors algorithm was chosen due to its simplicity,
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as well as for allowing a minimal user input to yield results. “K” corresponds to the
number of closest neighbors, which use the proximity in the parameter space. The most
optimal hyperparameters to build the algorithm were n_neighbors = 31 and p = 2. These
parameters are obtained by grid search. The range of values to find the most optimal value
of closest neighbors was between 2 and 32, only considering the odd values. The parameter
p indicates the type of metric for the distance, in this case the Euclidean distance was
implemented to build the KNN algorithm. The best parameter returned by GridSearchCV()
for n_neighbors was 32.

2.7.5. Logistic Regression

Logistic regression is a very simple classification model, which can be extended to
a linear binary classification model [74,75]. Therefore, to obtain the classification and its
probabilities of belonging to a certain class, this model was implemented as a suggestion.
The range of values used in the grid search to find the most optimal value of C was: 0.001,
0.002, 0.01, 0.02, 0.03, 0.1, 0.2, 0.3, 0.4, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 20.0 , 30.0, 40.0, 50.0, 60.0,
70.0, 80.0, 90.0, 100.0. To really predict the probability that a certain sample belongs to a
specific class, the so-called logistic sigmoid function (reverse logit) [74,75] is employed,
which is between the ranges [0,1].

The most optimal hyperparameters to construct the logistic regression algorithm formed
with 16 features are C = 0.2 and random_state = 42. Thus, the most optimal value for the
regularization parameter (C) is 0.2 and 0.002 for 16 and 8 features respectively. This parameter
makes it possible to find a good trade-off between bias and variance through complexity
tuning. For this situation, increasing the regulation force (small values of C) allows finding
that good compensation, however, by decreasing the regulation force, there are no significant
changes in reducing over-learning or under-adjustment. Figures 6c and 7c show the validation
curve for the range of values defined for C. When increasing or decreasing the regularization
force, there is no significant difference in algorithm precision. It should also be noted that
over-learning is almost nil, both when increasing or decreasing the force of regularization.

Ranganathan et al. [74] indicates some situations to be taken into account when using
regression logistic, such as selecting the appropriate input variables. Other consideration
in this context implies the use of too many variables in the pretense that better results can
be obtained, which can cause a decrease in real associations and cause substantial errors
with wide and imprecise confidence intervals, or even not real associations. Conventional
technique consists of first running the univariate analysis (the relationship of the result with
each predictor, one at a time), then using only those variables that meet a predetermined
limit of significance to run a multivariate model or, those variables with greater importance,
as in this case. Avoiding the use of highly correlated variables can help improve the
performance of these algorithms. Moreover, if multicollinearity exists, i.e., input variables
are highly correlated with each other, the impact of these variables becomes less accurate.
The relationship between the predictor variables and the dependent variable is uniform
in the regressions schemes, which in turn can be positive or negative, linear or non-
linear, where at the same time remains constant in the different values. Nevertheless, this
conjecture may not be correct for particular associations; e.g., mortality from COVID-19
may be higher at age extremes. Accordingly, obtaining COVID-19 mortality predictions
by means of age will not yield meaningful results if ages ranges from small values to high
values. Also, regression approaches formulated from a determined groups of patients may
not be ideal to patients in other context. In this sense, this type of technique must handle
continuous input variables in the appropriate way; for instance, for continuous data such
as age, it maybe common to divide this data into categories, which is not a good idea, since
the limits may be arbitrary and a part of the data is lost.

2.7.6. Artificial Neural Network

This alternative model ha been designed to develop a simpler model and avoid some
overfitting problem to improve accuracy. Also, if probability returned by the neural network
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is greater than 0.50 (50%), the patient is classified as recovered patient; while if probability
is lees than 0.50, then, the patient is classified as dead.

For this network, Adam algorithm was chosen as the optimizer in the training phase.
What this module does is optimize the parameter values to reduce the error made by
the network. The process by which this is done is known as backpropagation. The term
backpropagation refers only to the method by which the necessary gradient is calculated to
adjust the parameters of the network. It is an optimization method based on the descending
gradient to gradually adjust the weights of the neural network and train it to do what we
want, being the traditional training method [76]. The learning rate employed in training
phase was 0.001; while the number of training epochs was 75. Besides, accuracy was used as
performance metric meanwhile the minimization of the binary_crossentropy cost function
was reached. The chosen model type was Sequential(), and for all layers, the Dense()
layer type was selected. Finally, the weights were initialized using kernel_initializer =
“uniform”. Figure 8 shows the architecture of the neural network, which is composed
of an input layer (with 16 or 8 neurons according to the appropriate model), 4 hidden
layers with 32, 16, 8 and 4 neurons, as well as an output layer with 1 neuron. For hidden
layers, a ReLu activation function was implemented, while for the last layer a sigmoid
function was used [75,77,78]. The number of epochs performed and the number of neurons
used per layer allowed to obtain the most optimal models, achieving a good bias-variance
compensation. The configuration of these two hyperparameters improves the convergence
of the algorithm, which allows the weights to be learned more quickly.

Figure 8. Artificial neural network architecture.

2.7.7. Majority Voting

Other technique utilized was the majority voting principle. This means that the class
label that has been predicted by the majority of the classifiers was selected, i.e., this label has
received more than 50% of the votes [79]. To form the majority voting scheme, 3 different
algorithms were applied as predictors: KNN, logistic regression and decision tree. These
parameters were selected by searching grids. The idea is to build a more complex model
from simple models, such as KNN, logistic regression and decision trees, which allow to
improve the performance of the algorithms, obtaining more reliable and precise classifica-
tions, in addition to improving the sub-adjustment in the algorithms. The most optimal
hyperparameters to construct the logistic regression algorithm are C = 0.004 and random
state = 42. The most optimal hyperparameters to build the algorithm were k neighbors = 31
and p = 2. These parameters are obtained by grid search. The most optimal hyperparam-
eters to build the algorithm version consists of max depth = 11, criterion = Gini and min
samples split = 2. In this sense, voting = soft is also the most optimal hyperparameter
obtained for majority voting model.

There is a problem in relation to the underfitting data from the different implemented
algorithms (KNN, ANN, majority vote, etc.), data collected has some possible bias or
noise due to an erroneous data collection or there are records with non-representative
and/or false information. For the majority vote technique, principal component analysis
was also used [80], implemented by using the sklearn library. The value of the parameter
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n_components = 0.95 indicates that the explained variance is between 95% and 99%, which
compresses the dataset n components less than the original.

2.8. Metrics

The purpose of this project is to predict with the highest precision the outcome of a
particular patient depending multiple factors. Therefore, in order to evaluate the model,
5 evaluation metrics were considered for this study. The following terms are used in the
equations: TP, true positive; TN, true negative; FP, false positive; and FN, false negative.

2.8.1. Accuracy

Prediction error and precision provide general information about the classification
errors of some samples, according to Equation (2) [42].

ERR =
FP + FN

FP + FN + TP + TN
. (2)

2.8.2. Precision

Precession is an important metric to identify the number of correctly classified patients
in a dataset that contains a number of unbalanced classes, following Equation (3) [42].

Precession =
TP

FP + TP
. (3)

2.8.3. Recall

As well, recall is an important metric to identify the number of correctly classified patients
in a dataset that contains a number of unbalanced classes, according to Equation (4) [42].

Recall =
TP

FN + TP
(4)

2.8.4. F1 Score

F1 score achieves the perfect balance between precision and recall, thus providing a
correct assessment of the model’s performance in classifying COVID-19 patients, according
to Equation (5) [42].

F1 = 2 × precession × recall
precession + recall

. (5)

2.8.5. Hyperparameters Optimization

For optimal performance of the presented models, a search was performed on a grid
of chosen parameters to obtain a set of best-performing parameters. The grid search was
implemented using the GridSearchCV() function from the scikit-learn library [42,81,82].
The optimization and choice of hyperparameters is also based on different techniques such as
optimization for genetic algorithms, Bayesian optimization and for machine learning [83,84].
Subsequently, validation and learning curves were used to diagnose and address under-
adjustment or over-learning problems. Finally, the cross-validation of k iterations was used
in a nested way with the grid search in order to estimate the performance of the model with
data that has not been seen previously [85,86].

2.8.6. Cross Validation

The training dataset was randomly divided into k = 10 iterations without replacement,
where k−1 iterations were used for model training and one iteration for performance test.
This process was repeated k times to obtain k models and performance estimates, This
was combined with the grid search technique [85,86]. The GridSearchCV() function for the
exhaustive search of specified parameter values for an estimator was defined with cv = 10.
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This parameter indicates the number of folds (k iterations and models) for cross-validation
in K-Fold when looking for the best n parameters of the estimator.

3. Experiments and Results

The preprocessed dataset described in the previous sections (see Table 3) have been
used to train multiple AI classification models. F1 Score was chosen as an additional metric
for comparison, and it was chosen as the main decision metrics; F1 score is commonly
used when the classes are imbalanced and there is a serious downside to predicting false
negatives, as in our case. For example, if we use our model to predict whether or not a
patient recovers, false negatives are really bad (e.g., predicting that a patient is not likely to
recover, when in fact he or she is), thus F1 score will penalize schemes that have too many
false negatives more than accuracy will.

The label “1” was assigned to the surviving patients and the label “0” has been
established for the deceased patients. Otherwise, a value of k = 10 (folds) was used for
cross-validation, since empirical research indicates that this value allow to find the best
trade-off between bias and variance on large subsets.

3.1. Implementation Details and Runtime

Table 4 details the execution environment for each implemented model. Here is also
considered cross-validation time and application of the grid search technique. Although the
ANN computing time is greater, its corresponding training and testing phase was accel-
erated by GPU; while the other algorithms were trained and validated using the CPU as
execution environment. In these cases, an off-line model training can accept this type of
runtime since the online test process is only one sample per period. The different phases
of feature extraction, training and testing for the different models were run on a Dell XPS
9550 series (Intel(R) Core(TM) i7-6700HQ CPU @2.60 GHz with 16 GB 2666 MHz DDR4
RAM), which was manufactured by Compal in Kunshan, China; while the training of the
ANN model was accelerated using an NVIDIA GeForce GTX 960 M card (containing 2 GB
of GDDR5 RAM, memory clock of 2500 MHz and 640 processing cores), which is manufac-
tured by Taiwan Semiconductor Manufacturing Co., in Hsinchu, Taiwan. The CUDA 11.0
library has been used in Windows 10 to provide access to the GPU-based matrix operations.

Table 4. Models runtime (seconds).

Model First data cut Second Data Cut Third Data Cut Fourth Data Cut
Training Testing Training Testing Training Testing Training Testing

ANN-8 913.338 2.697 1335.154 5.101 1570.937 5.935 2820.562 12.383
ANN-16 873.773 2.325 2698.276 10.599 4751.317 11.008 3364.989 12.536
KNN-8 154.104 2.780 188.100 11.156 177.341 10.228 208.685 12.496

KNN-16 272.315 4.795 249.878 14.660 285.668 17.766 303.810 17.203
R. forest-8 432.060 0.151 976.704 0.321 1270.880 0.317 1751.717 0.305

R. forest-16 754.794 0.109 1266.460 0.199 1467.805 0.323 1353.237 0.417
L. reg-8 73.342 0.001 27.956 0.004 25.941 0.004 12.496 0.005

L. reg-16 109.610 0.001 67.622 0.018 82.030 0.006 82.030 0.006
M. vote-8 29.410 1.405 50.446 16.945 35.544 9.543 41.719 13.307
M. vote-16 57.986 2.374 46.430 10.549 74.721 0.009 102.782 18.150
D. tree-8 40.560 0.015 30.289 0.041 33.106 0.029 35.737 0.026

D. tree-16 41.724 0.1 37.809 0.0189 45.717 0.027 49.398 0.027

3.2. First Data Cut Results (December 2020)

This analysis of results is considered until 15 December 2020. Our research focuses
primarily on the analysis to date, later this analysis focuses on future data cuts to assess the
behavior of our suggested algorithm during the evolution of the pandemic.
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3.2.1. Feature Selection with Random Forests

Based on the number of correct predictions per class, the model tends to make a greater
prediction error for deceased patients. While to predict recovered patients, the algorithm
has a better performance, since it makes fewer incorrect predictions. The results obtained by
the estimator for the training and testing subsets are shown in Table 5. First of all, random
forests was applied as feature selector, and later as a initial predictor. This is the reason
why the model obtains best metrics with 8 features than with 16. Results obtained give
notion of the accuracy on unseen data, which shows that this model has good performance
with distinct data; thus, this algorithm has little variance in accuracy on data unknown to
the algorithm.

Table 5. Random forests metric results for the first data cut.

Accuracy F1 Score Precision Recall
Training Test Training Test Training Test Training Test

R. forest-8 0.8629 0.8602 0.8629 0.8602 0.8650 0.8626 0.8639 0.8612
R. forest-16 0.8623 0.8584 0.8614 0.8570 0.8895 0.8863 0.8350 0.8296

Given to the slight class imbalance, a good guiding metric is F1 score. This algorithm
obtains an precision of 0.889 on the training subset, and for the testing subset it has a
precision of 0.886 with 16 features. The algorithm presents few overfitting, which indicates
more reliable predictions. The precision obtained by the algorithm shows the efficiency to
obtain high performance even in subsets with an unbalanced class size. The model obtains
an F1 score of 0.8629 for the training subset, while a F1 score of 0.8602 for the testing subset
based on 8 features (its best model), this implies the algorithm can differentiate the classes
with a high confidence of 86%, and learns to detect the recovered patients class in 86.29% of
the cases. There is a bias in both classes (deceased and recovered), in this situation, the class
of deceased patients is the most biased. This not only makes it an ideal model to predict
mortality, it is also ideal for reliably, obtaining the features importance in the association of
death from COVID-19. The accuracy is 86.29% for the training subset, while for the testing
subset is 86.02% in the best model (8 features). When the algorithm predicts deceased and
recovered patients, it classifies 86.02% of the total samples correctly and it learns to guess
them correctly in 86.29%. This generally means that the classifier is doing a good job (for
both subsets) in identifying the patients health status, it obtains a good number of correct
positive predictions (real deceased and real recovered patients).

For the training and testing subset, the algorithm has a recall of 0.8639 and 0.8612,
respectively. That is, this model correctly identifies 86.12% of recovered patients and learns
to identify them in 86.39% for the best model (8 features). Improving precision generally
reduces recall, and vice versa, as is this case. precision and recall provide important
information about the quality of the models, indicating whether there is a bias towards
positive or negative values.

The results show that the developed algorithm can accurately predict the risk of
mortality in COVID-19 patients based on risk factors in the patients. Also, comparing the
training and testing results shows that the algorithm has low variance, since the difference
of performance in both subsets is very subtle. These indices of low variance indicate that
the algorithm is capable of generalizing to solve unseen situations, that is, the algorithm is
capable of applying what it has learned with new data (probably with different patterns)
making reliable predictions.

3.2.2. Decision Tree

Results in this scheme indicate that the model will not have much variation in their
performance with unknown data and will give reliable predictions in different situations.
The results obtained for this estimator are presented in Table 6. The model accuracy for
the training subset is 86.4%, and 85.9% for the test subset with the best model (8 features).
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In other words, the model correctly predicts 85.9% of the total samples and learns to
correctly classify 86.4% of the total samples. As a result, these scores indicate that the
algorithm presents a good performance over the total samples (positive and negative
predictions), with almost zero overfitting. But these scores do not provide additional
information on the individual performance of the classes (deceased and recovered), that
is, it does not answer the question, does the algorithm have the same performance for
both classes?

Table 6. Decision tree metric results for the first data cut.

Accuracy F1 Score Precision Recall
Training Test Training Test Training Test Training Test

D. tree-8 0.8642 0.8597 0.8626 0.8575 0.8958 0.8919 0.8318 0.8257
D. tree-16 0.8637 0.8591 0.8609 0.8558 0.9019 0.8981 0.8235 0.8173

In training and testing subset the model obtains an precision of 90.19% and 89.81%,
respectively, which are good performance results with 16 features. This means a low esti-
mation bias in the recovered patients class (approximately 10%), due to a high percentage
of positive cases detected, and during the learning, this model has a slight bias towards
the class of true positives. This model maintains an accuracy and precision very similar to
the random forest model, however, the complexity of the model is high, due to its depth,
which as a guide in clinical centers can become impractical.

The classifier has an acceptable ability to discriminate positive cases from negative
ones (the proportion of positive cases that were correctly identified by the algorithm).
Regarding the recall metric, this model learns to identify 83.1% of recovered patients (in
training subset), while for the test subset, 82.5% of recovered patients are identified with
8 features. An F1 score of 86.2% is obtained for the training subset, while in test subset a
score of 85.7% is obtained with 8 features. In specific, the model presents high precision and
low recall: the algorithm does not detect the class very well, but when it does, it is highly
reliable, it learns to detect the recovered patients class in 86.2% and it manages to identify
85.7% of the recovered patients. Furthermore, the algorithm exhibits good performance
and a slight bias on unbalanced classes.

For certain types of contexts, this basic classifier can be very effective. However, in this
case it is inefficient due to its complexity and not for its performance, making it an impracti-
cal model in clinical practice; so it is necessary to search for other more robust classification
schemes. Underfitting phenomenon occurs when the algorithm fails to find a relationship
between the learning data, failing to make good predictions. Commonly, overfitting is
present while using neural networks. During learning, the aim is to minimize prediction
errors by performing a certain number of learning loops (iterations). The algorithm will
learn from your mistakes with each loop and correct itself.

3.2.3. Logistic Regression

Table 7 presents the results of logistic regression algorithm. The precision for the
training subset is 0.8853, while the recall score is 0.8387 with 16 features. When predicting
the health recovery of a patient, the algorithm is correct 88.53% of the time and learns to
identify recovered patients in 83.87%. Therefore, these scores indicate that the model has
a high performance in identifying positive predictions as really positive (high accuracy),
and it misclassifies some positive examples as negative (moderate completeness). Other-
wise, the precision for the test subset is 0.8747, and the recall score is 0.8314 with 16 features.
This algorithm has an acceptable ability to identify recovered patients in 83.14% of cases,
and it is correct with a confidence of 87.47%, that is, the algorithm is very efficient and
reliable in its predictions.
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Table 7. Logistic regression metric results for the first data cut.

Accuracy F1 Score Precision Recall
Training Test Training Test Training Test Training Test

L. reg-8 0.8539 0.8515 0.8541 0.8511 0.8749 0.8737 0.8342 0.8296
L. reg-16 0.8550 0.8528 0.8553 0.8525 0.8853 0.8747 0.8387 0.8314

As was discussed, the F1 metric shows a big picture of performance, based on accuracy
and completeness. During training, the model does not learn to detect the recovered patient
class very well, but when it does, it is highly reliable, obtaining an F1 score of 0.8553 with
16 features. When it is predicting a recovered patient, it identifies it in 85.53% of cases very
reliably. For unseen data, the model obtains the same performance in testing subset, a F1
score of 0.8525 (it correctly detects 85.25% of the total samples in recovered patient class);
having a slight bias. This model is able to predict recovered and deceased patients with the
same efficiency (without memorizing the data). In general, for the corresponding training
and testing subset, the performance of the model (accuracy) of correct predictions is 0.8550
and 0.8528 with 16 features, respectively. That is, when this model predicting the recovery
of a patient, the algorithm correctly identifies 85.28% of the total samples and learns to
correctly identifies 85.50% of all samples; this model achieves high performance, thus the
classifier has the same generalization ability for seen and unseen data.

Table 7 suggests to improve the models performance, where it is necessary to take
additional characteristics, such as vital signs, severity status, type of viral strain, clinical
features, among others. To reduce the percentage of error, it is also necessary to use a
more robust and homogeneous dataset (with additional characteristics), so it would be
possible to avoid underfitting and significantly increase their performance. In addition,
to obtain better results, it is necessary to implement other models such as neural networks
and majority voting, which have greater robustness. The simplicity of this model can make
it practical in real clinical situations, besides, it provides additional information giving the
results in terms of probabilities.

3.2.4. Knn

Results in this scheme show that the algorithm has not performance variations with
unseen data and there is not data storage by the model. Table 8 shows the results for the
different evaluation metrics on the training and testing subset. The algorithm obtains an
precision of 0.8796 in the test subset, while in the training subset it achieves an precision
of 0.8853 with 16 features; i.e., the model correctly identifies 87.96% of the positive true
and learns to identify with a reliability of 88.53%. It can be seen that the model obtains
few false positives (high accuracy), so this means that the algorithm erroneously classifies
recovered patients as deceased very rarely. Otherwise, the classifier reaches a recall in the
training subset of 0.8387 with 16 features, that is, KNN learns to correctly identify 83.87%
of the recovered patients. For the testing subset, this model achieves a recall of 0.8320, so it
correctly identifies 83.20% of the deceased patients. It means an acceptable number of false
positives (moderate recall). Thus, it can be seen that the algorithm predicts a considerable
number of erroneously recovered patients (classified as deceased).

Table 8. KNN metric results for the first data cut.

Accuracy F1 Score Precision Recall
Training Test Training Test Training Test Training Test

KNN-8 0.8578 0.8524 0.8579 0.8528 0.8792 0.8704 0.8377 0.8360
KNN-16 0.8616 0.8558 0.8614 0.8552 0.8853 0.8796 0.8387 0.8320

An F1 score of 0.8614 is obtained in the training phase, as well as 0.8552 in the testing
phase with 16 features. It means that the model correctly detects 85.51% of the deceased
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patients, and the model learns to acceptably distinguish one class from the other with a high
reliability in its predictions of approximately 86.11% in recovered patient class. This learned
pattern is applied effectively to data not seen by the model. Unlike other models, this
algorithm better distinguishes samples between classes, but with less reliable predictions.
Finally, a accuracy of 0.8558 is achieved in testing phase with 16 features, which represents
a high capacity of the model to obtain correct predictions; i.e., the model correctly predicts
85.58% of the total samples in testing. While in training KNN, learns to correctly classify
86.16% of the total patients.

3.2.5. Artificial Neural Network

Results shown in Table 9 validate the accuracy obtained in the importance and selection
of features. When building a less complex model, discarding irrelevant features, inferior
predictions are not obtained, this validates the good performance of the random forest
model for feature selection. Furthermore, it demonstrates the high efficiency of AI models to
solve complex prediction problems. However, the application of more robust and complex
techniques was not the solution to the underfitting problem. This algorithm confirms that
age, pneumonia, diabetes, requiring intubation and/or other complications are potential
predictors of death from COVID-19.

Table 9. ANN metric results for the first data cut.

Accuracy F1 Score Precision Recall
Training Test Training Test Training Test Training Test

ANN-8 0.8613 0.8588 0.8616 0.8591 0.8710 0.8692 0.8524 0.8493
ANN-16 0.8644 0.8636 0.8644 0.8602 0.8810 0.8786 0.8485 0.8426

For training subset, a precision of 0.8810 were obtained with 16 features, i.e., the model
learns with high confidence in its predictions (it is correct 88.10% of the time). The recall
metric has a result of 0.8524 (in training) with 8 features, learning to identifies 85.24% of the
patients. Besides, an F1 score in training phase of 0.8644 is obtained with 16 features, i.e., this
classifier correctly and reliably detects 86.44% of recovered patients. This means that the
model manages to differentiate one class from the other quite well, with an acceptable
reliability due to it includes samples of the other class. Addition, in training subset, our
model has an accuracy of 0.8644 with 16 features; in other words, when it predicts a
recovered or decreased patient is correct 86.44% of the time.

For testing subset, this model has a precision of 0.8786 with 16 features (that is, it is
correct 87.86% of the time in the positive class). For recall, a score of 0.8493 is obtained
with 8 features, so it detects 84.93% of recovered patients; and for F1, a score of 0.8602 is
achieved with 16 features (harmonic mean between precision and recall), in other word,
this model correctly identifies 86.02% of recovered patients. These three metrics can be
interpreted as high confidence that positive predictions (actual recovered) are actually
positive (high precision), with some positive examples misclassified as negative (moderate
recall): recovered patients detected as deceased patients. Also, the algorithm is very
efficient on balanced datasets. In testing subset, our classifier has an accuracy of 0.8636
with 16 features, that is, when our model predicts a recovered or decreased patient, it is
correct 86.36% of the time.

These results affirm the need to use a more robust and homogeneous datasets in
order to reduce the error rate. It is necessary to find other factors highly related to the
death of SARS-COV-2 to improve the performance of the models and build more reliable
predictors. In addition, optimizing and improving current techniques can help improve
the performance of models. These results are good indications that it is possible to build
alternative predictors to the existing ones. Finally, the results also demonstrate that artificial
neural networks are an adequate and robust model to accurately predict the risk of mortality,
mainly due to the fact that the best f1 score was obtained with them.
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3.2.6. Majority Vote

The building of a more complex model from simple models, such as KNN, logistic
regression and decision trees, it is not a technique that can improve or decrease algorithm
performance. This could be due to noise in data collection or the creation of new fea-
tures, since the more complex models maintain the same performance compared to the
simple schemes.

Table 10 shows the results for this model, where an accuracy of 0.8625% in training
and 0.8574% in testing is obtained with 8 features. This means that our classifier correctly
predicts 85.74% of the total samples of both classes and learns to classify 86.25% of the
total patients independently of the classes. The COVID-19 patient health status classifier is
doing a good work of identifying deceased and recovered patients without suffering from
overfitting problems. The implemented model has an precision of 0.8916 with 16 features,
this means that when it predicts a recovered patient, it is correct 89.16% of the time in
training phase. On unseen data (in testing subset), the classifier predicts 88.75% of the
positive classes. In terms of recall effectiveness, when it learns (training subset), the model
has a value of 0.8357 with 8 features; thus, the algorithm correctly identifies 83.57% of
deceased patients. In the testing phase, it correctly identifies 82.82% of the recovered
patients. These results can be summarized in a single metric (F1 score), with scores of
0.8617 (in training) and 0.8559 in the testing phase with 8 features. These metrics can
be interpreted as: the model correctly and very reliably detects 85.59% of deceased and
recovered patients, and during training, the algorithm learns to correctly classify 86.17%
of patients.

Table 10. Majority vote metric results for the first data cut.

Accuracy F1 Score Precision Recall
Training Test Training Test Training Test Training Test

M. vote-8 0.8625 0.8574 0.8617 0.8559 0.8893 0.8856 0.8357 0.8282
M. vote-16 0.8615 0.8565 0.8601 0.8546 0.8916 0.8875 0.8308 0.8240

These results indicate that the technique of a meta-classifier does not allow to obtain
a more generalized performance than each classifier separately, in this context. In other
words, this technique does not allowed to get more precise and robust predictions than
independent classifiers, so it is not a technique that optimizes prediction performance. It
is concluded that age, suffering from pneumonia, predict complications, suffering from
certain diseases such as diabetes and hypertension become the most vulnerable population
(with a higher risk of death), due to they have poor physiological and immune responses
to viral situations. In addition, immune cells lead to poor suppression of viral replication,
causing immune dysfunction as described in studies already carried out.

3.2.7. Models Comparison

The study shows that decision tree algorithm performs (strictly) better in predicting
recovered patients from SARS-COV-2 in terms of precision with 8 and 16 features (see
Figure 9). Due to the dataset is slightly unbalanced and a false negative is a crucial problem,
the F1 score is the best metrics in this case; hence artificial neural network is a better
balanced model in prediction in our context with 16 features (with a F1 of 0.8602 in test
and 0.8644 in training). Reducing the number of features, we can obtain models with less
complexity (using the most influential features), but they do not necessarily give us better
results in degree of confidence. Nevertheless, the features importance selection allowed the
8-feature random forests model to achieve a score equal to 16-feature ANN, although the
learning capacity of the neural network came out better during training.
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(a) (b)

Figure 9. Comparison of the models performance (first data cut). (a) 8-features based; (b) 16-
features based.

The different algorithms developed have high precision and moderate recall. Oth-
erwise, the classifiers do not detect the recovered patients class very well, this does it
slightly biased, but when this does it, their predictions are highly reliable. It can also be
seen that in the algorithms where the identification capacity of the recovered patient class
(recall) is increased, the reliability of the predictions (precision) decreases, such as 8-feature
KNN, ANN in both models and 16-feature logistic regression. Contrary, in algorithms
where the detectability of the recovered patient class decreases (recall), the reliability of
the predictions (precision) increases, such as decision trees and majority vote classifier in
both schemes. The ANN model seems to be the best option, not only because it has good
performance and low overfitting compared to the other models, also because it allows to
obtain the classification in terms of probabilities with a slight difference in performance
compared to the other implemented models. Having the probabilities of risk of death or
healing, it gives more detailed and precise information on the health status of patients, thus
this provides an important diagnostic tool.

3.3. Second Data Cut (October 2021)

In this dataset it is assumed that there are unvaccinated people and people with at
least one dose of vaccine. This model has a slight increase in performance compared to
previous models, since it learns to better identify recovered patients. An F1 score of 0.8846
is obtained for the ANN training subset (the best model) with 16 features, while in the
testing subset, a score of 0.8816 is obtained. Briefly, the model has high precision and low
recall (a bias towards the class of deceased patients). The algorithm does not detect the
class very well, but when it does, it is highly reliable; it learns to detect the deceased class
in 88.46% and when predicting, it manages to identify 88.16% of the deceased patients (see
Figure 10).

(a) (b)

Figure 10. Comparison of the models performance (second data cut). (a) 8-features based; (b) 16-
features based.
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3.4. Third Data Cut (22 February)

In this dataset, it is assumed that there are unvaccinated people and people with
up to two doses of vaccine. It is observed that this scheme has better performance than
the previous models, since it learns to better identify recovered patients and with better
reliability. An F1 score of 89.11% is obtained for the ANN training subset (the best model),
while a value of 89.01% is obtained in testing with 16 features. In other words, the model
presents high precision and low recall (see Figure 11). Our model (in the testing subset) has
a recall of 0.8656, i.e., it correctly identifies 86.56% of all recovered patients. Besides, our
model has a precision of 0.9161 in testing phase, namely, when it predicts that a patients has
healed, it is correct 91.61% of the time. This model does not present overfitting, however, it
does present underfitting.

(a) (b)

Figure 11. Comparison of the models performance (third data cut). (a) 8-features based; (b) 16-
features based

3.5. Fourth Data Cut (April 2022)

It can be assumed that in this dataset there are people unvaccinated and people with
up to a third booster dose. Figure 12 presents the results obtained in the 8-feature and
16-feature testing phase comparison. It can be seen that the classifier obtains a stable
performance in the evolution of the pandemic, considering this data cut as the most recent
modeling. In addition, this model presents a decrease in underfitting and does not present
overfitting. It is observed that this model has similar performance to previous model, since
it learns to identify deceased patients and with good reliability. In testing phase, the best
model (16-feature ANN) has a recall of 0.8687, namely, i.e., it correctly identifies 86.87%
of all recovered patients. And our model has a precision of 0.9260, i.e., when it predicts
a recovered patient, it is correct 92.60% of the time. Moreover, an accuracy of 0.9002 is
obtained, or 90.02% correct predictions; while an F1 score of 89.76% is obtained for the
training subset, as well as a F1 score of 89.64% is obtained in test phase. In other words,
the model presents high precision and low recall.

(a) (b)

Figure 12. Comparison of the models performance (forth data cut). (a) 8-features based; (b) 16-
features based.



Diagnostics 2022, 12, 1396 23 of 28

3.6. Comparison with Related Works

A metric comparative regarding other research is shown in Figure 13, in which values
for each indicator provides the corresponding visual description about the particular data
and context. For instance, we can find a contrast for large values of precision, but small
values of recall [42], having a regular F1 score with its balance metric; i.e., the detectability
of the appropriate class decreases (recall), while the reliability of the predictions (preci-
sion) increases. Nevertheless, we can find a stable model with a better distribution of its
metrics [55], in which large values for precision and recall were obtained, thus having
outstanding values for F1 (close to 94.5%). On the other hand, we can find small values for
precision with large values for recall [53]; i.e., the identification capacity of the appropriate
class (recall) is increased, while the reliability of the predictions (precision) decreases. In this
sense, our 16-feature ANN model, whose metric values are 90.02% in accuracy, 89.64% in
F1, 92.60% in precision and 86.87% for recall, maintain indicators that are not as high as
the other models, but are stable in their various metrics. Do not forget that each work uses
different variables in varied environments with particular circumstances, as well as in their
own geographical areas with different populations.

Figure 13. Comparison between the-state-of-the-art (RW1 [42], RW2 [44], RW3 [53], RW4 [55],
RW5 [45]) and this research.

4. Discussion

Early identification of patients at risk of die has several predictable benefits including
better allocation of critical care staff and supplies, the ability to contact people who are not
currently admitted to the hospital and ensure they are thoroughly evaluated; and the ability
to relocate inpatients to a facility capable of providing a higher level of care. Our designs
aim to be trained first to identify the most relevant characteristics and then predict patient
mortality. Initially, simple linear models were built working with the 16 or 8 parameters of
the epidemiological study, but in some models or cases we sought to simplify the model
through excluding features, to increase its performance and reduce underfitting.

The benefits of this research is the identification and assessment of new features for
prediction models of health status. And given the results, it can be seen good indications
showing that it is possible to achieve alternative models that are alike efficient based on
quick diagnoses. Our predictive model differs from others in several ways, first of all,
this makes it possible to predict the health status of a patient from a simple and faster
medical diagnosis in the point of view of users (by using the mobile app, for instance). By
not analyzing variables such as vital signs, patient region, blood oxygen, among others,
this way allows faster medical assessments to identify patients with more susceptibility to
die. Second, it proposes a model taken to a higher level of abstraction with a performance
similar to other existing models, which is independent of specific cases where the region
of the patient is taken into account; this is achieved by considering different variables
of prediction. Finally, this analysis uses a large amount of data from different regions
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of a single country (Mexico). Another strength is the use and validation of widely used
prediction models in different circumstances. Also the application and comparison of
different methods allows to identify the appropriate techniques in the prognosis of the
health status of patients infected. In addition, this research allows the identification of new
techniques that could be useful; the identification of existing variables that have not been
applied until now (as far as is known) in predicting SARS-COV-2 mortality.

This study has several considerations, for example, it is a retrospective study carried
out in a single country in different health institutions. This work is a first step towards
AI-assisted clinical prediction. Our predictive model needs to be externally validated using
multi-institutional data and/or prospective studies from other countries before clinical
application can be made. If our tool is externally validated in due course, then we imagine
that this predictive model can be used by frontline people to more effectively diagnose
COVID-19 patients. The validation of these mortality predictors in future prospective
studies could be useful to identify and stratify the risk groups, as well as to provide the
necessary health services.

In addition, this study is under different circumstances and has been carried out in
different regions of Mexico. These circumstances may differ from place to place, causing a
different pattern in the statistics from one place to another. They may differ in terms of the
quality of medical care in the country (hospital infrastructure, quality of care, professional
training, among others), in addition to factors such as obese population, the quality of their
diet, the average age, the quality of health (diseases suffered by age), the number of people
infected by age, the population’s habits (smoking), to mention a few. In this sense, we
only analyzed clinical variables at patient admission (risk factors). A final comment can be
aimed at emphasizing that the circumstances in which COVID-19 occurs are unusual and
are constantly changing. Thus, the number of hospitalized patient and their flow in ICU,
as well as the mortality factor may depend on the region load and the available resources
of individual hospitals, which also differ between countries, as well as other patterns and
behaviors in habits and characteristics of health in the population by region.

5. Conclusions and Future Work

The current application of data analysis techniques around world is more and more
necessary today in order to propose models to process patient data seeking to define efficient
treatment strategies. In this work, a comparison of machine learning techniques was made
with the aim of determining the probability that a person infected by COVID-19 can recover.
We presented different prediction models, where the ANN scheme has been chosen as
the most accurate framework, because not only we can obtain the patient’s classification,
because also it can be obtained in terms of probabilities. Although the different proposed
and implemented prediction models do not present an overfitting problem, they do present
a slight underfitting problem. These models present a low variance, but a high bias, and the
models underfit the data since they do not achieve a high level of abstraction of them.
Since the parameters in all the models were adjusted and regularized as best as possible by
means of grid searching and among other techniques, it is possible that more features may
need to be built or collected to improve the accuracy of the models. Although a process of
determining the features importance was done, like many models, selecting more features
gave better results.

As a solution to improve the accuracy and precision of performance and reduce the
under-adjustment of the algorithms, it is suggested to collect more characteristics, since
there may be more related risk factors (not considered) in determining the mortality of
patients infected with COVID-19. Due to that, there may be other different and important
factors (with high influence and relationship) to determine more accurately whether a
patient infected can survive or die. Such factors can be type of viral strain, seriousness and
professional capacity of the medical staff (experience, physical exhaustion, preparation);
besides, some symptoms or vital signs can be included, e.g., the amount of oxygen in the
patient’s blood.
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Otherwise, the data analyzed in this study have revealed that the rates (probabilities)
of mortality were higher if the patients presented the following main risk factors: requiring
intubation, having pneumonia, advanced age, diabetes and hypertension. For the selection
of these characteristics, a random forest model was implemented to identify the features
importance, obtaining an accuracy of 89.40% with a F1 metric of 89.37% in testing phase.
It was also found in this research that people with pneumonia and advanced age are not
only have more possibilities to die, but also to have more complications (be intubated
or entering the ICU) due to COVID-19. Finally, at an older age there is a higher risk of
suffering from risk factors associated with death. Therefore, the performance error of the
different implemented algorithms is around 14% or less. ANN was the proposed model to
predict the risk probability of death or healing of patients with COVID-19, obtaining an
accuracy of 89.8%, a precision of 92.3%, a recall of 86.8% and F1 score of 89.5%. For this
work, an open data set “COVID-19 databases in Mexico” provided by the Secretary of
Health of Mexico was used, which was filtered to be adapted to the requirements.

In a future work, the construction of a new more robust dataset for the training of
these models is suggested. A more representative and robust dataset will reduce the under-
adjustment in the algorithms, finding in a more precise way the importance of risk factors.
In addition, the improvement of the employed techniques and the implementation of new
schemes and models are suggested.
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