Next Article in Journal
LymphoTrack Is Equally Sensitive as PCR GeneScan and Sanger Sequencing for Detection of Clonal Rearrangements in ALL Patients
Next Article in Special Issue
Predictors for COVID-19 Complete Remission with HRCT Pattern Evolution: A Monocentric, Prospective Study
Previous Article in Journal
Multitarget Molecular Imaging in Metastatic Castration Resistant Adenocarcinoma Prostate Cancer with Therapy Induced Neuroendocrine Differentiation
Previous Article in Special Issue
Variations in Biochemical Values under Stress in Children with SARS-CoV-2 Infection
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Systematic Review

Performance of Antigen Detection Tests for SARS-CoV-2: A Systematic Review and Meta-Analysis

1
Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
2
Medical School, University of Cyprus, Nicosia 1678, Cyprus
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Diagnostics 2022, 12(6), 1388; https://doi.org/10.3390/diagnostics12061388
Submission received: 13 April 2022 / Revised: 20 May 2022 / Accepted: 24 May 2022 / Published: 4 June 2022

Abstract

:
Coronavirus disease 2019 (COVID-19) initiated global health care challenges such as the necessity for new diagnostic tests. Diagnosis by real-time PCR remains the gold-standard method, yet economical and technical issues prohibit its use in points of care (POC) or for repetitive tests in populations. A lot of effort has been exerted in developing, using, and validating antigen-based tests (ATs). Since individual studies focus on few methodological aspects of ATs, a comparison of different tests is needed. Herein, we perform a systematic review and meta-analysis of data from articles in PubMed, medRxiv and bioRxiv. The bivariate method for meta-analysis of diagnostic tests pooling sensitivities and specificities was used. Most of the AT types for SARS-CoV-2 were lateral flow immunoassays (LFIA), fluorescence immunoassays (FIA), and chemiluminescence enzyme immunoassays (CLEIA). We identified 235 articles containing data from 220,049 individuals. All ATs using nasopharyngeal samples show better performance than those with throat saliva (72% compared to 40%). Moreover, the rapid methods LFIA and FIA show about 10% lower sensitivity compared to the laboratory-based CLEIA method (72% compared to 82%). In addition, rapid ATs show higher sensitivity in symptomatic patients compared to asymptomatic patients, suggesting that viral load is a crucial parameter for ATs performed in POCs. Finally, all methods perform with very high specificity, reaching around 99%. LFIA tests, though with moderate sensitivity, appear as the most attractive method for use in POCs and for performing seroprevalence studies.

1. Introduction

COVID-19, caused by SARS-CoV-2, remains a global public health threat that has already claimed more than six million lives (https://covid19.who.int, accessed on 15 May 2022), with modeling estimates suggesting that this figure is probably much higher [1,2]. Vaccines, however, seem to perform well, especially after the administration of booster doses, providing moderate but short-lived protection from SARS-CoV-2 infection but significantly reducing COVID-19-related morbidity and mortality [3,4,5,6,7,8,9]. Non-pharmaceutical interventions (test-trace-isolate, hand washing, physical distancing, travel restrictions, school closures, closures of businesses, and stay-at-home orders) have also proved their effectiveness in containing the spread of the pandemic virus before the advent of vaccines [10,11,12]. Some of these measures will still be needed in our gradual efforts to return to normalcy. Testing in particular is essential to diagnosis, but also to developing and sustaining a reliable surveillance system for the years to come [13,14].
Real-time reverse transcription polymerase-chain-reaction (rt-PCR) test is the benchmark method for the clinical diagnosis of COVID-19 [15,16,17]. As such, it is designed for use with symptomatic people and has high analytical sensitivity. However, rt-PCR can detect viral genetic material even when the virus does not grow in a cell culture, suggesting that the presence of viral nucleic acid may not always reflect contagiousness. Moreover, it requires advanced laboratory equipment, specialist human resources, and significant infrastructure, often in a centralized setting, which increase costs, though these are less relevant for a single patient who needs a definite answer when he/she is tested. In summary, molecular diagnostic testing (nucleic acid amplification tests) becomes a less appealing method for frequent population screening to detect asymptomatic people with SARS-CoV-2 infection and as a tool to rapidly identify, contact-trace, and isolate highly infectious individuals. Antigen detection tests (AT) are immunoassays performed on pharyngeal, nasopharyngeal, nasal or throat swab specimens that detect the presence of a specific viral protein, which indicates viral activity [18,19]. The currently authorized AT include laboratory-based but also point-of-care (POC tests) and self-tests. AT are less expensive than rt-PCR, and most of them give results in approximately 15–30 min. In terms of weaknesses, AT are generally less sensitive than nucleic acid amplification tests. There are three main categories of AT used for the detection of SARS-CoV-2 infection. Lateral flow immunoassays (LFIA) are small, chromatography-based platforms used in POC. The sample is placed on the slot of the test plastic vector and an optical result (color) is obtained within 5–15 min [20]. Fluorescent immunoassays (FIA) are also small, handy, immunochromatography-based tests. The result is read by a fluorescence immunoassay analyzer within 5–20 min and can be performed in POC [21]. The chemiluminescence enzyme immunoassay (CLEIA) is a quick (about 30 min) and sensitive method to detect SARS-CoV-2 antigens. When the sample antigen reacts with the chemiluminescence substrate (antibody), the reaction product emits a photon of light instead of color development, which is read by an automated chemiluminescence analyzer [20].
Healthcare professionals, laboratory staff, and public health experts should comprehend the performance characteristics of AT, identify determinants of the accuracy of AT, and understand the differences among the three approaches to COVID-19-related testing (diagnostic, screening, and surveillance testing). In this respect, the aim of this meta-analysis is to comprehensively search the literature, to identify all relevant studies, to synthesize individual study estimates, and to determine the overall sensitivity and specificity of antigen-based methods for the detection of SARS-CoV-2, in comparison to quantitative rt-PCR (qPCR), for different types of clinical samples, and among both asymptomatic and symptomatic individuals.

2. Material and Methods

2.1. Literature Search Strategy

We conducted this systematic review and meta-analysis following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [22] along with the advice for best practices [23]. We performed the literature search in Pubmed (https://pubmed.ncbi.nlm.nih.gov accessed on 15 May 2022), medRxiv (https://www.medrxiv.org accessed on 15 May 2022) and BioRxiv (https://www.biorxiv.org, accessed on 15 May 2022) up until 4 July 2021. The search terms were “(SARS-CoV-2 OR “Coronavirus disease 2019” OR COVID-19) AND antigen”. References from the selected studies were also scrutinized. Four independent researchers (AT, MP, HM, GB) evaluated search results; potential disagreements were resolved by discussion with GB and PB and consensus. Articles of all languages were considered to avoid gray literature publication bias [24].

2.2. Study Selection Criteria

Eligible criteria for inclusion in the meta-analysis were: (a) diagnosis of SARS-CoV-2 infection based on detection/quantitation of the viral genome by qPCR, according to World Health Organization (WHO)-, Centers for Disease Control (CDC)-, and European Centre for Disease Prevention and Control (ECDC)-approved methods [16,25,26,27]; (b) detection or measurement of nucleocapsid (N) or spike (S) proteins of SARS-CoV-2 (qualitatively or quantitatively depending on the method used); and (c) providing the necessary data that allow the calculation of sensitivity and specificity. We included studies that reported data on cases (positive samples) and healthy controls (negative samples) as well as studies with data available only for cases (see also Section 2.5).

2.3. Data Extraction

Data extraction was performed in a predetermined Microsoft Excel® sheet. From each study we extracted the following information: first author’s last name, type of antigen used, type of sample, method of detection used, and the qPCR cycle threshold (Ct) values used for the detection of SARS-CoV-2 RNA. Additionally, the method of antigen testing used was recorded along with the brand name and the name of the manufacturer and the existence of data from the virus culture. Symptomatic and asymptomatic cases as well as male/female ratios were also recorded, if given. To obtain sensitivity and specificity measures, a 2 × 2 contingency table was constructed; thus, true positive (TP), false negative (FN), true negative (TN), and false positive (FP) results were recorded. In cases where no controls were used, we used TP and FN values only.

2.4. Study Outcomes

The primary outcome of this meta-analysis was the sensitivity and specificity of AT in relation to qPCR. Secondary outcomes included the performance of AT on different sample types (namely, nasopharyngeal, saliva, and throat samples) and by symptoms (asymptomatic versus symptomatic SARS-CoV-2 infected persons). We also explored the performance of AT across the number of qPCR Ct values (a higher Ct indicated lower viral load).

2.5. Data Analysis

The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2 tool) was used to assess the quality of the included studies in terms of diagnostic accuracy [28]. The four domains assessed were patient selection, index test, reference standard, and flow and timing. Each domain was evaluated following classifications according to judgment, i.e., low risk, high risk, and unclear risk.
The bivariate meta-analytic method modified for the meta-analysis of diagnostic tests was used [29]. This method has been reported to be equivalent to the so-called hsROC method [30]. It uses logit-transforms of true positive rate (TPR) and false positive rate (FPR) in order to model sensitivity and specificity; it can also be used for the evaluation of between-studies variability (heterogeneity). Studies that include information only for logit (TPR)—that is, only for sensitivity—were included in the bivariate model under the missing at random (MAR) assumption in order to maximize statistical power and allow the modeling of between-studies variability and correlation [31]. Begg’s rank correlation test [32] and Egger’s regression test [33] were used on logit (TPR) to evaluate the presence of publication bias. Stata13 [34] was used to perform the analysis and run the command “mvmeta” with the method of moments for multivariate meta-analyses and meta-regression [35]. Statistical significance was set at p < 0.05; meta-analysis was performed when two or more studies were available, whereas tests for publication bias and meta-regression were performed when five or more studies were available.

3. Results

3.1. Characteristics of Studies

Following the literature search in Pubmed, MedRxiv, and BioRxiv by 4 July 2021, we retrieved 4700 unique articles (Figure 1). After scrutinizing abstracts and full papers and testing for eligibility criteria, we ended up with 235 articles, which included 31,387 SARS-CoV-2 infected individuals and 188,636 individuals without SARS-CoV-2 infection (total: 220,049 individuals). Two hundred and sixteen studies provided data on both cases and controls, while 19 studies reported results only for people with SARS-CoV-2 infection (Figure 1). Table 1 shows the characteristics of the included studies. All studies reported that SARS-CoV-2 infection was confirmed with qPCR of envelope (E), S or N protein according to WHO, CDC and ECDC guidelines. Various methods were used to identify or measure an antigen of SARS-CoV-2. The N antigen was investigated in 225 studies, the S antigen was investigated in eight studies, and in two studies, cumulative estimates were given for N + S or S + E + M (membrane) antigens. Four articles evaluated both N- and S-based assays. Most studies focused on rapid POC tests such as LFIA (181 studies), or FIA (38 studies). Chemiluminescence was used in 21 studies. In total, 83 different kits from 74 manufacturers and 18 in-house tests (LFIA, FIA, CLEIA) from the respective laboratories were used. Thirty-six studies used the same samples to compare different tests from different companies. Twelve studies used twelve unique techniques that are under development (LC-mass spectrometry [36,37], field-effect transistor (FET) based biosensing devices [38], organic electrochemical transistors-OECT [39], voltametric-based immunosensor [40], optical waveguide-based biosensor technology [41], deep learning-based surface-enhanced Raman spectroscopy [42], paper-based impedance sensor [43], high-field asymmetric waveform ion mobility spectrometry (FAIMS)–parallel reaction monitoring (PRM) [44], a colorimetric biosensor [45], an electrochemical glucose sensor [46], and a urine foaming test [47]). Finally, two studies were performed with urine samples [36,47]. Most studies used nasopharyngeal, nasal, pharyngeal, throat, oropharyngeal or saliva samples. We classified the samples into two groups, named “NSP”, containing the first three sample types, and “TS”, containing the last three types. The type of sample was clearly mentioned in 207 studies, while all types of samples were used without distinction in 31 studies. The results from different types of samples were compared with the same method in 11 studies. Finally, data from 60 studies on asymptomatic persons and 73 on symptomatic patients were also used to explore differences in diagnostic accuracy between these two patients’ groups. The results of the quality assessment of the research using the QUADAS tool are provided in Supplementary Table S1 and in Supplementary File S1.

3.2. Analysis of Diagnostic Performance

A great amount of the available data, for all methods, concerned samples detected with qPCR Ct values of 20, and mostly of 30 and 40. As shown in Table 2, the sensitivity of LFIA tests (using the N antigen) based on NSP samples that were qPCR-positive for Ct < 20 was 0.945 (95% CI: 0.930, 0.961). It declined, however, considerably to 0.329 (95% CI: 0.265, 0.393) for 30 < Ct < 40. LFIA tests using TS samples performed worse in terms of sensitivity, with a highest estimate of 0.805 (95% CI: 0.599, 1.000) in samples positive for Ct < 20 and a lowest of 0.085 (0.000, 0.176) for Ct > 30 (Table 2). The specificity of LFIA on NSP and TS samples (using the N antigen) was very high across all Ct intervals, ranging from 0.959 (95% CI: 0.923, 0.995) to 0.996 (95% CI: 0.993, 0.998). The sensitivity of FIA (using the N antigen) on NSP samples also showed a declining pattern from 0.935 (95% CI: 0.880, 0.990) for Ct < 20 to 0.435 (95% CI: 0.190, 0.680) for 30 < Ct < 40. Specificity was also very high using NSP qPCR positive samples for Ct < 30 (0.992, 95%: 0.979, 1.000). CLEIA (using the N antigen) had high sensitivity based on NSP samples that were PCR-positive for Ct < 30 (0.980, 95% CI: 0.960, 0.999); this estimate, however, was based on a smaller number of studies and dropped considerably at higher Ct (30–40) values (0.515; 95% CI: 0.220, 0.810). The specificity of CLEIA was very high in all comparisons. The evaluation of the performance of other methods (using the N antigen) on NSP and TS samples for the above studied Ct values intervals (0–20, 21–30, and 31–40) was based on a few studies but showed similar patterns. Data on methods using other antigens (i.e., based on S, E or M protein) were too scarce to allow reliable estimations (Table 2).
Combining all major methods (LFIA, FIA and CLEIA) on NSP and TS samples, measuring both N and S antigens and stratified according to two Ct values (<30 and <40), the maximum sensitivity was estimated at 0.858 (95% CI 0.835, 0.881) for NSP samples positive for Ct < 30 (Table 3). The sensitivity using qPCR positive NSP samples for Ct < 40 is lower at 0.726 (95% CI 0.706, 0.746). Again, antigen testing of NSP samples outperformed that of TS samples for both Ct < 30 and Ct < 40 (0.637 (95% CI: 0.478, 0.795) and 0.438 (95% CI: 0.332, 0.547), respectively). Specificity was very high in all meta-analyses (Table 3).
To attain a better insight into how each method performs, we compared the meta-analysis results for the sensitivity and specificity of each method (LFIA, FIA, CLEIA) on NSP and TS samples for all antigens cumulatively (N plus S). As shown in Table 3, in terms of sensitivity, the laboratory CLEIA method outperforms the point of care (POC) methods (LFIA and FIA), the NSP samples outperform the TS samples, and the best results are obtained for samples identified positive with PCR for Ct < 30 (0.977 (95% CI: 0.955, 0.998) versus 0.408 (95% CI: 0.292, 0.523) and 0.162 (95% CI: 0.083, 0.242)) (Table 3).
Since the ultimate goal of a diagnostic method for SARS-CoV-2 is to identify an infected person regardless of the low viral load, we compared the overall sensitivity of rapid tests performed in points either of care or where virus surveillance is performed (LFIA or FIA) with laboratory methods (CLEIA) that show the highest sensitivity. As shown in Figure 2 (and Table 3), the overall (for Ct < 40) sensitivity of POC methods is about 10% lower than that of the CLEIA method for NSP samples (0.718 (95% CI: 0.697, 0.739) compared to 0.816 (95% CI: 0.761, 0.870)). Specificity was again high in all cases ranging from 0.957 (95% CI: 0.889, 1.000) to 0.995 (95% CI: 0.993, 0.997), although due to the small number of the included studies in some subgroups, these results may have some uncertainty (Table 3).
To investigate the validity of our stratification analysis according to Ct values (<30 and <40), we tried to explore the association between a patient/sample’s infectivity and positivity in POC antigen tests (LFIA and FIA) and PCR tests using data from the included studies. We found 51 studies (Table 1) that used a virus culture to address this issue; however, the results were presented in a plethora of different ways and could not be quantitatively synthesized and analyzed, due to different reported parameters. From them, ten studies used virus cultures to only test the viral load (RNA copies/mL) that a POC test could detect. The remaining 34 studies presented a combination of data such as the limit of detection (LoD) in terms of RNA copies/mL or per swab or in pfus/mL, tissue culture infection dose (TCID), TCID50, TCID95%, sensitivity of POC tests in correlation with virus culture cytopathic effect (CPE) measured in different days and after zero, one or two passages. Nevertheless, sixteen studies [63,85,87,91,101,135,145,151,167,169,199,215,216,217,219,255] determined LoD Ct values ranging from 18.57 [219] to 34 [145], with most of them reporting Ct 30 as an average threshold for a POC test to be positive. Importantly, viral culture positivity (CPE), though measured under various protocols (directly [87,91,101,135,143,145,200,216,241] and indirectly [141,169,201,215,241,254]), has been extensively used as a marker for sample infectivity. Furthermore, twelve studies [54,76,85,143,170,199,213,217,233,235,237,241] presented data providing LoD values for a POC tests ranging from 5.103 (Ct = 27.3 [63]) to 106 RNA copies/swab (Ct = 30) [54,76]. Noteworthily, four studies on the CLEIA method [111,150,156,206] and four studies [41,44,46,47]) on in-house tests also investigated virus infectivity in correlation with either Ct values or positivity of these tests, but these were not analyzed since they were not reporting on POC tests. Taken together, the above observations suggest that if SARS-CoV-2-infected cell culture positivity is an indicator of a patient/sample that is likely to be infectious [202,258,259], this infectivity better correlates with POC test positivity than rt-PCR positivity. As we show herein, POC test positivity corresponds better to PCR positivity for Ct < 30; thus, POC tests are more likely to detect infectious individuals than positive PCR tests.
Additional meta-analysis showed that the sensitivity of LFIA (on NSP samples) in symptomatic patients was higher than that in asymptomatic individuals, both for Ct < 30 and Ct < 40 (symptomatic: 0.823 (95% CI: 0.765, 0.882) and 0.753 (95% CI: 0.713, 0.794)—asymptomatic: 0.665 (0.558, 0.772) and 0.561 (95% CI: 0.499, 0.622), respectively) (Table 4 and Figure 3). FIA assays seem to perform worse, but the meta-analysis estimates were based on a smaller number of studies. Specificity was very high for both LFIA and FIA methods (~99%) (Table 4).

4. Discussion

Test-trace-isolate remains a fundamental strategy to control SARS-CoV-2 transmission. Compared to PCR methods, antigen detection tests do not require specialized laboratory equipment and are less expensive, thus allowing repeated and point-of-care testing on a wide scale [18]. Our meta-analysis, summarizing evidence from thousands of people with and without SARS-CoV-2 infection diagnosed with rt-PCR, and performing various comparisons, shows that the overall performance of AT is comparable to rt-PCR, at least in terms of specificity, with meta-analytic estimates around 99%, irrespective of the method used. Sensitivity is lower and seems to depend on viral concentration being increased if detected at lower PCR cycles (Ct values). AT are also more sensitive when used on NSP samples and in symptomatic individuals. These updated findings are in accordance with previous efforts to summarize the evidence in this field [260,261]. Current best practices in meta-analysis suggest that a frequent update should be performed, and there is active research regarding the identification of the actual time that an update is needed [262,263]. As a matter of fact, previous works include statistical methods and surveillance systems that will identify the need for an update of a published meta-analysis [264,265]. More recently, the concept of a “living” systematic review has emerged, in which the review is continuously updated, incorporating relevant new data as they become available. Such reviews may be particularly important in fields where research evidence is emerging rapidly [266,267], and clearly, the COVID-19 pandemic is a perfect example of a field where new research accumulates in an unprecedented way and an updated meta-analysis is needed.
The sensitivity of AT is good but not ideal, and thus rt-PCR remains the gold standard for diagnosis. Given the suboptimal sensitivity of antigen tests, there is a likelihood of false negative results, which should be handled depending on the clinical and epidemiological circumstances. In general, confirmation of an AT result with rt-PCR in a laboratory is necessary when the result is not consistent with clinical and epidemiological information. Given their higher sensitivity among symptomatic people and in those with higher viral load (Ct < 30), ATs are expected to perform better when used for the diagnosis of SARS-CoV-2 infection in people with symptoms, in high-risk contacts of confirmed cases or in high-risk groups as health care workers with known exposure. Moreover, the sole detection of viral RNA with rt-PCR does not seem to overlap with patients’ infectiousness. Rather, POC (rapid) antigen tests that can only detect viral loads detectable with rt-PCR at Ct values <30 seem to more efficiently discriminate infectious SARS-CoV-2 carriers that should stay in isolation [202,255,258,259]. These findings are further supported by CDC recommendations, already posed by the end of 2020, which propose a Ct value of 33 as illustrative of contagiousness [204,268].
Proper interpretation of AT results is important not only for diagnosis but also for screening and surveillance purposes. This meta-analysis did not evaluate screening strategies that used AT. Nevertheless, it seems that AT can be used for regular screening of asymptomatic people in high-risk congregate settings, such as nursing homes, homeless shelters, detention facilities, etc., where the turnaround time of results is critical [269]. The fast identification of highly infected people in these facilities using rapid POC antigen tests will immediately inform infection prevention and control strategies and interventions, and consequently will significantly reduce onward transmission. Due to the lower sensitivity, screening in congregate high-risk settings but also mass screening may suffer from false negative results. Given the presumed direct correlation of rapid ATs’ positivity with patient’s infectivity, and the evidence that the effectiveness of screening depends more on frequency of testing and speed of reporting rather than on very high sensitivity [91,270], it seems that antigen tests can be used for repeated population screening.
In terms of specificity, AT performs extremely well, similarly to rt-PCR, thus minimizing the likelihood of false-positive results. However, false-positive results do occur, especially when the prevalence of SARS-CoV-2 infection in communities is low. This should be considered both in terms of diagnosis and when designing public health interventions or prevalence studies in low-prevalence settings because false positives result in a waste of resources (unnecessary isolation of cases and follow-up actions) and inaccurate estimations.
This meta-analysis is subject to the limitations of the individual studies. Bias and confounding at the study level cannot be easily addressed or corrected at the stage of meta-analysis. There are also issues that could affect the results and are usually not measured, reported, or addressed in studies that evaluate the accuracy of AT: storage and handling, reading of test results (time and interpretation), specimen collection and handling, time from specimen collection to testing, temperature of specimen, and potential cross-contamination, as was shown in the quality assessment of the research performed with the QUADAS tool.
We need to emphasize that the studies included in this meta-analysis were conducted before July 2021. Thus, data collection was completed at a time prior to the emergence of the Omicron variant and thus, the conclusions drawn from this work involve mainly the initial Wuhan strain, Alpha, Beta and Delta (to some extent) variants. A complete treatment of the question regarding the effectiveness of antigen tests against the newly emerged Omicron variant [271] would require a study of its own, but nevertheless we might be able to highlight some of the available evidence. Initially, there were concerns regarding the effectiveness of the tests [272], but the first report with the Abbott BinaxNow SARS-CoV-2 Rapid Antigen Assay provided evidence that it can be used efficiently [273]. Similar results were reported with another approved test (E25Bio, Inc., Cambridge, MA, USA, and Perkin Elmer, Waltham, MA, USA) in a comparison study of the Alpha, Gamma, Delta and Omicron variants [274], and for Panbio™ COVID-19 Ag Rapid Test [275]. Stanley and coworkers examined the analytical sensitivity of the Abbott BinaxNow, the AccessBio CareStart and LumiraDx antigen tests, and found that the level of detection was at least as good for Omicron as for the initial Wuhan strain [276]. Finally, Deerain and coworkers measured the sensitivity of ten different lateral flow devices against the omicron variant and found that the analytical sensitivities of these ten kits were similar for both the Delta and Omicron variants [277]. All in all, even though more studies are needed, the available evidence suggests that the currently used ATs can be used efficiently for detecting the Omicron variant and large discrepancies in sensitivity due to its spread are not expected.
Finally, evaluation of different testing strategies in various settings is also urgently needed [278]. Moreover, the lack of an agreed, universal, standardized protocol starting from specimen collection and handling to performing and reading the test and to the way(s) that its performance is validated (rt-PCR (genes, Ct values) or cytopathic effects of virus cultures (reference virus strain) or RNA copies, etc. [140,279]) has also been revealed through our current systematic review and meta-analysis. Only in such uniform settings can accurate comparisons of methods and individual tests be performed in order to optimally track and manage SARS-CoV-2 infection in the global community.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/diagnostics12061388/s1, Table S1: The QUADAS tool; File S1: QUADAS-2 assessment results for included studies.

Author Contributions

Conceptualization: P.G.B., G.G.B. and P.I.K.; Methodology: P.I.K., G.K.N., P.G.B. and P.G.B.; Validation: G.G.B., G.K.N., P.I.K., A.T., M.P., H.M. and P.G.B.; Formal Analysis: A.T., P.G.B., G.G.B., P.I.K. and G.K.N.; Investigation: A.T., H.M., M.P., P.I.K. and G.G.B.; Resources, A.T. and G.G.B.; Data Curation: A.T., G.G.B. and P.I.K.; Writing—Original Draft Preparation: A.T. and G.G.B.; Writing—Review and Editing, P.I.K., H.M., M.P., G.K.N. and P.G.B.; Visualization: G.G.B. and P.I.K.; Supervision: G.G.B. and P.G.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–2021. Lancet 2022, 399, 1513–1536. [CrossRef]
  2. IHME. Institute for Health Metrics and Evaluation—COVID-19 Results Briefing. Available online: https://www.healthdata.org/COVID/updates (accessed on 30 March 2022).
  3. Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
  4. Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; et al. Safety and Efficacy of NVX-CoV2373 COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 1172–1183. [Google Scholar] [CrossRef]
  5. Hyams, C.; Marlow, R.; Maseko, Z.; King, J.; Ward, L.; Fox, K.; Heath, R.; Tuner, A.; Friedrich, Z.; Morrison, L.; et al. Effectiveness of BNT162b2 and ChAdOx1 nCoV-19 COVID-19 vaccination at preventing hospitalisations in people aged at least 80 years: A test-negative, case-control study. Lancet Infect. Dis. 2021, 21, 1539–1548. [Google Scholar] [CrossRef]
  6. Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
  7. Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
  8. Taylor, C.A.; Whitaker, M.; Anglin, O.; Milucky, J.; Patel, K.; Pham, H.; Chai, S.J.; Alden, N.B.; Yousey-Hindes, K.; Anderson, E.J.; et al. COVID-19-Associated Hospitalizations Among Adults During SARS-CoV-2 Delta and Omicron Variant Predominance, by Race/Ethnicity and Vaccination Status—COVID-NET, 14 States, July 2021–January 2022. MMWR Morb. Mortal Wkly. Rep. 2022, 71, 466–473. [Google Scholar] [CrossRef] [PubMed]
  9. Chemaitelly, H.; Ayoub, H.H.; AlMukdad, S.; Coyle, P.; Tang, P.; Yassine, H.M.; Al-Khatib, H.A.; Smatti, M.K.; Hasan, M.R.; Al-Kanaani, Z.; et al. Duration of mRNA vaccine protection against SARS-CoV-2 Omicron BA.1 and BA.2 subvariants in Qatar. medRxiv 2022. [Google Scholar] [CrossRef]
  10. Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.J.T.; Mellan, T.A.; Coupland, H.; Whittaker, C.; Zhu, H.; Berah, T.; Eaton, J.W.; et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 2020, 584, 257–261. [Google Scholar] [CrossRef]
  11. Fuller, J.A.; Hakim, A.; Victory, K.R.; Date, K.; Lynch, M.; Dahl, B.; Henao, O. Mitigation Policies and COVID-19-Associated Mortality—37 European Countries, 23 January–30 June 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 58–62. [Google Scholar] [CrossRef]
  12. Piovani, D.; Christodoulou, M.N.; Hadjidemetriou, A.; Pantavou, K.; Zaza, P.; Bagos, P.G.; Bonovas, S.; Nikolopoulos, G.K. Effect of early application of social distancing interventions on COVID-19 mortality over the first pandemic wave: An analysis of longitudinal data from 37 countries. J. Infect. 2021, 82, 133–142. [Google Scholar] [CrossRef] [PubMed]
  13. ECDC. European Centre for Disease Prevention and Control. COVID-19 Testing Strategies and Objectives. Available online: https://www.ecdc.europa.eu/en/publications-data/COVID-19-testing-strategies-and-objectives (accessed on 30 March 2022).
  14. TheWhiteHouse. National COVID-19 Preparedness Plan. Available online: https://www.whitehouse.gov/covidplan/ (accessed on 3 March 2022).
  15. Chan, J.F.; Yip, C.C.; To, K.K.; Tang, T.H.; Wong, S.C.; Leung, K.H.; Fung, A.Y.; Ng, A.C.; Zou, Z.; Tsoi, H.W.; et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J. Clin. Microbiol. 2020, 58, e00310-20. [Google Scholar] [CrossRef] [Green Version]
  16. Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020, 25, 2000045. [Google Scholar] [CrossRef] [Green Version]
  17. Reusken, C.; Broberg, E.K.; Haagmans, B.; Meijer, A.; Corman, V.M.; Papa, A.; Charrel, R.; Drosten, C.; Koopmans, M.; Leitmeyer, K.; et al. Laboratory readiness and response for novel coronavirus (2019-nCoV) in expert laboratories in 30 EU/EEA countries, January 2020. Euro Surveill. 2020, 25, 2000082. [Google Scholar] [CrossRef] [Green Version]
  18. Mina, M.J.; Parker, R.; Larremore, D.B. Rethinking COVID-19 Test Sensitivity—A Strategy for Containment. N. Engl. J. Med. 2020, 383, e120. [Google Scholar] [CrossRef] [PubMed]
  19. Peto, T. COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing. EClinicalMedicine 2021, 36, 100924. [Google Scholar] [CrossRef]
  20. Rai, P.; Kumar, B.K.; Deekshit, V.K.; Karunasagar, I.; Karunasagar, I. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl. Microbiol. Biotechnol. 2021, 105, 441–455. [Google Scholar] [CrossRef]
  21. Porte, L.; Legarraga, P.; Vollrath, V.; Aguilera, X.; Munita, J.M.; Araos, R.; Pizarro, G.; Vial, P.; Iruretagoyena, M.; Dittrich, S.; et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. Int. J. Infect. Dis. 2020, 99, 328–333. [Google Scholar] [CrossRef]
  22. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Forero, D.A.; Lopez-Leon, S.; González-Giraldo, Y.; Bagos, P.G. Ten simple rules for carrying out and writing meta-analyses. PLoS Comput. Biol. 2019, 15, e1006922. [Google Scholar] [CrossRef]
  24. Hopewell, S.; McDonald, S.; Clarke, M.; Egger, M. Grey literature in meta-analyses of randomized trials of health care interventions. Cochrane Database Syst. Rev. 2007, 2007, Mr000010. [Google Scholar] [CrossRef]
  25. World Health Organization (WHO). Coronavirus Disease (COVID-19) Technical Guidance: Laboratory Testing for 2019-nCoV in Humans. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance/ (accessed on 17 March 2022).
  26. Centers for Disease Control and Prevention (CDC). Information for Laboratories about Coronavirus (COVID-19). Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/index.html (accessed on 13 March 2022).
  27. ECDC. European Centre for Disease Prevention and Control. Novel Coronavirus Disease 2019 (COVID-19) Pandemic: Increased Transmission in the EU/EEA and the UK—Sixth Update—12 March 2020. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/RRA-sixth-update-Outbreak-of-novel-coronavirus-disease-2019-COVID-19.pdf (accessed on 12 March 2022).
  28. Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
  29. Van Houwelingen, H.C.; Zwinderman, K.H.; Stijnen, T. A bivariate approach to meta-analysis. Stat. Med. 1993, 12, 2273–2284. [Google Scholar] [CrossRef] [PubMed]
  30. Harbord, R.M.; Deeks, J.J.; Egger, M.; Whiting, P.; Sterne, J.A. A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics 2007, 8, 239–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  31. Higgins, J.P.; Whitehead, A. Borrowing strength from external trials in a meta-analysis. Stat. Med. 1996, 15, 2733–2749. [Google Scholar] [CrossRef]
  32. Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
  33. Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
  34. StataCorp. Stata Statistical Software: Release 13; Stata Press: College Station, TX, USA, 2013. [Google Scholar]
  35. White, I.R. Multivariate random-effects meta-regression: Updates to mvmeta. Stata J. 2011, 11, 255–270. [Google Scholar] [CrossRef] [Green Version]
  36. Chavan, S.; Mangalaparthi, K.K.; Singh, S.; Renuse, S.; Vanderboom, P.M.; Madugundu, A.K.; Budhraja, R.; McAulay, K.; Grys, T.E.; Rule, A.D.; et al. Mass Spectrometric Analysis of Urine from COVID-19 Patients for Detection of SARS-CoV-2 Viral Antigen and to Study Host Response. J. Proteome Res. 2021, 20, 3404–3413. [Google Scholar] [CrossRef] [PubMed]
  37. Saadi, J.; Oueslati, S.; Bellanger, L.; Gallais, F.; Dortet, L.; Roque-Afonso, A.M.; Junot, C.; Naas, T.; Fenaille, F.; Becher, F. Quantitative Assessment of SARS-CoV-2 Virus in Nasopharyngeal Swabs Stored in Transport Medium by a Straightforward LC-MS/MS Assay Targeting Nucleocapsid, Membrane, and Spike Proteins. J. Proteome Res. 2021, 20, 1434–1443. [Google Scholar] [CrossRef]
  38. Shao, W.; Shurin, M.R.; Wheeler, S.E.; He, X.; Star, A. Rapid Detection of SARS-CoV-2 Antigens Using High-Purity Semiconducting Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS Appl. Mater. Interfaces 2021, 13, 10321–10327. [Google Scholar] [CrossRef] [PubMed]
  39. Guo, K.; Wustoni, S.; Koklu, A.; Díaz-Galicia, E.; Moser, M.; Hama, A.; Alqahtani, A.A.; Ahmad, A.N.; Alhamlan, F.S.; Shuaib, M.; et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat. Biomed. Eng. 2021, 5, 666–677. [Google Scholar] [CrossRef]
  40. Eissa, S.; Alhadrami, H.A.; Al-Mozaini, M.; Hassan, A.M.; Zourob, M. Voltammetric-based immunosensor for the detection of SARS-CoV-2 nucleocapsid antigen. Mikrochim. Acta 2021, 188, 199. [Google Scholar] [CrossRef] [PubMed]
  41. Funabashi, R.; Miyakawa, K.; Yamaoka, Y.; Yoshimura, S.; Yamane, S.; Jeremiah, S.S.; Shimizu, K.; Ozawa, H.; Kawakami, C.; Usuku, S.; et al. Development of highly sensitive and rapid antigen detection assay for diagnosis of COVID-19 utilizing optical waveguide immunosensor. J. Mol. Cell Biol. 2021, 13, 763–766. [Google Scholar] [CrossRef]
  42. Huang, J.; Wen, J.; Zhou, M.; Ni, S.; Le, W.; Chen, G.; Wei, L.; Zeng, Y.; Qi, D.; Pan, M.; et al. On-Site Detection of SARS-CoV-2 Antigen by Deep Learning-Based Surface-Enhanced Raman Spectroscopy and Its Biochemical Foundations. Anal. Chem. 2021, 93, 9174–9182. [Google Scholar] [CrossRef] [PubMed]
  43. Ehsan, M.A.; Khan, S.A.; Rehman, A. Screen-Printed Graphene/Carbon Electrodes on Paper Substrates as Impedance Sensors for Detection of Coronavirus in Nasopharyngeal Fluid Samples. Diagnostics 2021, 11, 1030. [Google Scholar] [CrossRef] [PubMed]
  44. Renuse, S.; Vanderboom, P.M.; Maus, A.D.; Kemp, J.V.; Gurtner, K.M.; Madugundu, A.K.; Chavan, S.; Peterson, J.A.; Madden, B.J.; Mangalaparthi, K.K.; et al. A mass spectrometry-based targeted assay for detection of SARS-CoV-2 antigen from clinical specimens. EBioMedicine 2021, 69, 103465. [Google Scholar] [CrossRef]
  45. Della Ventura, B.; Cennamo, M.; Minopoli, A.; Campanile, R.; Bolletti Censi, S.; Terracciano, D.; Portella, G.; Velotta, R. Colorimetric Test for Fast Detection of SARS-CoV-2 in Nasal and Throat Swabs. medRxiv 2020. [Google Scholar] [CrossRef]
  46. Singh, N.K.; Ray, P.; Carlin, A.F.; Magallanes, C.; Morgan, S.C.; Laurent, L.C.; Aronoff-Spencer, E.S.; Hall, D.A. Hitting the diagnostic sweet spot: Point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer. medRxiv 2020. [Google Scholar] [CrossRef]
  47. Kurtulmus, M.S.; Kazezoglu, C.; Cakiroglu, B.; Yilmaz, H.; Guner, A.E. The urine foaming test in COVID-19 as a useful tool in diagnosis, prognosis and follow-up: Preliminary results. North Clin. Istanb. 2020, 7, 534–540. [Google Scholar] [CrossRef]
  48. Mak, G.C.; Lau, S.S.; Wong, K.K.; Chow, N.L.; Lau, C.S.; Lam, E.T.; Chan, R.C.; Tsang, D.N. Analytical sensitivity and clinical sensitivity of the three rapid antigen detection kits for detection of SARS-CoV-2 virus. J. Clin. Virol. 2020, 133, 104684. [Google Scholar] [CrossRef]
  49. Linares, M.; Pérez-Tanoira, R.; Carrero, A.; Romanyk, J.; Pérez-García, F.; Gómez-Herruz, P.; Arroyo, T.; Cuadros, J. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. J. Clin. Virol. 2020, 133, 104659. [Google Scholar] [CrossRef] [PubMed]
  50. Gupta, A.; Khurana, S.; Das, R.; Srigyan, D.; Singh, A.; Mittal, A.; Singh, P.; Soneja, M.; Kumar, A.; Singh, A.K.; et al. Rapid chromatographic immunoassay-based evaluation of COVID-19: A cross-sectional, diagnostic test accuracy study & its implications for COVID-19 management in India. Indian J. Med. Res. 2021, 153, 126. [Google Scholar] [CrossRef]
  51. Fenollar, F.; Bouam, A.; Ballouche, M.; Fuster, L.; Prudent, E.; Colson, P.; Tissot-Dupont, H.; Million, M.; Drancourt, M.; Raoult, D.; et al. Evaluation of the Panbio COVID-19 Rapid Antigen Detection Test Device for the Screening of Patients with COVID-19. J. Clin. Microbiol. 2021, 59, e02589-20. [Google Scholar] [CrossRef]
  52. Nalumansi, A.; Lutalo, T.; Kayiwa, J.; Watera, C.; Balinandi, S.; Kiconco, J.; Nakaseegu, J.; Olara, D.; Odwilo, E.; Serwanga, J.; et al. Field evaluation of the performance of a SARS-CoV-2 antigen rapid diagnostic test in Uganda using nasopharyngeal samples. Int. J. Infect. Dis. 2021, 104, 282–286. [Google Scholar] [CrossRef] [PubMed]
  53. Parada-Ricart, E.; Gomez-Bertomeu, F.; Picó-Plana, E.; Olona-Cabases, M. Usefulness of the antigen test for diagnosing SARS-CoV-2 infection in patients with and without symptoms. Enferm. Infecc. Microbiol. Clin. 2021, 39, 357–358. [Google Scholar] [CrossRef]
  54. Lee, J.H.; Choi, M.; Jung, Y.; Lee, S.K.; Lee, C.S.; Kim, J.; Kim, J.; Kim, N.H.; Kim, B.T.; Kim, H.G. A novel rapid detection for SARS-CoV-2 spike 1 antigens using human angiotensin converting enzyme 2 (ACE2). Biosens. Bioelectron. 2021, 171, 112715. [Google Scholar] [CrossRef]
  55. Cerutti, F.; Burdino, E.; Milia, M.G.; Allice, T.; Gregori, G.; Bruzzone, B.; Ghisetti, V. Urgent need of rapid tests for SARS-CoV-2 antigen detection: Evaluation of the SD-Biosensor antigen test for SARS-CoV-2. J. Clin. Virol. 2020, 132, 104654. [Google Scholar] [CrossRef] [PubMed]
  56. Diao, B.; Wen, K.; Zhang, J.; Chen, J.; Han, C.; Chen, Y.; Wang, S.; Deng, G.; Zhou, H.; Wu, Y. Accuracy of a nucleocapsid protein antigen rapid test in the diagnosis of SARS-CoV-2 infection. Clin. Microbiol. Infect. 2021, 27, 289.e281–289.e284. [Google Scholar] [CrossRef]
  57. Young, S.; Taylor, S.N.; Cammarata, C.L.; Varnado, K.G.; Roger-Dalbert, C.; Montano, A.; Griego-Fullbright, C.; Burgard, C.; Fernandez, C.; Eckert, K.; et al. Clinical Evaluation of BD Veritor SARS-CoV-2 Point-of-Care Test Performance Compared to PCR-Based Testing and versus the Sofia 2 SARS Antigen Point-of-Care Test. J. Clin. Microbiol. 2020, 59, e02338-20. [Google Scholar] [CrossRef]
  58. Liotti, F.M.; Menchinelli, G.; Lalle, E.; Palucci, I.; Marchetti, S.; Colavita, F.; La Sorda, M.; Sberna, G.; Bordi, L.; Sanguinetti, M.; et al. Performance of a novel diagnostic assay for rapid SARS-CoV-2 antigen detection in nasopharynx samples. Clin. Microbiol. Infect. 2021, 27, 487–488. [Google Scholar] [CrossRef]
  59. Ogawa, T.; Fukumori, T.; Nishihara, Y.; Sekine, T.; Okuda, N.; Nishimura, T.; Fujikura, H.; Hirai, N.; Imakita, N.; Kasahara, K. Another false-positive problem for a SARS-CoV-2 antigen test in Japan. J. Clin. Virol. 2020, 131, 104612. [Google Scholar] [CrossRef]
  60. Hirotsu, Y.; Maejima, M.; Shibusawa, M.; Nagakubo, Y.; Hosaka, K.; Amemiya, K.; Sueki, H.; Hayakawa, M.; Mochizuki, H.; Tsutsui, T.; et al. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients. Int. J. Infect. Dis. 2020, 99, 397–402. [Google Scholar] [CrossRef] [PubMed]
  61. Nagura-Ikeda, M.; Imai, K.; Tabata, S.; Miyoshi, K.; Murahara, N.; Mizuno, T.; Horiuchi, M.; Kato, K.; Imoto, Y.; Iwata, M.; et al. Clinical Evaluation of Self-Collected Saliva by Quantitative Reverse Transcription-PCR (RT-qPCR), Direct RT-qPCR, Reverse Transcription-Loop-Mediated Isothermal Amplification, and a Rapid Antigen Test To Diagnose COVID-19. J. Clin. Microbiol. 2020, 58, e01438-20. [Google Scholar] [CrossRef]
  62. Mak, G.C.; Cheng, P.K.; Lau, S.S.; Wong, K.K.; Lau, C.S.; Lam, E.T.; Chan, R.C.; Tsang, D.N. Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. J. Clin. Virol. 2020, 129, 104500. [Google Scholar] [CrossRef] [PubMed]
  63. Mertens, P.; De Vos, N.; Martiny, D.; Jassoy, C.; Mirazimi, A.; Cuypers, L.; Van den Wijngaert, S.; Monteil, V.; Melin, P.; Stoffels, K.; et al. Development and Potential Usefulness of the COVID-19 Ag Respi-Strip Diagnostic Assay in a Pandemic Context. Front. Med. 2020, 7, 225. [Google Scholar] [CrossRef]
  64. Blairon, L.; Wilmet, A.; Beukinga, I.; Tré-Hardy, M. Implementation of rapid SARS-CoV-2 antigenic testing in a laboratory without access to molecular methods: Experiences of a general hospital. J. Clin. Virol. 2020, 129, 104472. [Google Scholar] [CrossRef] [PubMed]
  65. Scohy, A.; Anantharajah, A.; Bodéus, M.; Kabamba-Mukadi, B.; Verroken, A.; Rodriguez-Villalobos, H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J. Clin. Virol. 2020, 129, 104455. [Google Scholar] [CrossRef] [PubMed]
  66. Lambert-Niclot, S.; Cuffel, A.; Le Pape, S.; Vauloup-Fellous, C.; Morand-Joubert, L.; Roque-Afonso, A.M.; Le Goff, J.; Delaugerre, C. Evaluation of a Rapid Diagnostic Assay for Detection of SARS-CoV-2 Antigen in Nasopharyngeal Swabs. J. Clin. Microbiol. 2020, 58, e00977-20. [Google Scholar] [CrossRef]
  67. Diao, B.; Wen, K.; Chen, J.; Liu, Y.; Yuan, Z.; Han, C.; Chen, J.; Pan, Y.; Chen, L.; Dan, Y.; et al. Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by Detection of Nucleocapsid Protein. medRxiv 2020. [Google Scholar] [CrossRef]
  68. Beck, E.T.; Paar, W.; Fojut, L.; Serwe, J.; Jahnke, R.R. Comparison of the Quidel Sofia SARS FIA Test to the Hologic Aptima SARS-CoV-2 TMA Test for Diagnosis of COVID-19 in Symptomatic Outpatients. J. Clin. Microbiol. 2021, 59, e02727-20. [Google Scholar] [CrossRef]
  69. Krüttgen, A.; Cornelissen, C.G.; Dreher, M.; Hornef, M.W.; Imöhl, M.; Kleines, M. Comparison of the SARS-CoV-2 Rapid antigen test to the real star SARS-CoV-2 RT PCR kit. J. Virol. Methods 2021, 288, 114024. [Google Scholar] [CrossRef] [PubMed]
  70. Albert, E.; Torres, I.; Bueno, F.; Huntley, D.; Molla, E.; Fernández-Fuentes, M.; Martínez, M.; Poujois, S.; Forqué, L.; Valdivia, A.; et al. Field evaluation of a rapid antigen test (Panbio™ COVID-19 Ag Rapid Test Device) for COVID-19 diagnosis in primary healthcare centres. Clin. Microbiol. Infect. 2021, 27, 472.e7–472.e10. [Google Scholar] [CrossRef]
  71. Chaimayo, C.; Kaewnaphan, B.; Tanlieng, N.; Athipanyasilp, N.; Sirijatuphat, R.; Chayakulkeeree, M.; Angkasekwinai, N.; Sutthent, R.; Puangpunngam, N.; Tharmviboonsri, T.; et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol. J. 2020, 17, 177. [Google Scholar] [CrossRef] [PubMed]
  72. Lanser, L.; Bellmann-Weiler, R.; Öttl, K.W.; Huber, L.; Griesmacher, A.; Theurl, I.; Weiss, G. Evaluating the clinical utility and sensitivity of SARS-CoV-2 antigen testing in relation to RT-PCR Ct values. Infection 2021, 49, 555–557. [Google Scholar] [CrossRef]
  73. Gremmels, H.; Winkel, B.M.F.; Schuurman, R.; Rosingh, A.; Rigter, N.A.M.; Rodriguez, O.; Ubijaan, J.; Wensing, A.M.J.; Bonten, M.J.M.; Hofstra, L.M. Real-life validation of the Panbio™ COVID-19 antigen rapid test (Abbott) in community-dwelling subjects with symptoms of potential SARS-CoV-2 infection. EClinicalMedicine 2021, 31, 100677. [Google Scholar] [CrossRef]
  74. Dřevínek, P.; Hurych, J.; Kepka, Z.; Briksi, A.; Kulich, M.; Zajac, M.; Hubáček, P. The sensitivity of SARS-CoV-2 antigen tests in the view of large-scale testing. Epidemiol. Mikrobiol. Imunol. 2021, 70, 156–160. [Google Scholar] [PubMed]
  75. Schwob, J.M.; Miauton, A.; Petrovic, D.; Perdrix, J.; Senn, N.; Jaton, K.; Onya, O.; Maillard, A.; Minghelli, G.; Cornuz, J.; et al. Antigen rapid tests, nasopharyngeal PCR and saliva PCR to detect SARS-CoV-2: A prospective comparative clinical trial. medRxiv 2020. [Google Scholar] [CrossRef]
  76. Corman, V.M.; Haage, V.C.; Bleicker, T.; Schmidt, M.L.; Mühlemann, B.; Zuchowski, M.; Jo, W.K.; Tscheak, P.; Möncke-Buchner, E.; Müller, M.A.; et al. Comparison of seven commercial SARS-CoV-2 rapid point-of-care antigen tests: A single-centre laboratory evaluation study. Lancet Microbe 2021, 2, e311–e319. [Google Scholar] [CrossRef]
  77. Abdulrahman, A.; Mustafa, F.; AlAwadhi, A.I.; Alansari, Q.; AlAlawi, B.; AlQahtani, M. Comparison of SARS-CoV-2 nasal antigen test to nasopharyngeal RT-PCR in mildly symptomatic patients. medRxiv 2020. [Google Scholar] [CrossRef]
  78. Yokota, I.; Sakurazawa, T.; Sugita, J.; Iwasaki, S.; Yasuda, K.; Yamashita, N.; Fujisawa, S.; Nishida, M.; Konno, S.; Teshima, T. Performance of Qualitative and Quantitative Antigen Tests for SARS-CoV-2 Using Saliva. Infect. Dis. Rep. 2021, 13, 742–747. [Google Scholar] [CrossRef]
  79. Nash, B.; Badea, A.; Reddy, A.; Bosch, M.; Salcedo, N.; Gomez, A.R.; Versiani, A.; Dutra Silva, G.C.; Lopes dos Santos, T.M.I.; Milhim, B.H.G.A.; et al. Validating and modeling the impact of high-frequency rapid antigen screening on COVID-19 spread and outcomes. medRxiv 2021. [Google Scholar] [CrossRef]
  80. Van der Moeren, N.; Zwart, V.F.; Lodder, E.B.; van den Bijllaardt, W.; van Esch, H.R.J.M.; Stohr, J.J.J.M.; Pot, J.; Welschen, I.; van Mechelen, P.M.F.; Pas, S.D.; et al. Performance evaluation of a SARS-CoV-2 Rapid antigentest: Test performance in the community in the netherlands. medRxiv 2020. [Google Scholar] [CrossRef]
  81. Porte, L.; Legarraga, P.; Iruretagoyena, M.; Vollrath, V.; Pizarro, G.; Munita, J.M.; Araos, R.; Weitzel, T. Rapid SARS-CoV-2 antigen detection by immunofluorescence—A new tool to detect infectivity. medRxiv 2020. [Google Scholar] [CrossRef]
  82. Krüger, L.J.; Gaeddert, M.; Köppel, L.; Brümmer, L.E.; Gottschalk, C.; Miranda, I.B.; Schnitzler, P.; Kräusslich, H.G.; Lindner, A.K.; Nikolai, O.; et al. Evaluation of the accuracy, ease of use and limit of detection of novel, rapid, antigen-detecting point-of-care diagnostics for SARS-CoV-2. medRxiv 2020. [Google Scholar] [CrossRef]
  83. Ventura, B.D.; Cennamo, M.; Minopoli, A.; Campanile, R.; Censi, S.B.; Terracciano, D.; Portella, G.; Velotta, R. Colorimetric Test for Fast Detection of SARS-CoV-2 in Nasal and Throat Swabs. ACS Sens. 2020, 5, 3043–3048. [Google Scholar] [CrossRef]
  84. Herrera, V.; Hsu, V.; Adewale, A.; Johnson, L.; Hendrix, T.; Kuhlman, J.; Finkler, N. Testing Healthcare Workers Exposed to COVID19 using Rapid Antigen Detection. medRxiv 2020. [Google Scholar] [CrossRef]
  85. Pickering, S.; Batra, R.; Merrick, B.; Snell, L.B.; Nebbia, G.; Douthwaite, S.; Reid, F.; Patel, A.; Kia Ik, M.T.; Patel, B.; et al. Comparative performance of SARS-CoV-2 lateral flow antigen tests and association with detection of infectious virus in clinical specimens: A single-centre laboratory evaluation study. Lancet Microbe 2021, 2, e461–e471. [Google Scholar] [CrossRef]
  86. Harmon, K.; de St Maurice, A.M.; Brady, A.C.; Swaminathan, S.; Aukerman, D.F.; Rueda, M.A.; Terrell, K.; Cohen, R.P.; Gamradt, S.C.; Henry, S.D.; et al. Surveillance testing for SARS-CoV-2 infection in an asymptomatic athlete population: A prospective cohort study with 123 362 tests and 23 463 paired RT-PCR/antigen samples. BMJ Open Sport Exerc. Med. 2021, 7, e001137. [Google Scholar] [CrossRef]
  87. Korenkov, M.; Poopalasingam, N.; Madler, M.; Vanshylla, K.; Eggeling, R.; Wirtz, M.; Fish, I.; Dewald, F.; Gieselmann, L.; Lehmann, C.; et al. Evaluation of a Rapid Antigen Test to Detect SARS-CoV-2 Infection and Identify Potentially Infectious Individuals. J. Clin. Microbiol. 2021, 59, e0089621. [Google Scholar] [CrossRef]
  88. Seynaeve, Y.; Heylen, J.; Fontaine, C.; Maclot, F.; Meex, C.; Diep, A.N.; Donneau, A.F.; Hayette, M.P.; Descy, J. Evaluation of Two Rapid Antigenic Tests for the Detection of SARS-CoV-2 in Nasopharyngeal Swabs. J. Clin. Med. 2021, 10, 2774. [Google Scholar] [CrossRef]
  89. Di Domenico, M.; De Rosa, A.; Di Gaudio, F.; Internicola, P.; Bettini, C.; Salzano, N.; Castrianni, D.; Marotta, A.; Boccellino, M. Diagnostic Accuracy of a New Antigen Test for SARS-CoV-2 Detection. Int. J. Environ. Res. Public Health 2021, 18, 6310. [Google Scholar] [CrossRef]
  90. Kiro, V.V.; Gupta, A.; Singh, P.; Sharad, N.; Khurana, S.; Prakash, S.; Dar, L.; Malhotra, R.; Wig, N.; Kumar, A.; et al. Evaluation of COVID-19 Antigen Fluorescence Immunoassay Test for Rapid Detection of SARS-CoV-2. J. Glob. Infect. Dis. 2021, 13, 91–93. [Google Scholar] [CrossRef] [PubMed]
  91. Smith, R.L.; Gibson, L.L.; Martinez, P.P.; Ke, R.; Mirza, A.; Conte, M.; Gallagher, N.; Conte, A.; Wang, L.; Fredrickson, R.; et al. Longitudinal Assessment of Diagnostic Test Performance Over the Course of Acute SARS-CoV-2 Infection. J. Infect. Dis. 2021, 224, 976–982. [Google Scholar] [CrossRef]
  92. L’Huillier, A.G.; Lacour, M.; Sadiku, D.; Gadiri, M.A.; De Siebenthal, L.; Schibler, M.; Eckerle, I.; Pinösch, S.; Kaiser, L.; Gervaix, A.; et al. Diagnostic Accuracy of SARS-CoV-2 Rapid Antigen Detection Testing in Symptomatic and Asymptomatic Children in the Clinical Setting. J. Clin. Microbiol. 2021, 59, e0099121. [Google Scholar] [CrossRef]
  93. Gupta, A.; Anand, A.; Jain, N.; Goswami, S.; Anantharaj, A.; Patil, S.; Singh, R.; Kumar, A.; Shrivastava, T.; Bhatnagar, S.; et al. A novel G-quadruplex aptamer-based spike trimeric antigen test for the detection of SARS-CoV-2. Mol. Nucleic Acids 2021, 26, 321–332. [Google Scholar] [CrossRef] [PubMed]
  94. Wagenhäuser, I.; Knies, K.; Rauschenberger, V.; Eisenmann, M.; McDonogh, M.; Petri, N.; Andres, O.; Flemming, S.; Gawlik, M.; Papsdorf, M.; et al. Clinical performance evaluation of SARS-CoV-2 rapid antigen testing in point of care usage in comparison to RT-qPCR. EBioMedicine 2021, 69, 103455. [Google Scholar] [CrossRef]
  95. Fernández, M.D.; Estévez, A.S.; Alfonsín, F.L.; Arevalo, G.B. Usefulness of the Lumiradx ™ SARS-CoV-2 antigen test in nursing home. Enferm. Infecc. Microbiol. Clin. 2021. [Google Scholar] [CrossRef]
  96. Amer, R.M.; Samir, M.; Gaber, O.A.; El-Deeb, N.A.; Abdelmoaty, A.A.; Ahmed, A.A.; Samy, W.; Atta, A.H.; Walaa, M.; Anis, R.H. Diagnostic performance of rapid antigen test for COVID-19 and the effect of viral load, sampling time, subject’s clinical and laboratory parameters on test accuracy. J. Infect. Public Health 2021, 14, 1446–1453. [Google Scholar] [CrossRef]
  97. Baccani, I.; Morecchiato, F.; Chilleri, C.; Cervini, C.; Gori, E.; Matarrese, D.; Bassetti, A.; Bonizzoli, M.; Mencarini, J.; Antonelli, A.; et al. Evaluation of Three Immunoassays for the Rapid Detection of SARS-CoV-2 antigens. Diagn. Microbiol. Infect. Dis. 2021, 101, 115434. [Google Scholar] [CrossRef] [PubMed]
  98. Matsuzaki, N.; Orihara, Y.; Kodana, M.; Kitagawa, Y.; Matsuoka, M.; Kawamura, R.; Takeuchi, S.; Imai, K.; Tarumoto, N.; Maesaki, S.; et al. Evaluation of a chemiluminescent enzyme immunoassay-based high-throughput SARS-CoV-2 antigen assay for the diagnosis of COVID-19: The VITROS® SARS-CoV-2 Antigen Test. J. Med. Virol. 2021, 93, 6778–6781. [Google Scholar] [CrossRef]
  99. Jakobsen, K.K.; Jensen, J.S.; Todsen, T.; Tolsgaard, M.G.; Kirkby, N.; Lippert, F.; Vangsted, A.M.; Martel, C.J.; Klokker, M.; von Buchwald, C. Accuracy and cost description of rapid antigen test compared with reverse transcriptase-polymerase chain reaction for SARS-CoV-2 detection. Dan. Med. J. 2021, 68, A03210217. [Google Scholar] [PubMed]
  100. Ngo Nsoga, M.T.; Kronig, I.; Perez Rodriguez, F.J.; Sattonnet-Roche, P.; Da Silva, D.; Helbling, J.; Sacks, J.A.; de Vos, M.; Boehm, E.; Gayet-Ageron, A.; et al. Diagnostic accuracy of Panbio rapid antigen tests on oropharyngeal swabs for detection of SARS-CoV-2. PLoS ONE 2021, 16, e0253321. [Google Scholar] [CrossRef] [PubMed]
  101. Smith, R.D.; Johnson, J.K.; Clay, C.; Girio-Herrera, L.; Stevens, D.; Abraham, M.; Zimand, P.; Ahlman, M.; Gimigliano, S.; Zhao, R.; et al. Clinical evaluation of Sofia Rapid Antigen Assay for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among emergency department to hospital admissions. Infect. Control Hosp. Epidemiol. 2021, 1–6. [Google Scholar] [CrossRef]
  102. Eleftheriou, I.; Dasoula, F.; Dimopoulou, D.; Lebessi, E.; Serafi, E.; Spyridis, N.; Tsolia, M. Real-life evaluation of a COVID-19 rapid antigen detection test in hospitalized children. J. Med. Virol. 2021, 93, 6040–6044. [Google Scholar] [CrossRef]
  103. Lindner, A.K.; Nikolai, O.; Rohardt, C.; Kausch, F.; Wintel, M.; Gertler, M.; Burock, S.; Hörig, M.; Bernhard, J.; Tobian, F.; et al. Diagnostic accuracy and feasibility of patient self-testing with a SARS-CoV-2 antigen-detecting rapid test. J. Clin. Virol. 2021, 141, 104874. [Google Scholar] [CrossRef]
  104. Ferté, T.; Ramel, V.; Cazanave, C.; Lafon, M.E.; Bébéar, C.; Malvy, D.; Georges-Walryck, A.; Dehail, P. Accuracy of COVID-19 rapid antigenic tests compared to RT-PCR in a student population: The StudyCov study. J. Clin. Virol. 2021, 141, 104878. [Google Scholar] [CrossRef]
  105. Fernandez-Montero, A.; Argemi, J.; Rodríguez, J.A.; Ariño, A.H.; Moreno-Galarraga, L. Validation of a rapid antigen test as a screening tool for SARS-CoV-2 infection in asymptomatic populations. Sensitivity, specificity and predictive values. EClinicalMedicine 2021, 37, 100954. [Google Scholar] [CrossRef] [PubMed]
  106. Hoehl, S.; Schenk, B.; Rudych, O.; Göttig, S.; Foppa, I.; Kohmer, N.; Karaca, O.; Toptan, T.; Ciesek, S. High-Frequency Self-Testing by Schoolteachers for SARS-CoV-2 Using a Rapid Antigen Test–Results of the Safe School Hesse study. Dtsch. Arztebl. Int. 2021, 118, 252–253. [Google Scholar] [CrossRef]
  107. Lee, J.; Kim, S.Y.; Huh, H.J.; Kim, N.; Sung, H.; Lee, H.; Roh, K.H.; Kim, T.S.; Hong, K.H. Clinical Performance of the Standard Q COVID-19 Rapid Antigen Test and Simulation of its Real-World Application in Korea. Ann. Lab. Med. 2021, 41, 588–592. [Google Scholar] [CrossRef]
  108. Mayanskiy, N.; Brzhozovskaya, E.; Fedorova, N.; Lebedin, Y. Parallel detection of SARS-CoV-2 RNA and nucleocapsid antigen in nasopharyngeal specimens from a COVID-19 patient screening cohort. Int. J. Infect. Dis. 2021, 108, 330–332. [Google Scholar] [CrossRef]
  109. Leixner, G.; Voill-Glaninger, A.; Bonner, E.; Kreil, A.; Zadnikar, R.; Viveiros, A. Evaluation of the AMP SARS-CoV-2 rapid antigen test in a hospital setting. Int. J. Infect. Dis. 2021, 108, 353–356. [Google Scholar] [CrossRef] [PubMed]
  110. Hirotsu, Y.; Sugiura, H.; Maejima, M.; Hayakawa, M.; Mochizuki, H.; Tsutsui, T.; Kakizaki, Y.; Miyashita, Y.; Omata, M. Comparison of Roche and Lumipulse quantitative SARS-CoV-2 antigen test performance using automated systems for the diagnosis of COVID-19. Int. J. Infect. Dis. 2021, 108, 263–269. [Google Scholar] [CrossRef]
  111. Fiedler, M.; Holtkamp, C.; Dittmer, U.; Anastasiou, O.E. Performance of the LIAISON(®) SARS-CoV-2 Antigen Assay vs. SARS-CoV-2-RT-PCR. Pathogens 2021, 10, 658. [Google Scholar] [CrossRef]
  112. Dierks, S.; Bader, O.; Schwanbeck, J.; Groß, U.; Weig, M.S.; Mese, K.; Lugert, R.; Bohne, W.; Hahn, A.; Feltgen, N.; et al. Diagnosing SARS-CoV-2 with Antigen Testing, Transcription-Mediated Amplification and Real-Time PCR. J. Clin. Med. 2021, 10, 2404. [Google Scholar] [CrossRef] [PubMed]
  113. Terpos, E.; Ntanasis-Stathopoulos, I.; Skvarč, M. Clinical Application of a New SARS-CoV-2 Antigen Detection Kit (Colloidal Gold) in the Detection of COVID-19. Diagnostics 2021, 11, 995. [Google Scholar] [CrossRef] [PubMed]
  114. Osmanodja, B.; Budde, K.; Zickler, D.; Naik, M.G.; Hofmann, J.; Gertler, M.; Hülso, C.; Rössig, H.; Horn, P.; Seybold, J.; et al. Accuracy of a Novel SARS-CoV-2 Antigen-Detecting Rapid Diagnostic Test from Standardized Self-Collected Anterior Nasal Swabs. J. Clin. Med. 2021, 10, 2099. [Google Scholar] [CrossRef] [PubMed]
  115. Harris, D.T.; Badowski, M.; Jernigan, B.; Sprissler, R.; Edwards, T.; Cohen, R.; Paul, S.; Merchant, N.; Weinkauf, C.C.; Bime, C.; et al. SARS-CoV-2 Rapid Antigen Testing of Symptomatic and Asymptomatic Individuals on the University of Arizona Campus. Biomedicines 2021, 9, 539. [Google Scholar] [CrossRef]
  116. Cento, V.; Renica, S.; Matarazzo, E.; Antonello, M.; Colagrossi, L.; Di Ruscio, F.; Pani, A.; Fanti, D.; Vismara, C.; Puoti, M.; et al. Frontline Screening for SARS-CoV-2 Infection at Emergency Department Admission by Third Generation Rapid Antigen Test: Can We Spare RT-qPCR? Viruses 2021, 13, 818. [Google Scholar] [CrossRef]
  117. Kumar, A.; Kunjukutty, R.; Thaha, A.; Srikumar, S.; Madhusoodanan, H.; David, S.; Biswas, L.; Sathyapalan, D. Universal screening for SARS-CoV-2 in pregnant women using a combination of antigen and RT-PCR testing. Infez. Med. 2021, 29, 294–296. [Google Scholar]
  118. Orsi, A.; Pennati, B.M.; Bruzzone, B.; Ricucci, V.; Ferone, D.; Barbera, P.; Arboscello, E.; Dentone, C.; Icardi, G. On-field evaluation of a ultra-rapid fluorescence immunoassay as a frontline test for SARS-CoV-2 diagnostic. J. Virol. Methods 2021, 295, 114201. [Google Scholar] [CrossRef] [PubMed]
  119. Blairon, L.; Cupaiolo, R.; Thomas, I.; Piteüs, S.; Wilmet, A.; Beukinga, I.; Tré-Hardy, M. Efficacy comparison of three rapid antigen tests for SARS-CoV-2 and how viral load impact their performance. J. Med. Virol. 2021, 93, 5783–5788. [Google Scholar] [CrossRef]
  120. Bornemann, L.; Kaup, O.; Kleideiter, J.; Panning, M.; Ruprecht, B.; Wehmeier, M. Real-life evaluation of the Sofia SARS-CoV-2 antigen assay in a large tertiary care hospital. J. Clin. Virol. 2021, 140, 104854. [Google Scholar] [CrossRef] [PubMed]
  121. Krüger, L.J.; Gaeddert, M.; Tobian, F.; Lainati, F.; Gottschalk, C.; Klein, J.A.F.; Schnitzler, P.; Kräusslich, H.G.; Nikolai, O.; Lindner, A.K.; et al. The Abbott PanBio WHO emergency use listed, rapid, antigen-detecting point-of-care diagnostic test for SARS-CoV-2-Evaluation of the accuracy and ease-of-use. PLoS ONE 2021, 16, e0247918. [Google Scholar] [CrossRef]
  122. Shaikh, N.; Friedlander, E.J.; Tate, P.J.; Liu, H.; Chang, C.H.; Wells, A.; Hoberman, A. Performance of a Rapid SARS-CoV-2 Antigen Detection Assay in Symptomatic Children. Pediatrics 2021, 148. [Google Scholar] [CrossRef]
  123. Diez Flecha, C.; Rivero Rodríguez, A.M.; Fernández-Villa, T.; Fernández García, P.; Ferreira de Jesús, J.L.; Sánchez Antolín, G. Internal validity of a rapid test for COVID-19 antigens in a nursing home. Semergen 2021, 47, 332–336. [Google Scholar] [CrossRef]
  124. Yokota, I.; Shane, P.Y.; Okada, K.; Unoki, Y.; Yang, Y.; Iwasaki, S.; Fujisawa, S.; Nishida, M.; Teshima, T. A novel strategy for SARS-CoV-2 mass screening with quantitative antigen testing of saliva: A diagnostic accuracy study. Lancet Microbe 2021, 2, e397–e404. [Google Scholar] [CrossRef]
  125. Klein, J.A.F.; Krüger, L.J.; Tobian, F.; Gaeddert, M.; Lainati, F.; Schnitzler, P.; Lindner, A.K.; Nikolai, O.; Knorr, B.; Welker, A.; et al. Head-to-head performance comparison of self-collected nasal versus professional-collected nasopharyngeal swab for a WHO-listed SARS-CoV-2 antigen-detecting rapid diagnostic test. Med. Microbiol. Immunol. 2021, 210, 181–186. [Google Scholar] [CrossRef] [PubMed]
  126. Caramello, V.; Boccuzzi, A.; Basile, V.; Ferraro, A.; Macciotta, A.; Catalano, A.; Costa, G.; Vineis, P.; Sacerdote, C.; Ricceri, F. Are antigenic tests useful for detecting SARS-CoV-2 infections in patients accessing to emergency departments? Results from a North-West Italy hospital. J. Infect. 2021, 83, 237–279. [Google Scholar] [CrossRef]
  127. Koeleman, J.G.M.; Brand, H.; de Man, S.J.; Ong, D.S.Y. Clinical evaluation of rapid point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1975–1981. [Google Scholar] [CrossRef]
  128. Šterbenc, A.; Tomič, V.; Bidovec Stojković, U.; Vrankar, K.; Rozman, A.; Zidarn, M. Usefulness of rapid antigen testing for SARS-CoV-2 screening of healthcare workers: A pilot study. Clin. Exp. Med. 2022, 22, 157–160. [Google Scholar] [CrossRef]
  129. Kumar, K.K.; Sampritha, U.C.; Maganty, V.; Prakash, A.A.; Basumatary, J.; Adappa, K.; Chandraprabha, S.; Neeraja, T.G.; Guru Prasad, N.S.; Preethi, B.; et al. Pre-Operative SARS-CoV-2 Rapid Antigen Test and Reverse Transcription Polymerase Chain Reaction: A conundrum in surgical decision making. Indian J. Ophthalmol. 2021, 69, 1560–1562. [Google Scholar] [CrossRef]
  130. Soleimani, R.; Deckers, C.; Huang, T.D.; Bogaerts, P.; Evrard, S.; Wallemme, I.; Habib, B.; Rouzé, P.; Denis, O. Rapid COVID-19 antigenic tests: Usefulness of a modified method for diagnosis. J. Med. Virol. 2021, 93, 5655–5659. [Google Scholar] [CrossRef] [PubMed]
  131. Takeuchi, Y.; Akashi, Y.; Kato, D.; Kuwahara, M.; Muramatsu, S.; Ueda, A.; Notake, S.; Nakamura, K.; Ishikawa, H.; Suzuki, H. Diagnostic performance and characteristics of anterior nasal collection for the SARS-CoV-2 antigen test: A prospective study. Sci. Rep. 2021, 11, 10519. [Google Scholar] [CrossRef]
  132. Homza, M.; Zelena, H.; Janosek, J.; Tomaskova, H.; Jezo, E.; Kloudova, A.; Mrazek, J.; Svagera, Z.; Prymula, R. COVID-19 antigen testing: Better than we know? A test accuracy study. Infect. Dis. 2021, 53, 661–668. [Google Scholar] [CrossRef]
  133. Van der Moeren, N.; Zwart, V.F.; Lodder, E.B.; Van den Bijllaardt, W.; Van Esch, H.; Stohr, J.; Pot, J.; Welschen, I.; Van Mechelen, P.M.F.; Pas, S.D.; et al. Evaluation of the test accuracy of a SARS-CoV-2 rapid antigen test in symptomatic community dwelling individuals in the Netherlands. PLoS ONE 2021, 16, e0250886. [Google Scholar] [CrossRef]
  134. Brihn, A.; Chang, J.; Yong, K.O.; Balter, S.; Terashita, D.; Rubin, Z.; Yeganeh, N. Diagnostic Performance of an Antigen Test with RT-PCR for the Detection of SARS-CoV-2 in a Hospital Setting—Los Angeles County, California, June–August 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 702–706. [Google Scholar] [CrossRef]
  135. Nordgren, J.; Sharma, S.; Olsson, H.; Jämtberg, M.; Falkeborn, T.; Svensson, L.; Hagbom, M. SARS-CoV-2 rapid antigen test: High sensitivity to detect infectious virus. J. Clin. Virol. 2021, 140, 104846. [Google Scholar] [CrossRef]
  136. Holzner, C.; Pabst, D.; Anastasiou, O.E.; Dittmer, U.; Manegold, R.K.; Risse, J.; Fistera, D.; Kill, C.; Falk, M. SARS-CoV-2 rapid antigen test: Fast-safe or dangerous? An analysis in the emergency department of an university hospital. J. Med. Virol. 2021, 93, 5323–5327. [Google Scholar] [CrossRef] [PubMed]
  137. Kim, D.; Lee, J.; Bal, J.; Seo, S.K.; Chong, C.K.; Lee, J.H.; Park, H. Development and Clinical Evaluation of an Immunochromatography-Based Rapid Antigen Test (GenBody™ COVAG025) for COVID-19 Diagnosis. Viruses 2021, 13, 796. [Google Scholar] [CrossRef] [PubMed]
  138. Bianco, G.; Boattini, M.; Barbui, A.M.; Scozzari, G.; Riccardini, F.; Coggiola, M.; Lupia, E.; Cavallo, R.; Costa, C. Evaluation of an antigen-based test for hospital point-of-care diagnosis of SARS-CoV-2 infection. J. Clin. Virol. 2021, 139, 104838. [Google Scholar] [CrossRef]
  139. Peña, M.; Ampuero, M.; Garcés, C.; Gaggero, A.; García, P.; Velasquez, M.S.; Luza, R.; Alvarez, P.; Paredes, F.; Acevedo, J.; et al. Performance of SARS-CoV-2 rapid antigen test compared with real-time RT-PCR in asymptomatic individuals. Int. J. Infect. Dis. 2021, 107, 201–204. [Google Scholar] [CrossRef] [PubMed]
  140. Muhi, S.; Tayler, N.; Hoang, T.; Ballard, S.A.; Graham, M.; Rojek, A.; Kwong, J.C.; Trubiano, J.A.; Smibert, O.; Drewett, G.; et al. Multi-site assessment of rapid, point-of-care antigen testing for the diagnosis of SARS-CoV-2 infection in a low-prevalence setting: A validation and implementation study. Lancet Reg. Health West Pac. 2021, 9, 100115. [Google Scholar] [CrossRef] [PubMed]
  141. Uwamino, Y.; Nagata, M.; Aoki, W.; Nakagawa, T.; Inose, R.; Yokota, H.; Furusawa, Y.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; Kawaoka, Y.; et al. Accuracy of rapid antigen detection test for nasopharyngeal swab specimens and saliva samples in comparison with RT-PCR and viral culture for SARS-CoV-2 detection. J. Infect. Chemother. 2021, 27, 1058–1062. [Google Scholar] [CrossRef]
  142. Thakur, P.; Saxena, S.; Manchanda, V.; Rana, N.; Goel, R.; Arora, R. Utility of Antigen-Based Rapid Diagnostic Test for Detection of SARS-CoV-2 Virus in Routine Hospital Settings. Lab. Med. 2021, 52, e154–e158. [Google Scholar] [CrossRef] [PubMed]
  143. Homza, M.; Zelena, H.; Janosek, J.; Tomaskova, H.; Jezo, E.; Kloudova, A.; Mrazek, J.; Svagera, Z.; Prymula, R. Five Antigen Tests for SARS-CoV-2: Virus Viability Matters. Viruses 2021, 13, 684. [Google Scholar] [CrossRef]
  144. Shah, M.M.; Salvatore, P.P.; Ford, L.; Kamitani, E.; Whaley, M.J.; Mitchell, K.; Currie, D.W.; Morgan, C.N.; Segaloff, H.E.; Lecher, S.; et al. Performance of Repeat BinaxNOW Severe Acute Respiratory Syndrome Coronavirus 2 Antigen Testing in a Community Setting, Wisconsin, November 2020–December 2020. Clin. Infect. Dis. 2021, 73, S54–S57. [Google Scholar] [CrossRef]
  145. McKay, S.L.; Tobolowsky, F.A.; Moritz, E.D.; Hatfield, K.M.; Bhatnagar, A.; LaVoie, S.P.; Jackson, D.A.; Lecy, K.D.; Bryant-Genevier, J.; Campbell, D.; et al. Performance Evaluation of Serial SARS-CoV-2 Rapid Antigen Testing During a Nursing Home Outbreak. Ann. Intern. Med. 2021, 174, 945–951. [Google Scholar] [CrossRef] [PubMed]
  146. Yin, N.; Debuysschere, C.; Decroly, M.; Bouazza, F.Z.; Collot, V.; Martin, C.; Ponthieux, F.; Dahma, H.; Gilbert, M.; Wautier, M.; et al. SARS-CoV-2 Diagnostic Tests: Algorithm and Field Evaluation From the Near Patient Testing to the Automated Diagnostic Platform. Front. Med. 2021, 8, 650581. [Google Scholar] [CrossRef] [PubMed]
  147. Baro, B.; Rodo, P.; Ouchi, D.; Bordoy, A.E.; Saya Amaro, E.N.; Salsench, S.V.; Molinos, S.; Alemany, A.; Ubals, M.; Corbacho-Monné, M.; et al. Performance characteristics of five antigen-detecting rapid diagnostic test (Ag-RDT) for SARS-CoV-2 asymptomatic infection: A head-to-head benchmark comparison. J. Infect. 2021, 82, 269–275. [Google Scholar] [CrossRef]
  148. Caputo, V.; Bax, C.; Colantoni, L.; Peconi, C.; Termine, A.; Fabrizio, C.; Calvino, G.; Luzzi, L.; Panunzi, G.G.; Fusco, C.; et al. Comparative analysis of antigen and molecular tests for the detection of SARS-CoV-2 and related variants: A study on 4266 samples. Int. J. Infect. Dis. 2021, 108, 187–189. [Google Scholar] [CrossRef]
  149. Kenyeres, B.; Ánosi, N.; Bányai, K.; Mátyus, M.; Orosz, L.; Kiss, A.; Kele, B.; Burián, K.; Lengyel, G. Comparison of four PCR and two point of care assays used in the laboratory detection of SARS-CoV-2. J. Virol. Methods 2021, 293, 114165. [Google Scholar] [CrossRef]
  150. Häuser, F.; Sprinzl, M.F.; Dreis, K.J.; Renzaho, A.; Youhanen, S.; Kremer, W.M.; Podlech, J.; Galle, P.R.; Lackner, K.J.; Rossmann, H.; et al. Evaluation of a laboratory-based high-throughput SARS-CoV-2 antigen assay for non-COVID-19 patient screening at hospital admission. Med. Microbiol. Immunol. 2021, 210, 165–171. [Google Scholar] [CrossRef] [PubMed]
  151. Lefever, S.; Indevuyst, C.; Cuypers, L.; Dewaele, K.; Yin, N.; Cotton, F.; Padalko, E.; Oyaert, M.; Descy, J.; Cavalier, E.; et al. Comparison of the Quantitative DiaSorin Liaison Antigen Test to Reverse Transcription-PCR for the Diagnosis of COVID-19 in Symptomatic and Asymptomatic Outpatients. J. Clin. Microbiol. 2021, 59, e0037421. [Google Scholar] [CrossRef]
  152. Zacharias, M.; Stangl, V.; Thüringer, A.; Loibner, M.; Wurm, P.; Wolfgruber, S.; Zatloukal, K.; Kashofer, K.; Gorkiewicz, G. Rapid Antigen Test for Postmortem Evaluation of SARS-CoV-2 Carriage. Emerg. Infect. Dis. 2021, 27, 1734–1737. [Google Scholar] [CrossRef]
  153. Oh, S.M.; Jeong, H.; Chang, E.; Choe, P.G.; Kang, C.K.; Park, W.B.; Kim, T.S.; Kwon, W.Y.; Oh, M.D.; Kim, N.J. Clinical Application of the Standard Q COVID-19 Ag Test for the Detection of SARS-CoV-2 Infection. J. Korean Med. Sci. 2021, 36, e101. [Google Scholar] [CrossRef] [PubMed]
  154. Asai, N.; Sakanashi, D.; Ohashi, W.; Nakamura, A.; Kawamoto, Y.; Miyazaki, N.; Ohno, T.; Yamada, A.; Chida, S.; Shibata, Y.; et al. Efficacy and validity of automated quantitative chemiluminescent enzyme immunoassay for SARS-CoV-2 antigen test from saliva specimen in the diagnosis of COVID-19. J. Infect. Chemother. 2021, 27, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
  155. Kweon, O.J.; Lim, Y.K.; Kim, H.R.; Choi, Y.; Kim, M.C.; Choi, S.H.; Chung, J.W.; Lee, M.K. Evaluation of rapid SARS-CoV-2 antigen tests, AFIAS COVID-19 Ag and ichroma COVID-19 Ag, with serial nasopharyngeal specimens from COVID-19 patients. PLoS ONE 2021, 16, e0249972. [Google Scholar] [CrossRef]
  156. Menchinelli, G.; Bordi, L.; Liotti, F.M.; Palucci, I.; Capobianchi, M.R.; Sberna, G.; Lalle, E.; Romano, L.; De Angelis, G.; Marchetti, S.; et al. Lumipulse G SARS-CoV-2 Ag assay evaluation using clinical samples from different testing groups. Clin. Chem. Lab. Med. 2021, 59, 1468–1476. [Google Scholar] [CrossRef]
  157. Sood, N.; Shetgiri, R.; Rodriguez, A.; Jimenez, D.; Treminino, S.; Daflos, A.; Simon, P. Evaluation of the Abbott BinaxNOW rapid antigen test for SARS-CoV-2 infection in children: Implications for screening in a school setting. PLoS ONE 2021, 16, e0249710. [Google Scholar] [CrossRef]
  158. Epstude, J.; Skiba, M.; Harsch, I.A. Antibody titers and rapid antigen testing in elderly patients with SARS-CoV-2 pneumonia vs. staff of ICU and “COVID-19” wards. GMS Hyg. Infect. Control 2021, 16, Doc11. [Google Scholar] [CrossRef] [PubMed]
  159. Berger, A.; Nsoga, M.T.N.; Perez-Rodriguez, F.J.; Aad, Y.A.; Sattonnet-Roche, P.; Gayet-Ageron, A.; Jaksic, C.; Torriani, G.; Boehm, E.; Kronig, I.; et al. Diagnostic accuracy of two commercial SARS-CoV-2 antigen-detecting rapid tests at the point of care in community-based testing centers. PLoS ONE 2021, 16, e0248921. [Google Scholar] [CrossRef]
  160. Matsuda, E.M.; de Campos, I.B.; de Oliveira, I.P.; Colpas, D.R.; Carmo, A.; Brígido, L.F.M. Field evaluation of COVID-19 antigen tests versus RNA based detection: Potential lower sensitivity compensated by immediate results, technical simplicity, and low cost. J. Med. Virol. 2021, 93, 4405–4410. [Google Scholar] [CrossRef]
  161. Van Honacker, E.; Van Vaerenbergh, K.; Boel, A.; De Beenhouwer, H.; Leroux-Roels, I.; Cattoir, L. Comparison of five SARS-CoV-2 rapid antigen detection tests in a hospital setting and performance of one antigen assay in routine practice: A useful tool to guide isolation precautions? J. Hosp. Infect. 2021, 114, 144–152. [Google Scholar] [CrossRef]
  162. Boum, Y.; Fai, K.N.; Nikolay, B.; Mboringong, A.B.; Bebell, L.M.; Ndifon, M.; Abbah, A.; Essaka, R.; Eteki, L.; Luquero, F.; et al. Performance and operational feasibility of antigen and antibody rapid diagnostic tests for COVID-19 in symptomatic and asymptomatic patients in Cameroon: A clinical, prospective, diagnostic accuracy study. Lancet Infect. Dis. 2021, 21, 1089–1096. [Google Scholar] [CrossRef]
  163. Mboumba Bouassa, R.S.; Veyer, D.; Péré, H.; Bélec, L. Analytical performances of the point-of-care SIENNA™ COVID-19 Antigen Rapid Test for the detection of SARS-CoV-2 nucleocapsid protein in nasopharyngeal swabs: A prospective evaluation during the COVID-19 second wave in France. Int. J. Infect. Dis. 2021, 106, 8–12. [Google Scholar] [CrossRef]
  164. Stokes, W.; Berenger, B.M.; Portnoy, D.; Scott, B.; Szelewicki, J.; Singh, T.; Venner, A.A.; Turnbull, L.; Pabbaraju, K.; Shokoples, S.; et al. Clinical performance of the Abbott Panbio with nasopharyngeal, throat, and saliva swabs among symptomatic individuals with COVID-19. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1721–1726. [Google Scholar] [CrossRef]
  165. Landaas, E.T.; Storm, M.L.; Tollånes, M.C.; Barlinn, R.; Kran, A.B.; Bragstad, K.; Christensen, A.; Andreassen, T. Diagnostic performance of a SARS-CoV-2 rapid antigen test in a large, Norwegian cohort. J. Clin. Virol. 2021, 137, 104789. [Google Scholar] [CrossRef] [PubMed]
  166. Takeuchi, Y.; Akashi, Y.; Kato, D.; Kuwahara, M.; Muramatsu, S.; Ueda, A.; Notake, S.; Nakamura, K.; Ishikawa, H.; Suzuki, H. The evaluation of a newly developed antigen test (QuickNavi™-COVID19 Ag) for SARS-CoV-2: A prospective observational study in Japan. J. Infect. Chemother. 2021, 27, 890–894. [Google Scholar] [CrossRef] [PubMed]
  167. Igloi, Z.; Velzing, J.; van Beek, J.; van de Vijver, D.; Aron, G.; Ensing, R.; Benschop, K.; Han, W.; Boelsums, T.; Koopmans, M.; et al. Clinical Evaluation of Roche SD Biosensor Rapid Antigen Test for SARS-CoV-2 in Municipal Health Service Testing Site, the Netherlands. Emerg. Infect. Dis. 2021, 27, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
  168. Masiá, M.; Fernández-González, M.; Sánchez, M.; Carvajal, M.; García, J.A.; Gonzalo-Jiménez, N.; Ortiz de la Tabla, V.; Agulló, V.; Candela, I.; Guijarro, J.; et al. Nasopharyngeal Panbio COVID-19 Antigen Performed at Point-of-Care Has a High Sensitivity in Symptomatic and Asymptomatic Patients With Higher Risk for Transmission and Older Age. Open Forum Infect. Dis. 2021, 8, ofab059. [Google Scholar] [CrossRef]
  169. Jääskeläinen, A.E.; Ahava, M.J.; Jokela, P.; Szirovicza, L.; Pohjala, S.; Vapalahti, O.; Lappalainen, M.; Hepojoki, J.; Kurkela, S. Evaluation of three rapid lateral flow antigen detection tests for the diagnosis of SARS-CoV-2 infection. J. Clin. Virol. 2021, 137, 104785. [Google Scholar] [CrossRef]
  170. Olearo, F.; Nörz, D.; Heinrich, F.; Sutter, J.P.; Roedl, K.; Schultze, A.; Wiesch, J.S.Z.; Braun, P.; Oestereich, L.; Kreuels, B.; et al. Handling and accuracy of four rapid antigen tests for the diagnosis of SARS-CoV-2 compared to RT-qPCR. J. Clin. Virol. 2021, 137, 104782. [Google Scholar] [CrossRef]
  171. Ishii, T.; Sasaki, M.; Yamada, K.; Kato, D.; Osuka, H.; Aoki, K.; Morita, T.; Ishii, Y.; Tateda, K. Immunochromatography and chemiluminescent enzyme immunoassay for COVID-19 diagnosis. J. Infect. Chemother. 2021, 27, 915–918. [Google Scholar] [CrossRef]
  172. Peña-Rodríguez, M.; Viera-Segura, O.; García-Chagollán, M.; Zepeda-Nuño, J.S.; Muñoz-Valle, J.F.; Mora-Mora, J.; Espinoza-De León, G.; Bustillo-Armendáriz, G.; García-Cedillo, F.; Vega-Magaña, N. Performance evaluation of a lateral flow assay for nasopharyngeal antigen detection for SARS-CoV-2 diagnosis. J. Clin. Lab. Anal. 2021, 35, e23745. [Google Scholar] [CrossRef]
  173. Gili, A.; Paggi, R.; Russo, C.; Cenci, E.; Pietrella, D.; Graziani, A.; Stracci, F.; Mencacci, A. Evaluation of Lumipulse® G SARS-CoV-2 antigen assay automated test for detecting SARS-CoV-2 nucleocapsid protein (NP) in nasopharyngeal swabs for community and population screening. Int. J. Infect. Dis. 2021, 105, 391–396. [Google Scholar] [CrossRef]
  174. Pérez-García, F.; Romanyk, J.; Gómez-Herruz, P.; Arroyo, T.; Pérez-Tanoira, R.; Linares, M.; Pérez Ranz, I.; Labrador Ballestero, A.; Moya Gutiérrez, H.; Ruiz-Álvarez, M.J.; et al. Diagnostic performance of CerTest and Panbio antigen rapid diagnostic tests to diagnose SARS-CoV-2 infection. J. Clin. Virol. 2021, 137, 104781. [Google Scholar] [CrossRef]
  175. Kilic, A.; Hiestand, B.; Palavecino, E. Evaluation of Performance of the BD Veritor SARS-CoV-2 Chromatographic Immunoassay Test in Patients with Symptoms of COVID-19. J. Clin. Microbiol. 2021, 59, e00260-21. [Google Scholar] [CrossRef]
  176. Drain, P.K.; Ampajwala, M.; Chappel, C.; Gvozden, A.B.; Hoppers, M.; Wang, M.; Rosen, R.; Young, S.; Zissman, E.; Montano, M. A Rapid, High-Sensitivity SARS-CoV-2 Nucleocapsid Immunoassay to Aid Diagnosis of Acute COVID-19 at the Point of Care: A Clinical Performance Study. Infect. Dis. Ther. 2021, 10, 753–761. [Google Scholar] [CrossRef]
  177. Basso, D.; Aita, A.; Padoan, A.; Cosma, C.; Navaglia, F.; Moz, S.; Contran, N.; Zambon, C.F.; Maria Cattelan, A.; Plebani, M. Salivary SARS-CoV-2 antigen rapid detection: A prospective cohort study. Clin. Chim. Acta 2021, 517, 54–59. [Google Scholar] [CrossRef]
  178. Pollock, N.R.; Jacobs, J.R.; Tran, K.; Cranston, A.E.; Smith, S.; O’Kane, C.Y.; Roady, T.J.; Moran, A.; Scarry, A.; Carroll, M.; et al. Performance and Implementation Evaluation of the Abbott BinaxNOW Rapid Antigen Test in a High-Throughput Drive-Through Community Testing Site in Massachusetts. J. Clin. Microbiol. 2021, 59, e2021050832. [Google Scholar] [CrossRef] [PubMed]
  179. Ristić, M.; Nikolić, N.; Čabarkapa, V.; Turkulov, V.; Petrović, V. Validation of the Standard Q COVID-19 antigen test in Vojvodina, Serbia. PLoS ONE 2021, 16, e0247606. [Google Scholar] [CrossRef]
  180. Courtellemont, L.; Guinard, J.; Guillaume, C.; Giaché, S.; Rzepecki, V.; Seve, A.; Gubavu, C.; Baud, K.; Le Helloco, C.; Cassuto, G.N.; et al. High performance of a novel antigen detection test on nasopharyngeal specimens for diagnosing SARS-CoV-2 infection. J. Med. Virol. 2021, 93, 3152–3157. [Google Scholar] [CrossRef]
  181. Thommes, L.; Burkert, F.R.; Öttl, K.W.; Goldin, D.; Loacker, L.; Lanser, L.; Griesmacher, A.; Theurl, I.; Weiss, G.; Bellmann-Weiler, R. Comparative evaluation of four SARS-CoV-2 antigen tests in hospitalized patients. Int. J. Infect. Dis. 2021, 105, 144–146. [Google Scholar] [CrossRef]
  182. González-Donapetry, P.; García-Clemente, P.; Bloise, I.; García-Sánchez, C.; Sánchez Castellano, M.; Romero, M.P.; Gutiérrez Arroyo, A.; Mingorance, J.; de Ceano-Vivas La Calle, M.; García-Rodriguez, J. Think of the Children: Evaluation of SARS-CoV-2 Rapid Antigen Test in Pediatric Population. Pediatr. Infect. Dis. J. 2021, 40, 385–388. [Google Scholar] [CrossRef] [PubMed]
  183. Eshghifar, N.; Busheri, A.; Shrestha, R.; Beqaj, S. Evaluation of Analytical Performance of Seven Rapid Antigen Detection Kits for Detection of SARS-CoV-2 Virus. Int. J. Gen. Med. 2021, 14, 435–440. [Google Scholar] [CrossRef]
  184. Merino, P.; Guinea, J.; Muñoz-Gallego, I.; González-Donapetry, P.; Galán, J.C.; Antona, N.; Cilla, G.; Hernáez-Crespo, S.; Díaz-de Tuesta, J.L.; Gual-de Torrella, A.; et al. Multicenter evaluation of the Panbio™ COVID-19 rapid antigen-detection test for the diagnosis of SARS-CoV-2 infection. Clin. Microbiol. Infect. 2021, 27, 758–761. [Google Scholar] [CrossRef]
  185. Bulilete, O.; Lorente, P.; Leiva, A.; Carandell, E.; Oliver, A.; Rojo, E.; Pericas, P.; Llobera, J. Panbio™ rapid antigen test for SARS-CoV-2 has acceptable accuracy in symptomatic patients in primary health care. J. Infect. 2021, 82, 391–398. [Google Scholar] [CrossRef]
  186. Torres, I.; Poujois, S.; Albert, E.; Álvarez, G.; Colomina, J.; Navarro, D. Point-of-care evaluation of a rapid antigen test (CLINITEST(®) Rapid COVID-19 Antigen Test) for diagnosis of SARS-CoV-2 infection in symptomatic and asymptomatic individuals. J. Infect. 2021, 82, e11–e12. [Google Scholar] [CrossRef] [PubMed]
  187. Lindner, A.K.; Nikolai, O.; Rohardt, C.; Burock, S.; Hülso, C.; Bölke, A.; Gertler, M.; Krüger, L.J.; Gaeddert, M.; Tobian, F.; et al. Head-to-head comparison of SARS-CoV-2 antigen-detecting rapid test with professional-collected nasal versus nasopharyngeal swab. Eur. Respir J. 2021, 57, 2004430. [Google Scholar] [CrossRef] [PubMed]
  188. Hirotsu, Y.; Maejima, M.; Shibusawa, M.; Amemiya, K.; Nagakubo, Y.; Hosaka, K.; Sueki, H.; Hayakawa, M.; Mochizuki, H.; Tsutsui, T.; et al. Prospective study of 1308 nasopharyngeal swabs from 1033 patients using the LUMIPULSE SARS-CoV-2 antigen test: Comparison with RT-qPCR. Int. J. Infect. Dis. 2021, 105, 7–14. [Google Scholar] [CrossRef]
  189. Salvagno, G.L.; Gianfilippi, G.; Bragantini, D.; Henry, B.M.; Lippi, G. Clinical assessment of the Roche SARS-CoV-2 rapid antigen test. Diagnosis 2021, 8, 322–326. [Google Scholar] [CrossRef] [PubMed]
  190. Veyrenche, N.; Bolloré, K.; Pisoni, A.; Bedin, A.S.; Mondain, A.M.; Ducos, J.; Segondy, M.; Montes, B.; Pastor, P.; Morquin, D.; et al. Diagnosis value of SARS-CoV-2 antigen/antibody combined testing using rapid diagnostic tests at hospital admission. J. Med. Virol. 2021, 93, 3069–3076. [Google Scholar] [CrossRef]
  191. Porte, L.; Legarraga, P.; Iruretagoyena, M.; Vollrath, V.; Pizarro, G.; Munita, J.; Araos, R.; Weitzel, T. Evaluation of two fluorescence immunoassays for the rapid detection of SARS-CoV-2 antigen-new tool to detect infective COVID-19 patients. PeerJ 2021, 9, e10801. [Google Scholar] [CrossRef] [PubMed]
  192. Domínguez Fernández, M.; Peña Rodríguez, M.F.; Lamelo Alfonsín, F.; Bou Arévalo, G. Experience with Panbio™ rapid antigens test device for the detection of SARS-CoV-2 in nursing homes. Enferm. Infecc. Microbiol. Clin. 2021, 40, 42–43. [Google Scholar] [CrossRef]
  193. Kobayashi, R.; Murai, R.; Asanuma, K.; Fujiya, Y.; Takahashi, S. Evaluating a novel, highly sensitive, and quantitative reagent for detecting SARS-CoV-2 antigen. J. Infect. Chemother. 2021, 27, 800–807. [Google Scholar] [CrossRef]
  194. Houston, H.; Gupta-Wright, A.; Toke-Bjolgerud, E.; Biggin-Lamming, J.; John, L. Diagnostic accuracy and utility of SARS-CoV-2 antigen lateral flow assays in medical admissions with possible COVID-19. J. Hosp. Infect. 2021, 110, 203–205. [Google Scholar] [CrossRef]
  195. Ciotti, M.; Maurici, M.; Pieri, M.; Andreoni, M.; Bernardini, S. Performance of a rapid antigen test in the diagnosis of SARS-CoV-2 infection. J. Med. Virol. 2021, 93, 2988–2991. [Google Scholar] [CrossRef]
  196. Okoye, N.C.; Barker, A.P.; Curtis, K.; Orlandi, R.R.; Snavely, E.A.; Wright, C.; Hanson, K.E.; Pearson, L.N. Performance Characteristics of BinaxNOW COVID-19 Antigen Card for Screening Asymptomatic Individuals in a University Setting. J. Clin. Microbiol. 2021, 59, e03282-20. [Google Scholar] [CrossRef] [PubMed]
  197. James, A.E.; Gulley, T.; Kothari, A.; Holder, K.; Garner, K.; Patil, N. Performance of the BinaxNOW coronavirus disease 2019 (COVID-19) Antigen Card test relative to the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay among symptomatic and asymptomatic healthcare employees. Infect. Control Hosp. Epidemiol. 2022, 43, 99–101. [Google Scholar] [CrossRef]
  198. Villaverde, S.; Domínguez-Rodríguez, S.; Sabrido, G.; Pérez-Jorge, C.; Plata, M.; Romero, M.P.; Grasa, C.D.; Jiménez, A.B.; Heras, E.; Broncano, A.; et al. Diagnostic Accuracy of the Panbio Severe Acute Respiratory Syndrome Coronavirus 2 Antigen Rapid Test Compared with Reverse-Transcriptase Polymerase Chain Reaction Testing of Nasopharyngeal Samples in the Pediatric Population. J. Pediatr. 2021, 232, 287–289.e284. [Google Scholar] [CrossRef] [PubMed]
  199. Pekosz, A.; Parvu, V.; Li, M.; Andrews, J.C.; Manabe, Y.C.; Kodsi, S.; Gary, D.S.; Roger-Dalbert, C.; Leitch, J.; Cooper, C.K. Antigen-Based Testing but Not Real-Time Polymerase Chain Reaction Correlates with Severe Acute Respiratory Syndrome Coronavirus 2 Viral Culture. Clin. Infect. Dis. 2021, 73, e2861–e2866. [Google Scholar] [CrossRef] [PubMed]
  200. Kohmer, N.; Toptan, T.; Pallas, C.; Karaca, O.; Pfeiffer, A.; Westhaus, S.; Widera, M.; Berger, A.; Hoehl, S.; Kammel, M.; et al. The Comparative Clinical Performance of Four SARS-CoV-2 Rapid Antigen Tests and Their Correlation to Infectivity In Vitro. J. Clin. Med. 2021, 10, 328. [Google Scholar] [CrossRef] [PubMed]
  201. Prince-Guerra, J.L.; Almendares, O.; Nolen, L.D.; Gunn, J.K.L.; Dale, A.P.; Buono, S.A.; Deutsch-Feldman, M.; Suppiah, S.; Hao, L.; Zeng, Y.; et al. Evaluation of Abbott BinaxNOW Rapid Antigen Test for SARS-CoV-2 Infection at Two Community-Based Testing Sites—Pima County, Arizona, 3–17 November 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 100–105. [Google Scholar] [CrossRef]
  202. Möckel, M.; Corman, V.M.; Stegemann, M.S.; Hofmann, J.; Stein, A.; Jones, T.C.; Gastmeier, P.; Seybold, J.; Offermann, R.; Bachmann, U.; et al. SARS-CoV-2 antigen rapid immunoassay for diagnosis of COVID-19 in the emergency department. Biomarkers 2021, 26, 213–220. [Google Scholar] [CrossRef]
  203. Rottenstreich, A.; Zarbiv, G.; Kabiri, D.; Porat, S.; Sompolinsky, Y.; Reubinoff, B.; Benenson, S.; Oster, Y. Rapid antigen detection testing for universal screening for severe acute respiratory syndrome coronavirus 2 in women admitted for delivery. Am. J. Obstet. Gynecol. 2021, 224, 539–540. [Google Scholar] [CrossRef]
  204. Favresse, J.; Gillot, C.; Oliveira, M.; Cadrobbi, J.; Elsen, M.; Eucher, C.; Laffineur, K.; Rosseels, C.; Van Eeckhoudt, S.; Nicolas, J.B.; et al. Head-to-Head Comparison of Rapid and Automated Antigen Detection Tests for the Diagnosis of SARS-CoV-2 Infection. J. Clin. Med. 2021, 10, 265. [Google Scholar] [CrossRef]
  205. Osterman, A.; Baldauf, H.M.; Eletreby, M.; Wettengel, J.M.; Afridi, S.Q.; Fuchs, T.; Holzmann, E.; Maier, A.; Döring, J.; Grzimek-Koschewa, N.; et al. Evaluation of two rapid antigen tests to detect SARS-CoV-2 in a hospital setting. Med. Microbiol. Immunol. 2021, 210, 65–72. [Google Scholar] [CrossRef]
  206. Pollock, N.R.; Savage, T.J.; Wardell, H.; Lee, R.A.; Mathew, A.; Stengelin, M.; Sigal, G.B. Correlation of SARS-CoV-2 Nucleocapsid Antigen and RNA Concentrations in Nasopharyngeal Samples from Children and Adults Using an Ultrasensitive and Quantitative Antigen Assay. J. Clin. Microbiol. 2021, 59, e03077-20. [Google Scholar] [CrossRef]
  207. Aoki, K.; Nagasawa, T.; Ishii, Y.; Yagi, S.; Okuma, S.; Kashiwagi, K.; Maeda, T.; Miyazaki, T.; Yoshizawa, S.; Tateda, K. Clinical validation of quantitative SARS-CoV-2 antigen assays to estimate SARS-CoV-2 viral loads in nasopharyngeal swabs. J. Infect. Chemother. 2021, 27, 613–616. [Google Scholar] [CrossRef]
  208. Torres, I.; Poujois, S.; Albert, E.; Colomina, J.; Navarro, D. Evaluation of a rapid antigen test (Panbio™ COVID-19 Ag rapid test device) for SARS-CoV-2 detection in asymptomatic close contacts of COVID-19 patients. Clin. Microbiol. Infect. 2021, 27, 636.e631–636.e634. [Google Scholar] [CrossRef]
  209. Alemany, A.; Baró, B.; Ouchi, D.; Rodó, P.; Ubals, M.; Corbacho-Monné, M.; Vergara-Alert, J.; Rodon, J.; Segalés, J.; Esteban, C.; et al. Analytical and clinical performance of the panbio COVID-19 antigen-detecting rapid diagnostic test. J. Infect. 2021, 82, 186–230. [Google Scholar] [CrossRef] [PubMed]
  210. Rastawicki, W.; Gierczyński, R.; Juszczyk, G.; Mitura, K.; Henry, B.M. Evaluation of PCL rapid point of care antigen test for detection of SARS-CoV-2 in nasopharyngeal swabs. J. Med. Virol. 2021, 93, 1920–1922. [Google Scholar] [CrossRef]
  211. Yamamoto, K.; Suzuki, M.; Yamada, G.; Sudo, T.; Nomoto, H.; Kinoshita, N.; Nakamura, K.; Tsujimoto, Y.; Kusaba, Y.; Morita, C.; et al. Utility of the antigen test for coronavirus disease 2019: Factors influencing the prediction of the possibility of disease transmission. Int. J. Infect. Dis. 2021, 104, 65–72. [Google Scholar] [CrossRef]
  212. Kashiwagi, K.; Ishii, Y.; Aoki, K.; Yagi, S.; Maeda, T.; Miyazaki, T.; Yoshizawa, S.; Aoyagi, K.; Tateda, K. Immunochromatographic test for the detection of SARS-CoV-2 in saliva. J. Infect. Chemother. 2021, 27, 384–386. [Google Scholar] [CrossRef] [PubMed]
  213. Pilarowski, G.; Lebel, P.; Sunshine, S.; Liu, J.; Crawford, E.; Marquez, C.; Rubio, L.; Chamie, G.; Martinez, J.; Peng, J.; et al. Performance Characteristics of a Rapid Severe Acute Respiratory Syndrome Coronavirus 2 Antigen Detection Assay at a Public Plaza Testing Site in San Francisco. J. Infect. Dis. 2021, 223, 1139–1144. [Google Scholar] [CrossRef]
  214. Aoki, K.; Nagasawa, T.; Ishii, Y.; Yagi, S.; Kashiwagi, K.; Miyazaki, T.; Tateda, K. Evaluation of clinical utility of novel coronavirus antigen detection reagent, Espline® SARS-CoV-2. J. Infect. Chemother. 2021, 27, 319–322. [Google Scholar] [CrossRef]
  215. Pray, I.W.; Ford, L.; Cole, D.; Lee, C.; Bigouette, J.P.; Abedi, G.R.; Bushman, D.; Delahoy, M.J.; Currie, D.; Cherney, B.; et al. Performance of an Antigen-Based Test for Asymptomatic and Symptomatic SARS-CoV-2 Testing at Two University Campuses—Wisconsin, September–October 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 69, 1642–1647. [Google Scholar] [CrossRef] [PubMed]
  216. Strömer, A.; Rose, R.; Schäfer, M.; Schön, F.; Vollersen, A.; Lorentz, T.; Fickenscher, H.; Krumbholz, A. Performance of a Point-of-Care Test for the Rapid Detection of SARS-CoV-2 Antigen. Microorganisms 2020, 9, 58. [Google Scholar] [CrossRef]
  217. Toptan, T.; Eckermann, L.; Pfeiffer, A.E.; Hoehl, S.; Ciesek, S.; Drosten, C.; Corman, V.M. Evaluation of a SARS-CoV-2 rapid antigen test: Potential to help reduce community spread? J. Clin. Virol. 2021, 135, 104713. [Google Scholar] [CrossRef]
  218. Turcato, G.; Zaboli, A.; Pfeifer, N.; Ciccariello, L.; Sibilio, S.; Tezza, G.; Ausserhofer, D. Clinical application of a rapid antigen test for the detection of SARS-CoV-2 infection in symptomatic and asymptomatic patients evaluated in the emergency department: A preliminary report. J. Infect. 2021, 82, e14–e16. [Google Scholar] [CrossRef]
  219. Mak, G.C.K.; Lau, S.S.Y.; Wong, K.K.Y.; Chow, N.L.S.; Lau, C.S.; Lam, E.T.K.; Chan, R.C.W.; Tsang, D.N.C. Evaluation of rapid antigen detection kit from the WHO Emergency Use List for detecting SARS-CoV-2. J. Clin. Virol. 2021, 134, 104712. [Google Scholar] [CrossRef] [PubMed]
  220. Zhang, C.; Zhou, L.; Du, K.; Zhang, Y.; Wang, J.; Chen, L.; Lyu, Y.; Li, J.; Liu, H.; Huo, J.; et al. Foundation and Clinical Evaluation of a New Method for Detecting SARS-CoV-2 Antigen by Fluorescent Microsphere Immunochromatography. Front. Cell Infect. Microbiol. 2020, 10, 553837. [Google Scholar] [CrossRef]
  221. Agulló, V.; Fernández-González, M.; Ortiz de la Tabla, V.; Gonzalo-Jiménez, N.; García, J.A.; Masiá, M.; Gutiérrez, F. Evaluation of the rapid antigen test Panbio COVID-19 in saliva and nasal swabs in a population-based point-of-care study. J. Infect. 2021, 82, 186–230. [Google Scholar] [CrossRef]
  222. Tanimoto, T.; Matsumura, M.; Tada, S.; Fujita, S.; Ueno, S.; Hamai, K.; Omoto, T.; Maeda, H.; Nishisaka, T.; Ishikawa, N. Need for a high-specificity test for confirming weakly positive result in an immunochromatographic SARS-CoV-2-specific antigen test: A case report. J. Microbiol. Immunol. Infect. 2021, 54, 534–535. [Google Scholar] [CrossRef]
  223. Lindner, A.K.; Nikolai, O.; Kausch, F.; Wintel, M.; Hommes, F.; Gertler, M.; Krüger, L.J.; Gaeddert, M.; Tobian, F.; Lainati, F.; et al. Head-to-head comparison of SARS-CoV-2 antigen-detecting rapid test with self-collected nasal swab versus professional-collected nasopharyngeal swab. Eur. Respir. J. 2021, 57, 2003961. [Google Scholar] [CrossRef]
  224. Abdelrazik, A.M.; Elshafie, S.M.; Abdelaziz, H.M. Potential Use of Antigen-Based Rapid Test for SARS-CoV-2 in Respiratory Specimens in Low-Resource Settings in Egypt for Symptomatic Patients and High-Risk Contacts. Lab. Med. 2021, 52, e46–e49. [Google Scholar] [CrossRef] [PubMed]
  225. Weitzel, T.; Legarraga, P.; Iruretagoyena, M.; Pizarro, G.; Vollrath, V.; Araos, R.; Munita, J.M.; Porte, L. Comparative evaluation of four rapid SARS-CoV-2 antigen detection tests using universal transport medium. Travel Med. Infect. Dis. 2021, 39, 101942. [Google Scholar] [CrossRef] [PubMed]
  226. Winkel, B.; Schram, E.; Gremmels, H.; Debast, S.; Schuurman, R.; Wensing, A.; Bonten, M.; Goedhart, E.; Hofstra, M. Screening for SARS-CoV-2 infection in asymptomatic individuals using the Panbio COVID-19 antigen rapid test (Abbott) compared with RT-PCR: A prospective cohort study. BMJ Open 2021, 11, e048206. [Google Scholar] [CrossRef] [PubMed]
  227. Hoehl, S.; Schenk, B.; Rudych, O.; Göttig, S.; Foppa, I.; Kohmer, N.; Karaca, O.; Toptan, T.; Ciesek, S. At-home self-testing of teachers with a SARS-CoV-2 rapid antigen test to reduce potential transmissions in schools. medRxiv 2020. [Google Scholar] [CrossRef]
  228. Kannian, P.; Lavanya, C.; Ravichandran, K.; Jayaraman, B.G.; Mahanathi, P.; Ashwini, V.; Kumarasamy, N.; Rajan, G.; Ranganathan, K.; Challacombe, S.J.; et al. Detection of SARS-CoV2 antigen in human saliva may be a reliable tool for large scale screening. medRxiv 2020. [Google Scholar] [CrossRef]
  229. Lindner, A.K.; Nikolai, O.; Rohardt, C.; Kausch, F.; Wintel, M.; Gertler, M.; Burock, S.; Hörig, M.; Bernhard, J.; Tobian, F.; et al. SARS-CoV-2 patient self-testing with an antigen-detecting rapid test: A head-to-head comparison with professional testing. medRxiv 2021. [Google Scholar] [CrossRef]
  230. Filgueiras, P.S.; Corsini, C.A.; Almeida, N.B.F.; Assis, J.V.; Pedrosa, M.L.C.; de Oliveira, A.K.; Amorim, R.N.H.; de Miranda, D.A.P.; Coutinho, L.A.; Gomes, S.V.C.; et al. COVID-19 Rapid Antigen Test at hospital admission associated to the knowledge of individual risk factors allow overcoming the difficulty of managing suspected patients in hospitals COVID-19 Rapid Antigen Test facilitates the management of suspected patients on hospital admission. medRxiv 2021. [Google Scholar] [CrossRef]
  231. Peto, T.; Team, U.C.-L.F.O. COVID-19: Rapid Antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation for mass-testing. medRxiv 2021. [Google Scholar] [CrossRef]
  232. Jakobsen, K.K.; Jensen, J.S.; Todsen, T.; Lippert, F.; Martel, C.J.-M.; Klokker, M.; von Buchwald, C. Detection of SARS-CoV-2 infection by rapid antigen test in comparison with RT-PCR in a public setting. medRxiv 2021. [Google Scholar] [CrossRef]
  233. Miyakawa, K.; Funabashi, R.; Yamaoka, Y.; Jeremiah, S.S.; Katada, J.; Wada, A.; Takei, T.; Shimizu, K.; Ozawa, H.; Kawakami, C.; et al. SARS-CoV-2 antigen rapid diagnostic test enhanced with silver amplification technology. medRxiv 2021. [Google Scholar] [CrossRef]
  234. Pollock, N.R.; Tran, K.; Jacobs, J.R.; Cranston, A.E.; Smith, S.; O’Kane, C.Y.; Roady, T.J.; Moran, A.; Scarry, A.; Carroll, M.; et al. Performance and Operational Evaluation of the Access Bio CareStart Rapid Antigen Test in a High-Throughput Drive-Through Community Testing Site in Massachusetts. Open Forum Infect. Dis. 2021, 8, ofab243. [Google Scholar] [CrossRef] [PubMed]
  235. Shidlovskaya, E.V.; Kuznetsova, N.A.; Divisenko, E.V.; Nikiforova, M.A.; Siniavin, A.E.; Ogarkova, D.A.; Shagaev, A.V.; Semashko, M.A.; Tkachuk, A.P.; Burgasova, O.A.; et al. The Value of Rapid Antigen Tests to Identify Carriers of Viable SARS-CoV-2. medRxiv 2021. [Google Scholar] [CrossRef]
  236. Faíco-Filho, K.S.; Finamor Júnior, F.E.; Vinícius Leão Moreira, L.; Lins, P.R.G.; Justo, A.F.O.; Bellei, N. Evaluation of the Panbio™ COVID-19 Ag Rapid Test at an Emergency Room in a Hospital in São Paulo, Brazil. medRxiv 2021. [Google Scholar] [CrossRef]
  237. Schuit, E.; Veldhuijzen, I.; Venekamp, R.; van den Bijllaardt, W.; Pas, S.; Lodder, E.; Molenkamp, R.; GeurtsvanKessel, C.; Velzing, J.; Huisman, R.; et al. Diagnostic accuracy of rapid antigen tests in pre-/asymptomatic close contacts of individuals with a confirmed SARS-CoV-2 infection. medRxiv 2021. [Google Scholar] [CrossRef]
  238. Ducrest, P.J. Development and Evaluation of a new Swiss Made SARS-CoV-2 antigen-detecting rapid test. medRxiv 2021. [Google Scholar] [CrossRef]
  239. Del Vecchio, C.; Brancaccio, G.; Brazzale, A.R.; Lavezzo, E.; Onelia, F.; Franchin, E.; Manuto, L.; Bianca, F.; Cianci, V.; Cattelan, A.; et al. Emergence of N antigen SARS-CoV-2 genetic variants escaping detection of antigenic tests. medRxiv 2021. [Google Scholar] [CrossRef]
  240. Bonde, J.; Ejegod, D.; Pedersen, H.; Smith, B.; Cortes, D.; Leding, C.; Thomsen, T.; Benfield, T.; Schnieder, U.V.; Tingleff, J.; et al. Clinical validation of point-of-care SARS-CoV-2 BD Veritor antigen test by a single throat swab for rapid COVID-19 status on hospital patients predominantly without overt COVID symptoms. medRxiv 2021. [Google Scholar] [CrossRef]
  241. Igloi, Z.; Velzing, J.; Huisman, R.; Geurtsvankessel, C.; Comvalius, A.; van Beek, J.; Ensing, R.; Boelsums, T.; Koopmans, M.; Molenkamp, R. Clinical evaluation of the SD Biosensor saliva antigen rapid test with symptomatic and asymptomatic, non-hospitalized patients. medRxiv 2021. [Google Scholar] [CrossRef]
  242. Thell, R.; Kallab, V.; Weinhappel, W.; Mueckstein, W.; Heschl, L.; Heschl, M.; Korsatko, S.; Toedling, F.; Blaschke, A.; Herzog, T.; et al. Evaluation of a novel, rapid antigen detection test for the diagnosis of SARS-CoV-2. medRxiv 2021. [Google Scholar] [CrossRef]
  243. Pollock, N.R.; Berlin, D.; Smole, S.C.; Madoff, L.C.; Brown, C.; Henderson, K.; Larsen, E.; Hay, J.; Gabriel, S.; Gawande, A.A.; et al. Implementation of SARS-CoV2 Screening in K-12 Schools Using In-School Pooled Molecular Testing and Deconvolution by Rapid Antigen Test. J. Clin. Microbiol. 2021, 59, e0112321. [Google Scholar] [CrossRef] [PubMed]
  244. Hagbom, M.; Carmona-Vicente, N.; Sharma, S.; Olsson, H.; Jämtberg, M.; Nilsdotter-Augustinsson, Å.; Sjöwall, J.; Nordgren, J. Evaluation of SARS-CoV-2 rapid antigen diagnostic tests for saliva samples. medRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
  245. Thirion-Romero, I.; Guerrero-Zúñiga, S.; Arias-Mendoza, A.; Cornejo-Tjuárez, D.P.; Meza-Meneses, P.; Torres-Erazo, D.S.; Hernández, T.; Galindo-Fraga, A.; Villegas-Mota, I.; Sepúlveda-Delgado, J.; et al. Evaluation of a rapid antigen test for SARS-CoV-2 in symptomatic patients and their contacts: A multicenter study. medRxiv 2021. [Google Scholar] [CrossRef]
  246. Chiu, R.Y.T.; Kojima, N.; Mosley, G.L.; Cheng, K.K.; Pereira, D.Y.; Brobeck, M.; Chan, T.L.; Zee, J.S.; Kittur, H.; Chung, C.Y.T.; et al. Evaluation of the INDICAID COVID-19 Rapid Antigen Test in Symptomatic Populations and Asymptomatic Community Testing. Microbiol. Spectr. 2021, 9, e0034221. [Google Scholar] [CrossRef] [PubMed]
  247. Abusrewil, Z.; Alhudiri, I.M.; Kaal, H.H.; El Meshri, S.E.; Ebrahim, F.O.; Dalyoum, T.; Efrefer, A.A.; Ibrahim, K.; Elfghi, M.B.; Abusrewil, S.; et al. Time scale performance of rapid antigen testing for SARS-CoV-2: Evaluation of 10 rapid antigen assays. J. Med. Virol. 2021, 93, 6512–6518. [Google Scholar] [CrossRef] [PubMed]
  248. Muthamia, E.; Mungai, S.; Mungai, M.; Bandawe, G.; Qadri, F.; Kawser, Z.; Lockman, S.; Ivers, L.C.; Walt, D.; Suliman, S.; et al. Assessment of performance and implementation characteristics of rapid point of care SARS-CoV-2 antigen testing. medRxiv 2021. [Google Scholar] [CrossRef]
  249. Abdul-Mumin, A.; Abubakari, A.; Agbozo, F.; Abdul-Karim, A.; Nuertey, B.D.; Mumuni, K.; Heuschen, A.-K.; Hennig, L.; Denkinger, C.M.; Müller, O.; et al. Field evaluation of specificity and sensitivity of a standard SARS-CoV-2 antigen rapid diagnostic test: A prospective study at a teaching hospital in Northern Ghana. medRxiv 2021. [Google Scholar] [CrossRef]
  250. Akashi, Y.; Kiyasu, Y.; Takeuchi, Y.; Kato, D.; Kuwahara, M.; Muramatsu, S.; Ueda, A.; Notake, S.; Nakamura, K.; Ishikawa, H.; et al. Evaluation and clinical implications of the time to a positive results of antigen testing for SARS-CoV-2. J. Infect. Chemother. 2022, 28, 248–251. [Google Scholar] [CrossRef] [PubMed]
  251. Lindner, A.K.; Krüger, L.J.; Nikolai, O.; Klein, J.A.F.; Rössig, H.; Schnitzler, P.; Corman, V.M.; Jones, T.C.; Tobian, F.; Gaeddert, M.; et al. SARS-CoV-2 variant of concern B.1.1.7: Diagnostic accuracy of three antigen-detecting rapid tests. medRxiv 2021. [Google Scholar] [CrossRef]
  252. Suliman, S.; Matias, W.R.; Fulcher, I.R.; Molano, F.J.; Collins, S.; Uceta, E.; Zhu, J.; Paxton, R.M.; Gonsalves, S.F.; Harden, M.V.; et al. Evaluation of the Access Bio CareStart™ rapid SARS-CoV-2 antigen test in asymptomatic individuals tested at a community mass-testing program in Western Massachusetts. medRxiv 2021. [Google Scholar] [CrossRef]
  253. Bruins, M.J.; dos Santos, C.O.; Spoelman-Lunsche, M.; van den Bos-Kromhout, M.I.; Debast, S.B. Evaluation of the Panbio rapid antigen test for COVID-19 diagnosis in symptomatic health care workers. medRxiv 2021. [Google Scholar] [CrossRef]
  254. Ford, L.; Whaley, M.J.; Shah, M.M.; Salvatore, P.P.; Segaloff, H.E.; Delaney, A.; Currie, D.W.; Boyle-Estheimer, L.; O’Hegarty, M.; Morgan, C.N.; et al. Antigen Test Performance Among Children and Adults at a SARS-CoV-2 Community Testing Site. J. Pediatric Infect. Dis. Soc. 2021, 10, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
  255. Koskinen, J.M.; Antikainen, P.; Hotakainen, K.; Haveri, A.; Ikonen, N.; Savolainen-Kopra, C.; Sundström, K.; Koskinen, J.O. Clinical validation of automated and rapid mariPOC SARS-CoV-2 antigen test. Sci. Rep. 2021, 11, 20363. [Google Scholar] [CrossRef]
  256. Nikolai, O.; Rohardt, C.; Tobian, F.; Junge, A.; Corman, V.M.; Jones, T.C.; Gaeddert, M.; Lainati, F.; Sacks, J.A.; Seybold, J.; et al. Anterior nasal versus nasal mid-turbinate sampling for a SARS-CoV-2 antigen-detecting rapid test: Does localisation or professional collection matter? Infect. Dis. 2021, 53, 947–952. [Google Scholar] [CrossRef] [PubMed]
  257. Stohr, J.J.J.M.; Zwart, V.F.; Goderski, G.; Meijer, A.; Nagel-Imming, C.R.S.; Kluytmans-van den Bergh, M.F.Q.; Pas, S.D.; van den Oetelaar, F.; Hellwich, M.; Gan, K.H.; et al. Self-testing for the detection of SARS-CoV-2 infection with rapid antigen tests. medRxiv 2021. [Google Scholar] [CrossRef]
  258. Bullard, J.; Dust, K.; Funk, D.; Strong, J.E.; Alexander, D.; Garnett, L.; Boodman, C.; Bello, A.; Hedley, A.; Schiffman, Z.; et al. Predicting Infectious Severe Acute Respiratory Syndrome Coronavirus 2 From Diagnostic Samples. Clin. Infect. Dis. 2020, 71, 2663–2666. [Google Scholar] [CrossRef] [PubMed]
  259. Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A.E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe 2021, 2, e13–e22. [Google Scholar] [CrossRef]
  260. Dinnes, J.; Deeks, J.J.; Berhane, S.; Taylor, M.; Adriano, A.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J.; et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2021, 3, Cd013705. [Google Scholar] [CrossRef] [PubMed]
  261. Khandker, S.S.; Nik Hashim, N.H.; Deris, Z.Z.; Shueb, R.H.; Islam, M.A. Diagnostic Accuracy of Rapid Antigen Test Kits for Detecting SARS-CoV-2: A Systematic Review and Meta-Analysis of 17,171 Suspected COVID-19 Patients. J. Clin. Med. 2021, 10, 3493. [Google Scholar] [CrossRef]
  262. French, S.D.; McDonald, S.; McKenzie, J.E.; Green, S.E. Investing in updating: How do conclusions change when Cochrane systematic reviews are updated? BMC Med. Res. Methodol. 2005, 5, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  263. Moher, D.; Tsertsvadze, A.; Tricco, A.C.; Eccles, M.; Grimshaw, J.; Sampson, M.; Barrowman, N. When and how to update systematic reviews. Cochrane Database Syst. Rev. 2008, 2008, Mr000023. [Google Scholar] [CrossRef]
  264. Ahmadzai, N.; Newberry, S.J.; Maglione, M.A.; Tsertsvadze, A.; Ansari, M.T.; Hempel, S.; Motala, A.; Tsouros, S.; Schneider Chafen, J.J.; Shanman, R.; et al. A surveillance system to assess the need for updating systematic reviews. Syst. Rev. 2013, 2, 104. [Google Scholar] [CrossRef] [Green Version]
  265. Moher, D.; Tsertsvadze, A.; Tricco, A.C.; Eccles, M.; Grimshaw, J.; Sampson, M.; Barrowman, N. A systematic review identified few methods and strategies describing when and how to update systematic reviews. J. Clin. Epidemiol. 2007, 60, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
  266. Elliott, J.H.; Synnot, A.; Turner, T.; Simmonds, M.; Akl, E.A.; McDonald, S.; Salanti, G.; Meerpohl, J.; MacLehose, H.; Hilton, J.; et al. Living systematic review: 1. Introduction-the why, what, when, and how. J. Clin. Epidemiol. 2017, 91, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  267. Elliott, J.H.; Turner, T.; Clavisi, O.; Thomas, J.; Higgins, J.P.T.; Mavergames, C.; Gruen, R.L. Living Systematic Reviews: An Emerging Opportunity to Narrow the Evidence-Practice Gap. PLoS Med. 2014, 11, e1001603. [Google Scholar] [CrossRef] [Green Version]
  268. Centers for Disease Control and Prevention Common Investigation Protocol for Investigating Suspected SARS-CoV-2 Reinfection. Available online: https://www.cdc.gov/coronavirus/2019-ncov/php/reinfection.html (accessed on 18 May 2022).
  269. Centers for Disease Control and Prevention (CDC). Guidance for Antigen Testing for SARS-CoV-2 for Healthcare Providers Testing Individuals in the Community. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antigen-tests-guidelines.html (accessed on 4 April 2022).
  270. Larremore, D.B.; Wilder, B.; Lester, E.; Shehata, S.; Burke, J.M.; Hay, J.A.; Tambe, M.; Mina, M.J.; Parker, R. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci. Adv. 2021, 7, eabd5393. [Google Scholar] [CrossRef]
  271. Arora, S.; Grover, V.; Saluja, P.; Algarni, Y.A.; Saquib, S.A.; Asif, S.M.; Batra, K.; Alshahrani, M.Y.; Das, G.; Jain, R.; et al. Literature Review of Omicron: A Grim Reality Amidst COVID-19. Microorganisms 2022, 10, 451. [Google Scholar] [CrossRef] [PubMed]
  272. Food and Drug Administration. Omicron variant: Impact on Antigen Diagnostic Tests. Available online: https://www.fda.gov/medical-devices/coronavirus-COVID-19-and-medical-devices/SARS-CoV-2-viral-mutations-impact-COVID-19-tests#omicronvariantimpact (accessed on 28 December 2021).
  273. Regan, J.; Flynn, J.P.; Choudhary, M.C.; Uddin, R.; Lemieux, J.; Boucau, J.; Bhattacharyya, R.P.; Barczak, A.K.; Li, J.Z.; Siedner, M.J. Detection of the Omicron Variant Virus with the Abbott BinaxNow SARS-CoV-2 Rapid Antigen Assay. Open Forum Infect. Dis. 2022, 9, ofac022. [Google Scholar] [CrossRef] [PubMed]
  274. Salcedo, N.; Nandu, N.; Boucau, J.; Herrera, B.B. Detection of SARS-CoV-2 Omicron, Delta, Alpha and Gamma variants using a rapid antigen test. medRxiv 2022. [Google Scholar] [CrossRef]
  275. de Michelena, P.; Torres, I.; Ramos-García, Á.; Gozalbes, V.; Ruiz, N.; Sanmartín, A.; Botija, P.; Poujois, S.; Huntley, D.; Albert, E.; et al. Real-life performance of a COVID-19 rapid antigen detection test targeting the SARS-CoV-2 nucleoprotein for diagnosis of COVID-19 due to the Omicron variant. J. Infect. 2022, 84, e64–e66. [Google Scholar] [CrossRef] [PubMed]
  276. Stanley, S.; Hamel, D.J.; Wolf, I.D.; Riedel, S.; Dutta, S.; Cheng, A.; Kirby, J.E.; Kanki, P.J. Limit of Detection for Rapid Antigen Testing of the SARS-CoV-2 Omicron Variant. medRxiv 2022. [Google Scholar] [CrossRef]
  277. Deerain, J.; Druce, J.; Tran, T.; Batty, M.; Yoga, Y.; Fennell, M.; Dwyer, D.E.; Kok, J.; Williamson, D.A. Assessment of the Analytical Sensitivity of 10 Lateral Flow Devices against the SARS-CoV-2 Omicron Variant. J. Clin. Microbiol. 2022, 60, e0247921. [Google Scholar] [CrossRef] [PubMed]
  278. Diederichs, M.; Glawion, R.; Kremsner, P.G.; Mitze, T.; Müller, G.J.; Papies, D.; Schulz, F.; Wälde, K. Is large-scale rapid CoV-2 testing a substitute for lockdowns? PLoS ONE 2022, 17, e0265207. [Google Scholar] [CrossRef]
  279. Mathuria, J.P.; Yadav, R. Laboratory diagnosis of SARS-CoV-2—A review of current methods. J. Infect. Public Health 2020, 13, 901–905. [Google Scholar] [CrossRef]
Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.
Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.
Diagnostics 12 01388 g001
Figure 2. Performance of POC (LFIA and FIA) and laboratory (CLEIA) antigen-based methods in terms of sensitivity. All included assays in the meta-analysis use samples with Ct < 40 and test cumulatively both the nucleocapsid and Spike antigen. Numbers above the bars depict sensitivity values/number of studies included in each meta-analysis.
Figure 2. Performance of POC (LFIA and FIA) and laboratory (CLEIA) antigen-based methods in terms of sensitivity. All included assays in the meta-analysis use samples with Ct < 40 and test cumulatively both the nucleocapsid and Spike antigen. Numbers above the bars depict sensitivity values/number of studies included in each meta-analysis.
Diagnostics 12 01388 g002
Figure 3. Performance of LFIA and FIA methods (N antigen-based) in terms of sensitivity on NSP samples in symptomatic vs. asymptomatic persons. Included assays in the meta-analysis are performed with positive samples for either Ct < 30 or Ct < 40. Numbers above the bars depict sensitivity values/number of studies included in each meta-analysis.
Figure 3. Performance of LFIA and FIA methods (N antigen-based) in terms of sensitivity on NSP samples in symptomatic vs. asymptomatic persons. Included assays in the meta-analysis are performed with positive samples for either Ct < 30 or Ct < 40. Numbers above the bars depict sensitivity values/number of studies included in each meta-analysis.
Diagnostics 12 01388 g003
Table 1. Characteristics of the 235 studies included in the meta-analysis.
Table 1. Characteristics of the 235 studies included in the meta-analysis.
AuthorCountry of StudyAgType of SampleAg Detection Method/Virus
Culture Data
Kit NameKit CompanyCt Values TestedSignal
Detection [Rapid
(w/wo
Detector)/Quick]
Total
Individuals
CasesControls
Mak et al. [48]ChinaN1. nsp
2. ts
1. LFIA
2. LFIA
3. LFIA/virus culture data
1. COVID-19 Ag Respi-Strip
2. NADAL COVID-19 Ag Test
3. Standard Q COVID-19 Ag
1. Coris Bioconcept, Belgium
2. Nal Von Minden GmbH, Germany
3. SD Biosensor, Korea
up to 20/up to 30/up to 40/0–20/20–30/30–40Rapid3535NA
Linares et al. [49]SpainNnspLFIAPanbio COVID-19 Ag Rapid Test DeviceAbbott Rapid Diagnostic Jena GmbH, Jena, GermanyUp to 40Rapid25560NA
Gupta et al. [50]IndiaNnspLFIAStandard Q rapid antigen detection testSD Biosensor, Inc., GurugramUp to 40Rapid33077253
Fenollar et al. [51]FranceNnspLFIAPANBIO COVID-19 Ag rapid test deviceAbbott, USAUp to 40Rapid341204137
Nalumansi et al. [52]UgandaNnspLFIASTANDARD Q COVID-19 Ag TestSD -Biosensor, Republic of KoreaUp to 30/up to 40/30–40Rapid26290172
Parada-Ricart et al.
[53]
SpainNnspFIA2019-nCoV Antigen Rapid Test Kit (FIA)Shenzhen Bioeasy Biotechnology CO LTD, ChinaUp to 40Rapid/detector17226146
Lee et al.
[54]
KoreaSnspLFIA/virus culture dataIn-house test Up to 40Rapid/detector835
Cerutti et al.
[55]
ItalyNnspLFIASTANDARD Q COVID19 AgSD-Biosensor, RELAB, IUp to 40Rapid330109221
Diao et al.
[56]
ChinaNnspFIAIn-house test Up to 40Rapid/detector502356146
Young et al.
[57]
USANnsp1. LFIA
2. FIA
1. BD Veritor™ System
2. Sofia 2 SARS Antigen FIA
1. Becton-Dickinson and Company, USA
2. Quidel, San Diego, CA
Up to 401. Rapid/optional detector
2. Rapid/detector
61281531
Liotti et al.
[58]
ItalyNnspFIASTANDARD F COVID19 Ag (FIA)SD Biosensor, Suwon, KoreaUp to 20/up to 30/up to 40/0–20Rapid/detector359104255
Ogawa et al.
[59]
JapanNNspCLEIALumipulse SARS-CoV-2 AgFujirebio, Tokyo, JapanUp to 40Detector32524301
Hirotsu et al.
[60]
JapanNnspCLEIALUMIPULSE SARS-CoV-2 Ag kitFujirebio, Inc. (Tokyo, Japan)Up to 40Detector31358255
Nagura-Ikeda et al.
[61]
JapanNtsLFIAEspline SARS-CoV-2Fuji Rebio Inc.Up to 40Rapid1038419
Mak et al.
[62]
Hong KongN1. nsp/ts
2. ts
LFIABIOCREDIT COVID-19 Ag kitRapiGEN Inc.Up to 20/up to 30/up to 40/0–20/20–30Rapid optional detector16051109
Mertens et al.
[63]
BelgiumNnspLFIA/virus culture dataCOVID-19 Ag RespiStripCoris BioConceptUp to 30/up to 40Rapid328132196
Blairon et al.
[64]
BelgiumNnspLFIACOVID-19 Ag Respi-StripCoris Bioconcept, Gembloux, BelgiumUp to 40Rapid774159615
Porte et al.
[21]
ChileNnsp/tsFIA2019-nCoV Antigen Rapid Test Kit (FIA)Bioeasy Biotechnology Co., Shenzhen, ChinaUp to 30Rapid/detector1278245
Scohy et al.
[65]
BelgiumNnspLFIACOVID-19 Ag Respi-StripCoris BioConcept, Gembloux, BelgiumUp to 40Rapid14810662
Lambert-Niclot et al.
[66]
FranceNnspLFIACOVID-19 Ag Respi-StripCoris BioConcept, Gembloux, BelgiumUp to 40Rapid1389444
Diao et al.
[67]
ChinaNnspFIAIn-house test Up to 30/up to 40/30–40Rapid23920831
Beck et al.
[68]
MilwaukeeNnspFIASofia SARS FIA test (SOFIA)Quidel, San Diego, CAUp to 40Rapid/detector34661285
Krüttgen et al.
[69]
GermanyNnspLFIASARS-CoV-2 Rapid Antigen TestRoche, SwitzerlandUp to 20/up to 30/up to 40/0–20/20–30/30–40Rapid1507575
Albert et al.
[70]
SpainNnspLFIA/virus culture dataPanbio™ COVID-19 Ag Rapid Test DeviceAbbott Diagnostic GmbH, Jena, GermanyUp to 40Rapid41254358
Chaimayo et al.
[71]
ThailandNnsp/tsLFIAStandard Q COVID-19 Ag testSD Biosensor®, Chuncheongbuk-do, Republic of KoreaUp to 40Rapid45460394
Lanser et al.
[72]
AustriaNnspLFIAPanbio™ COVID-19 Ag Rapid testAbbott, Chicago, IllinοisUp to 30/up to 40/30–40Rapid53512
Gremmels et al.
[73]
The
Netherlands/Aruba
NnspLFIAPanbio COVID-19 Ag rapid test deviceAbbott, Lake Country, IL, USAUp to 40Rapid29482022746
Drevinek et al.
[74]
Czech RepublicNnsp1. LFIA
2. FIA
1. Panbio COVID-19 Ag Rapid Test
2. Standard F COVID-19 Ag FIA
1. Abbott, Germany
2. SD Biosensor, Republic of Korea
Up to 20/up to 30/up to 40/0–20/20–30/30–401. Rapid
2. Rapid/detector
591223368
Schwob et al.
[75]
SwitzerlandNnsp1. LFIA
2. LFIA
3. LFIA
1. STANDARD Q COVID-19 Ag Test
2. Panbio COVID-19 Ag Test
3. COVID-VIRO
1. SD -Biosensor, Republik of Korea
2. Abbott, Germany
3. AAZ-LMB
Up to 40Rapid928372556
Corman et al.
[76]
GermanyNnsp1. LFIA
2. LFIA
3. LFIA
4. LFIA
5. LFIA
6. LFIA
7. LFIA/virus culture data
1. Panbio COVID-19 Ag Test
2. BIOCREDIT COVID-19 Ag kit
3. Coronavirus Ag Rapid Test Cassette (swab)
4. COVID-19 Ag Respi-Strip
5. RIDA®QUICK SARS-CoV-2 antigen
6. NADAL COVID19-Ag Test
7. SARS-CoV-2 Rapid Antigen Test
1. Abbott, Germany
2. RapiGEN Inc.
3. Healgen
4. Coris Bioconcept, Gembloux, Belgium
5. R-Biopharm
6. NAL von minden
7. Roche
Up to 40Rapid15011535
Abdulrahman et al. [77]BahrainNnspLFIAPanbio COVID 19 antigen rapid test deviceAbbott Rapid Diagnostic Jena GmbH, Jena, GermanyUp to 30Rapid41837333450
Yokota et al.
[78]
JapanNNsp, ts1. LFIA
2. CLEIA
1. Espline SARS-CoV-2
2. Lumipulse SARS-CoV-2 Ag kit
1. Fujirebio, Tokyo, Japan
2. Fujirebio, Tokyo, Japan
Up to 30/up to 40/20–301. Rapid
2. Quick/detector
3434NA
Nash et al.
[79]
USA/Brazil1. N
2. S
nspLFIAIn-house Up to 20/up to 30/up to 40/0–20/20–30/30–40Rapid311172139
Van der Moeren et al.
[80]
The NetherlandsNnspLFIABD Veritor™ SystemBecton-Dickinson and Company, USAUp to 20/up to 30/up to 40/0–20/20–30Rapid/optional detector35117334
Porte et al.
[81]
ChileNnsp/ts1. FIA
2. FIA
1. SOFIA SARS Antigen FIA
2. STANDARD® F COVID-19 Ag FIA
1. Quidel Corporation, San Diego, CA, USA
2. SD Biosensor Inc., Gyeonggi-do, Republic of Korea
Up to 30/up to 40/30–40Rapid/detector915932
Krüger et al.
[82]
Germany/UKNnsp/ts1. FIA
2. LFIA
3. LFIA/virus culture data
1. 2019-nCoV Ag Fluorescence Rapid Test Kit
2. COVID-19 Ag Respi-Strip
3. STANDARD Q COVID-19 Ag Test
1. Shenzhen Bioeasy Biotechnology Co. Ltd., Guangdong Province, China
2. Coris Bioconcept, Gembloux, Belgium
3. SD Biosensor, Inc., Gyeonggi-do, Korea
Up to 30/up to 40/30–401. Rapid/detector
2. Rapid
3. Rapid
2407722335
Singh et al.
[46]
San DiegoSnspECGluSIn-house Up to 40Quick *24168
Ventura et al.
[83]
ItalyS + E + MNsp/tsCBSIn-house Up to 40Detector944549
Herrera et al.
[84]
FloridaNnspLFIANR/AdventHealth Centra Care Up to 40Rapid16694861183
Renuse et al.
[44]
USANnspFAIMS-PRMIn-house Up to 40Detector1768888
Pickering et al.
[85]
UKNnsp-tsLFIA/virus culture data1. Innova Rapid SARS-CoV-2 Antigen Test
2. Spring Healthcare SARS-CoV-2 Antigen Rapid Test Cassette
3. E25Bio Rapid Diagnostic Test
4. Encode SARS-CoV-2 Antigen Rapid Test Device
5. SureScreen COVID-19 Rapid Antigen Test Cassette
1. Xiamen Biotime Biotechnology, Fujian, China
2. Shanghai ZJ Bio-Tech, Shanghai, China
3. E25Bio, Cambridge, MA, USA
4. Zhuhai Encode Medical Engineering, Zhuhai, China
5. SureScreen Diagnostics, Derby, UK
20–30Rapid200100100
Harmon et al.
[86]
WashingtonNnspFIASofia-2 SARS-CoV-2 Antigen TestsQuidel, San Diego, CAUp to 40Rapid/detector23,4628323,379
Korenkov et al.
[87]
GermanyNnsp-tsLFIA/virus culture dataSTANDARD Q COVID-19 Ag TestSD Biosensor, Inc., Gyeonggi-do, KoreaUp to 20/up to 30/up to 40/0–20/20–30/30–40Rapid20282101818
Ehsan et al. [43]Saudi ArabiaSnspPaper-based impedance sensorIn-house Up to 40Detector532
Seynaeve et al. [88]BelgiumNnspLFIA1. COVID-19 Ag Respi-Strip
2. coronavirus antigen rapid test cassette
1. Coris Bioconcept, Belgium
2. Healgen Scientific, LLC, USA
Up to 30/ Up to 40/30–40Rapid1639865
Di Domenico et al. [89]Italy1. N
2. S
1. nsp
2. ts
1. ELISA based
2. LFIA/virus culture data
1. Portable COVID-19 Antigen Lab Test
2. Panbio™ COVID-19 Ag Rapid Test Device
1. Stark
2. Abbott Diagnostic GmbH, Jena, Germany
Up to 40Rapid43336397
Kiro et al. [90]IndiaNnspFIASTANDARD® F COVID-19 Ag FIASD Biosensor Inc., Gyeonggi-do, Republic of KoreaUp to 40Rapid/detector354136218
Smith et al. [91]IllinoisN1. nsp-ts
2. nsp
FIA/virus culture dataSOFIA SARS Antigen FIAQuidel Corporation, San Diego, CA, USAUp to 40Rapid/detector4343NA
L’Huillier et al.
[92]
SwitzerlandNnspLFIAPanbio™ COVID-19 Ag Rapid Test DeviceAbbott Diagnostic GmbH, Jena, GermanUp to 40Rapid822119703
Gupta et al.
[93]
IndiaSnspELISAIn-house Up to 40Quick23244188
Wagenhäuser et al.
[94]
GermanyNtsLFIA1. NADAL COVID-19 Ag Test
2. Panbio COVID-19 Ag rapid test device
3. MEDsan SARS-CoV-2 Antigen Rapid Test
1. Nal Von Minden GmbH, Germany
2. Abbott Laboratories, Abbott Park IL, USA
3. MEDsan GmbH, Hamburg, Germany
Up to 40Rapid50561014955
Fernandez et al.
[95]
SpainNnspFIALumiraDx™LumiraDx™ Limited, Londres, Reino UnidoUp to 40Rapid/detector462422
Amer et al.
[96]
EgyptNnsp-tsLFIASTANDARD Q COVID-19 Ag TestSD Biosensor, Inc., Gyeonggi-do, KoreaUp to 40Rapid47452
Baccani et al.
[97]
ItalyNnsp1. CLEIA
2. FIA
3. FIA
1. Lumipulse G SARS-CoV-2 Ag
2. STANDARD® F COVID-19 Ag FIA
3. AFIAS COVID-19 Ag
1. Fujirebio, Tokio, Japan
2. SD Biosensor; Suwon-si, Korea
3. Menarini; Florence, Italy
Up to 30/Up to 40/30–401. Quick/detector
2. Rapid/detector
3. Rapid/detector
37585290
Matsuzaki et al.
[98]
JapanNnspCLEIA1. VITROS® SARS-CoV-2 Antigen Test
2. LUMIPULSE® SASR-CoV-2 Ag Test
2. Ortho Clinical Diagnostics, Rochester, NY, USA
3. Fujirebio, Tokio, Japan
Up to 401. Quick/detector
2. Quick/ detector
1284979
Jakobsen et al.
[99]
DenmarkNnspLFIASTANDARD Q COVID-19 Ag TestSD Biosensor, Inc., Gyeonggi-do, KoreaUp to 40Rapid48112214590
Ngo Nsoga et al.
[100]
SwitzerlandNnsp-tsLFIA/virus culture dataPanbio™ COVID-19 Ag Rapid Test DeviceAbbott Diagnostic GmbH, Jena, GermanUp to 40Rapid402168234
Funabashi et al.
[41]
JapanNnspOptical waveguide-based biosensor technologyIn-house Up to 40Detector643430
Smith et al.
[101]
MarylandNnspFIASOFIA SARS Antigen FIAQuidel Corporation, San Diego, CA, USAUp to 40Rapid/detector28872352652
Eleftheriou et al.
[102]
GreeceNnspLFIAPanbio™ COVID-19 Ag Rapid Test DeviceAbbott Diagnostic GmbH, Jena, GermanUp to 40Rapid74451693
Huang et al.
[42]
ChinaStsDeep learning-based surface-enhanced Raman spectroscopyIn-house Up to 40NA/detector573027
Lindner et al.
[103]
GermanyNnsp-tsLFIASTANDARD Q COVID-19 Ag TestSD Biosensor, Inc., Gyeonggi-do, KoreaUp to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid14640106
Ferte et al.
[104]
FranceNnspLFIAPanbio™ COVID-19 Ag Rapid Test DeviceAbbott Diagnostic GmbH, Jena, GermanUp to 40Rapid68852636
Fernandez-Montero et al.
[105]
SpainNnsp-tsLFIASARS-CoV-2 Rapid Antigen TestRocheUp to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid2543492494
Hoehl et al.
[106]
GermanyNnspLFIARIDA®QUICK SARS-CoV-2 AntigenR-Biopharm AGUp to 30Rapid99NA
Lee et al.
[107]
KoreaNnspLFIASTANDARD Q COVID-19 Ag TestSD Biosensor, Inc., Gyeonggi-do, KoreaUp to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid680380300
Mayanskiy et al.
[108]
RussiaNnspELISACoviNAg EIAXEMA, RussiaUp to 20/Up to 30/Up to 40/0–20/20–30/30–40Detector27718295
Leixner et al.
[109]
AustriaNnspLFIAAMP Rapid Test SARS-CoV-2 AgAMP Diagnostics, AMEDA Labordiagnostik GmbH, Graz, AustriaUp to 30/Up to 40/30–40Rapid39294298
Hirotsu et al.
[110]
JapanNnsp1. CLEIA
2. CLEIA
1. LUMIPULSE® SASR-CoV-2 Ag Test
2. Elecsys1 SARS-CoV-2 Antigen Assay
1. Fujirebio, Tokio, Japan
2. Roche, Basel, Switzerland
Up to 40Detector637487150
Chavan et al.
[36]
USANurinemass spectrometryIn-house Up to 40Detector503911
Fiedler et al.
[111]
GermanyNnspCLEIA/virus culture dataLIAISON® SARS-CoV-2 AgDiaSorinUp to 40Detector18211072
Dierks et al.
[112]
GermanyNnsp1. FIA
2. LFIA
1. LumiraDx™
2. NADAL COVID-19 Ag Test
1. LumiraDx™ Limited, London, United Kingdom
2. Nal Von Minden GmbH, Germany
Up to 401. Rapid/detector
2. Rapid
44411433
Terpos et al.
[113]
SloveniaNnspLFIACOVID-19 Antigen Detection Kit (Colloidal Gold)Zhuhai Lituo Biotechnology Co., Ltd.Up to 30/Up to 40/30–40Rapid358114244
Osmanodja et al.
[114]
GermanyNnsp-tsLFIADräger Antigen Test SARS-CoV-2Dräger Safety AG and Co. KGaA, Lübeck, GermanyUp to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid37970309
Harris et al.
[115]
USANnspFIASOFIA SARS Antigen FIAQuidel Corporation, San Diego, CA, USAUp to 30/Up to 40/30–40Rapid/detector24293242105
Cento et al.
[116]
ItalyNnspFIALumiraDx™LumiraDx™ Limited, Londres, Reino UnidoUp to 30/Up to 40/30–40Rapid/detector960347613
Kumar et al.
[117]
IndiaNnspLFIASTANDARD Q COVID-19 Ag TestSD Biosensor, Inc., Gyeonggi-do, KoreaUp to 40Rapid66NA
Orsi et al.
[118]
ItalyNnspFIA1. FREND™ COVID-19 Ag
2. STANDARD® F COVID-19 Ag FIA
1. NanoEntek, Korea
2. SD Biosensor; Suwon-si, Korea
Up to 30/Up to 40/30–40Rapid/detector1106050
Blairon et al.
[119]
BelgiumNnspLFIA/virus culture data1. Coronavirus Ag Rapid Test Cassette
2. GSD NovaGen SARS-CoV-2 (COVID-19) Antigen Rapid Test
3. Aegle Coronavirus Ag Rapid Test Cassette
1. BioRad
2. NovaTec Immunodiagnostica GmbH
3. LumiraDx
Up to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid19997102
Bornemann et al.
[120]
GermanyNnspFIASOFIA SARS Antigen FIAQuidel Corporation, San Diego, CA, USAUp to 30/Up to 40/30–40Rapid/detector1391911300
Kruger et al.
[121]
GermanyN1. nsp
2. ts
3. nsp-ts
LFIAPanbio™ COVID-19 Ag Rapid Test DeviceAbbott Diagnostic GmbH, Jena, GermanUp to 30/Up to 40/30–40Rapid11081061002
Eissa et al.
[40]
Saudi ArabiaNnspVoltammetric-based immunosensorIn-house Up to 30/Up to 40/30–40Detector651
Shaikh et al.
[122]
USANnspLFIABinaxNOWTM COVID-19 Ag CardAbbott Diagnostics Scarborough, Inc., USAUp to 40Rapid19939160
Diez Flecha et al.
[123]
SpainNnspLFIAPanbio™ COVID-19 Ag Rapid Test DeviceAbbott Diagnostic GmbH, Jena, GermanUp to 30/Up to 40/30–40Rapid55496
Yokota et al.
[124]
JapanNtsCLEIAIn-house Up to 40detector2056891967
Guo et al.
[39]
Saudi ArabiaN1. nsp
2. ts
3. nsp-ts
OECTIn-house Up to 40detector241113
Klein et al.
[125]
GermanyNnspLFIAPanbio™ Ag-RDTAbbott Diagnostics, Jena, GermanyUp to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid29039251
Caramello et al.
[126]
ItalyNnsp1. LFIA
2. FIA
1. SD BIOSENSOR Ag-RDT
2. LUMIRADX Ag-RDT
1. SD BIOSENSOR Ag-RDT
2. LumiraDx UK Ltd., Dumyat Business Park, Alloa, FK10 2PB, UK)
Up to 401. Rapid
2. Rapid/detector
324210114
Koeleman et al.
[127]
NetherlandsNnsp-tsLFIA1. Certest SARS-CoV-2
2. Roche SARS-CoV-2 Rapid Antigen Test
3. Romed Coronavirus Ag Rapid Test
4. BD Veritor SARS-CoV-2 point-of-care test
5. Panbio™ COVID-19 Antigen rapid test
1. Certest Biotec S.L., Spain
2. Roche, Switzerland
3. Romed, The Netherlands
4. Becton, Dickinson and Company, USA
5. Abbott, USA
Up to 40Rapid980340640
Šterbenc et al.
[128]
SloveniaNnspLFIASARS-CoV-2 rapid antigen test (Roche)Roche Diagnostics GmbH, Mannheim, Germany)Up to 40Rapid1912189
Kumar et al.
[129]
IndiaNnsp-tsFIASTANDARD™ Q COVID-19 Ag test kitSD Biosensor; Suwon-si, KoreaUp to 40Rapid/detector20412192
Soleimani et al.
[130]
BelgiumNnspFIA1. COVID19Speed-antigen test
2. Panbio™ COVID-19 Ag rapid test
1. BioSpeedia
2. Abbott
Up to 30/Up to 40/30–40Rapid/detector401196205
Takeuchi et al.
[131]
JapanNnspLFIAQuickNavi-COVID19 AgDenka Co., Ltd., Tokyo, JapanUp to 30Rapid86251811
Linares et al.
[49]
SpainNnsp1. LFIA
2. FIA
1. Panbio COVID-19 Ag Rapid Test Device
2. D-Biosensor STANDARD F COVID-19 Ag
1. Abbot Rapid Diagnostics GmbH, Jena
2. SD Biosensor, Inc.
Up to 20/Up to 30/20–301. Rapid
2. Rapid/detector
356170186
Homza et al.
[132]
Czech RepublicNnspLFIAEcotest COVID-19 Antigen Rapid TestAssure Tech, Hangzhou, ChinaUp to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid491164327
Van der Moeren et al.
[133]
NetherlandsNnsp-tsCLEIABD veritor system for rapid detection of SARS-CoV-2 (VRD)Becton-Dickinson and Company, USA20–30Detector978161817
Brihn et al.
[134]
USANnspFIAQuidel Sofia 2 SARS Antigen Fluorescent ImmunoassayQuidel CorporationUp to 30Rapid/detector20391491890
Nordgren et al.
[135]
SwedenNnspLFIA/virus culture data1. Panbio™ COVID-19 Ag Rapid Test
2. Zhejiang Orient Gene
1. Abbott
2. Healgen Biotech Coronavirus Ag rapid test cassette
Up to 20/Up to 40/20–30Rapid462156306
Holzner et al.
[136]
GermanyNnspLFIAStandard Q COVID-19 AgSD Biosensor, KoreaUp to 30Rapid22804561824
Kim et al.
[137]
KoreaNnspLFIAGenBody COVID-19 Ag Test (COVAG025)GenBody Inc.Up to 40/20–30Rapid330130200
Bianco et al.
[138]
ItalyNnspFIALumiraDx™ SARS-CoV-2 Antigen TestLumiraDx30–40Rapid/detector907298609
Peña et al.
[139]
ChileNnspLFIASARS-CoV-2 RATSD BiosensorUp to 30Rapid84273769
Muhi et al.
[140]
AustraliaNnspLFIA/virus culture dataPanBioTM COVID-19 AgAbbottUp to 40Rapid18926163
Uwamino et al.
[141]
JapanNnspLFIA/virus culture dataEspline SARS-CoV-2 RADFUJIREBIO, Tokyo, JapanUp to 40Rapid1172592
Thakur et al.
[142]
IndiaNnsp-tsLFIAPathoCatchACCUCARE20–30Rapid67784593
Homza et al.
[143]
Czech RepublicNnspLFIA/virus culture data1. SARS-CoV-2 Antigen Rapid Test Kit
2. Ecotest COVID-19 Antigen Rapid Test
3. Standard Q COVID-19 Ag
4. Immupass VivaDiag™ SARS-CoV-2 Ag Rapid Test
5. ND COVID-19 Ag test
1. JOYSBIO (Tianjin) Biotechnology Co., Ltd., Tianjin, China
2. Assure Tech, Hangzhou, China
3. SD Biosensor, Korea
4. VivaChek Biotech (Hangzhou) Co., Ltd., Hangzhou, China
5. NDFOS, Eumseong, Korea
Up to 40Rapid1141407734
Shah et al.
[144]
USANnspLFIABinaxNOW COVID-19 AgAbbott20–30Rapid21103341776
McKay
[145]
USANnspLFIA/virus culture dataBinaxNOW Rapid Antigen TestAbbottUp to 40Rapid532105427
Yin et al.
[146]
BelgiumNnspLFIA1. Panbio™ COVID-19 Ag Rapid Test Device
2. BD Veritor™ SARS-CoV-2
3. COVID-19 Ag Respi-Strip
4. SARS-CoV-2 Rapid Antigen Test
1. Abbott Rapid Diagnostics, Germany
2. Becton-Dickinson and Company, USA
3. Coris BioConcept, Belgium
4. SD Biosensor, Republic of Korea
30–40Rapid76072238
Baro et al.
[147]
SpainNnspLFIA1. PanBioTM COVID-19 Ag Rapid test
2. CLINITEST® Rapid COVID-19 Antigen Test
3. SARS-CoV-2 Rapid Antigen Test
4. SARS-CoV-2 Antigen Rapid Test Kit
5. COVID-19 Coronavirus Rapid Antigen Test Cassette
1. Abbott
2. Siemens
3. Roche
4. Lepu Medica
5. Surescreen
Up to 30Rapid286101185
Caputo et al.
[148]
ItalyNnsp-tsCLEIALumipulse G SARS-CoV-2 AgFujirebio, Tokio, JapanUp to 40Quick/detector42665033763
Kenyeres et al.
[149]
HungaryNnspLFIABIOCREDIT COVID-19 AgRapiGEN Inc.Up to 30Rapid3737NA
Häuser et al.
[150]
GermanyNnspCLEIA/virus culture dataLIAISON SARS-CoV-2 antigen testDiasorin20–30Detector19619627
Lefever et al.
[151]
BelgiumNnspLFIA/virus culture dataLiaison antigen testDiasorin20–30Rapid410200210
Zacharias et al.
[152]
AustriaNnspLFIASARS-CoV-2 RATRoche30–40Rapid30246
Oh et al.
[153]
KoreaNnspLFIAStandard Q COVID-19 AgSD Biosensor, Inc. Gyeonggi-do, KoreaUp to 30Rapid1182692
Asai et al.
[154]
JapanNnspCLEIALUMIPULSE SARS-CoV-2 antigen kitFujirebio, Japan30–40Detector30563242
Kweon et al.
[155]
KoreaNnspLFIA1. AFIAS COVID-19 Ag
2. ichromaTM COVID-19 Ag
1. Boditech Med., Chuncheon-si, Gang-won-do, Republic of Korea
2. Boditech Med.
Up to 30/Up to 40/30–40Rapid167167NA
Menchinelli et al.
[156]
ItalyNnspCLEIA/virus culture dataLUMIPULSE SARS-CoV-2 antigen kitFujirebio, JapanUp to 20/Up to 30/Up to 40/0–20/20–30/30–40Detector594194400
Sood et al.
[157]
USANnspLFIABinaxNOW rapid antigen testAbbott20–30Rapid774226548
Epstude et al.
[158]
GermanyNnspLFIASARS-CoV-2 Rapid Antigen testRoche®Up to 40Rapid3030NA
Smith et al.
[91]
USANnspFIA/virus culture dataSARS Sofia FIA rapid antigen testsQuidelUp to 40Rapid/detector286286NA
Berger et al.
[159]
SwitzerlandNnspLFIA/virus culture data1. PanbioTM COVID-19 Ag Rapid Test device
2. Standard Q Ag-RDT
1. Abbott
2. SD Biosensor, Roche
20–30Rapid1064315749
Matsuda et al.
[160]
BrazilNnspLFIA1. COVID-19 Ag ECO Test
2. Panbio COVID-19 Ag Rapid Test
1. ECO Diagnóstica
2. Abbott, Ludwigshafen, Germany
Up to 40Rapid1082980
Van Honacker et al.
[161]
BelgiumNnspLFIA1. COVID-19 ag BSS
2. SARS-CoV-2 Ag card
3. Coronavirus AG Rapid test cassette
4. Panbio COVID-19 Ag Rapid Test Device
5. SARS-CoV-2 Rapid Antigen test
1. Biosynex, Fribourg, Switzerland
2. Biotical health, Madrid, Spain
3. Zhejiang Orient Gene Biotech Co., Zhejiang, China
4. Abbott, Ludwigshafen, Germany
5. SD Biosensor, Gyeonggi-do, Korea
Up to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid985840
Boum et al.
[162]
CameroonNnspLFIASARS-CoV-2 Rapid Antigen testSD Biosensor20–30Rapid1090291799
Mboumba Bouassa et al.
[163]
FranceNnspLFIASIENNA™ COVID-19 Antigen Rapid Test CassetteSalofa Oy, Salo, Finland; manufactured under license of T&D Diagnostics Canada Pvt. Ltd., Halifax, CanadaUp to 20/Up to 40Rapid15010050
Stokes et al.
[164]
CanadaN1. nsp
2. ts
LFIAPanbio COVID-19 antigen Rapid Test DeviceAbbott, IL, USAUp to 40Rapid18884971391
Landaas et al.
[165]
NorwayNnsp-tsLFIAPanbio™ COVID-19 Ag Rapid Test DeviceAbbottUp to 30/Up to 40/30–40Rapid39912503741
Takeuchi et al.
[166]
JapanNnspLFIA/virus culture dataQuickNavi™-COVID19 AgDenka Co., Ltd., Tokyo, JapanUp to 40Rapid11861051081
Igloi et al.
[167]
NetherlandsNnspLFIA/virus culture dataRoche SD Biosensor SARS-CoV-2 rapid antigen testRoche DiagnosticsUp to 30/Up to 40/30–40Rapid970186784
Masiá et al.
[168]
SpainN1. nsp
2. ts
LFIAPanbio COVID-19 antigen Rapid Test DeviceAbbott Rapid Diagnostic Jena GmbH, Jena, GermanyUp to 40Rapid21744481726
Jääskeläinen et al.
[169]
FinlandNnsp1. FIA
2. LFIA/virus culture data
1. Quidel Sofia SARS FIA
2. Standard Q COVID-19 Ag test
3. Panbio™
1. Quidel, San Diego, CA
2. SD Biosensor, Republic of Korea
3. Abbott Diagnostic GmbH, Jena, Germany
Up to 30/Up to 40/30–401. Rapid/detector
2. Rapid
3. Rapid
19818540
Olearo et al.
[170]
GermanyNnspLFIA/virus culture data1. SARS-CoV-2 Rapid Antigen Test (Roche)
2. COVID-19 Rapid Test Device (Abbott)
3. MEDsan SARS-CoV-2 Antigen Rapid Test
4. CLINITEST Rapid COVID-19 Antigen Test
1. Roche Diagnostics SD Biosensor Korea
2. Abbott Rapid Diagnostics Panbio Ltd. Australia
3. MEDsan GmbH Germany
4. Zhejiang Orient Biotech Co. China
Up to 40Rapid18484100
Toshiaki Ishii et al. [171]JapanN1. nsp
2. ts
1. LFIA
2. CLEIA
1. Espline® SARS-CoV-2
2. Lumipulse® SARS-CoV-2
1. Fujirebio Inc., Tokyo, Japan
2. Fujirebio Inc., Tokyo, Japan
Up to 20/Up to 30/Up to 40/0–20/20–30/30–401. Rapid
2. Quick/detector
89344849
Peña-Rodríguez et al. [172]MexicoNnspLFIASTANDARD™ Q COVID-19 Ag TestSD BIOSENSORUp to 40Rapid369104265
Gili et al. [173]ItalyNnspCLEIALumipulse® SARS-CoV-2 antigen assayFujirebio, Inc., Tokyo, JapanUp to 40Quick/detector19641851779
Pérez-García et al. [174]SpainNnspLFIA1. CerTest SARS-CoV-2 Ag One Step Card Test
2. Panbio COVID-19 Ag Rapid Test Device
1. Certest Biotec S. L., Zaragoza, Spain
2. Abbot Rapid Diagnostics GmbH, Jena, Germany
Up to 30/Up to 40/30–40Rapid320170150
Kilic et al. [175]USANnspLFIABD Veritor SARS-CoV-2Becton, Dickinson, Sparks, MD, USAUp to 40Rapid13841161268
Drain et al. [176]USANnspFIALumiraDx SARS-CoV-2 antigen testLumiraDx UK Ltd., Dumyat Business Park, Alloa, FK10 2PB, UK)Up to 40Rapid/detector512123389
Basso et al. [177]ItalyN1. nsp
2. ts
1. LFIA
2. LFIA
3. CLEIA
1. ESPLINE rapid test
2. COVID-19 Ag Rapid Test
3. Lumipulse G SARS-CoV-2 Ag
1. Fujirebio
2. ABBOTT
3. Fujirebio
Up to 401. Rapid
2. Rapid
3. Quick/detector
23487147
Pollock et al. [178]USANnspLFIABinaxNOW COVID-19 Ag cardAbbott Diagnostics Scarborough, Inc.Up to 30/Up to 40/30–40Rapid23072922015
Ristić et al. [179]SerbiaNnspLFIASTANDARD Q COVID-19 Ag TestSD Biosensor, Gyeonggi-do, KoreaUp to 40Rapid1204377
Courtellemont et al. [180]FranceNnspLFIACOVID-VIRO®AAZ, Boulogne Billancourt, FranceUp to 30/Up to 40/30–40Rapid248121127
Thommes et al. [181]AustriaNnspLFIA1. Panbio™ COVID-19 Ag Rapid test
2. Novel Coronavirus (2019-nCov) Antigen Detection Kit
3. DIAQUICK COVID-19 Ag Cassette
4. SARS-CoV-2 Rapid Antigen Test
1. Abbott, Chicago, Illinois
2. CLMSRDL, Sichuan Mass Spectrometry Biotechnology Co., Ltd., Chengdu, Sichuan
3. DIALAB, Wiener Neudorf, Austria
4. Roche Diagnostics Deutschland GmbH, Mannheim, Germany
Up to 30/Up to 40/30–40Rapid154154NA
González-Donapetry et al. [182]SpainNnspLFIAPanbio COVID-19 Ag Rapid Test DeviceAbbott Rapid Diagnostics Jena GmbH, Jena, GermanyUp to 40Rapid44018422
Eshghifar et al. [183]?NtsLFIA1. BD Veritor™ System for rapid detection of SARS-CoV-2
2. CareStart™ COVID-19 Antigen
3. SG Diagnostics Antigen detection kit
4. Sofia SARS Antigen FIA
5. Rapid Response™ COVID-19 Antigen Rapid Test
6. Shenzhen SARS-CoV-2 Antigen Test kit
7. Genedia W COVID-19 Ag
1. Becton, Dickinson and Company, MD, USA
2. Accesas Bio, Inc., NJ, USA
3. SG Diagnostics, Singapore
4. Quedel Corporation, Hannover, Germany
5. BNTX, Inc., ON, Canada
6. Shenzhen Ultra-Diagnostics Biotec. Co., Ltd., Shenzhen, PRC
7. Green Cross Medical Sciences Corp., Chungcheongbuk, Republic of Korea
Up to 40Rapid55NA
Merino et al. [184]SpainNnspLFIAPanbio™ COVID-19 Ag Rapid Test DeviceAbbott Diagnostic GmbH, Jena, GermanyUp to 30/Up to 40/30–40Rapid958359599
Shao et al. [38]USA1. N
2. S
nspFETIn-house Up to 40NA/detector382810
Bulilete et al. [185]SpainNnspLFIAPanbio™ Ag-RDTAbbott Diagnostic GmbH, Jena, GermanyUp to 40Rapid13671401222
Torres et al. [186]SpainNnspLFIA/virus culture dataCLINITEST® Rapid COVID-19 Antigen TestSiemens, Healthineers, Erlangen, GermanyUp to 40Rapid270116154
Lindner et al. [187]GermanyNnspLFIASTANDARD Q COVID-19 Ag TestSD Biosensor, Inc., Gyeonggi-do, KoreaUp to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid17941138
Hirotsu et al. [188]JapanNnspCLEIALUMIPULSE SARS-CoV-2 antigen testFujirebio, Inc., Tokyo, Japan)Up to 40Detector102940989
Salvagno et al. [189]ItalyNnsp-tsLFIARoche SARS-CoV-2 Rapid Antigen TestRoche Diagnostics, Basel, SwitzerlandUp to 40Rapid321149172
Veyrenche et al. [190]FranceNnspLFIACoris COVID-19 Ag Respi-StripBioConceptUp to 30/Up to 40/30–40Rapid654520
Porte et al. [191]ChileNnspFIA1. SOFIA SARS Antigen FIA
2. STANDARD F COVID-19 Ag FIA
1. Quidel Corporation, San Diego, CA, USA
2. SD Biosensor Inc., Gyeonggi-do, Republic of Korea
Up to 40Rapid/detector643232
Domínguez Fernández et al. [192]SpainNnspLFIAPanbio™ rapid antigens test deviceAbbottUp to 40Rapid302010
Kobayashi et al. [193]JapanNnsp1. CLEIA
2. LFIA
1. Lumipulse Presto SARS-CoV-2 Ag
2. Espline SARS-CoV-2
1. Fujirebio Inc., Tokyo, Japan
2. Fujirebio Inc., Tokyo, Japan
Up to 401. Quick/detector
2. Rapid
300100200
Houston et al. [194]UKNnspLFIAInnova SARS-CoV-2 Antigen Rapid Qualitative TestLotus Global Company, London, UKUp to 40Rapid728280448
Gremmels et al. [73]Netherlands/ArubaNnspLFIAPanbio™ COVID-19 antigenAbbott (Lake Country, IL, USA)Up to 40Rapid15732021371
Ciotti et al. [195]ItalyNnspLFIACoris COVID-19 Ag Respi-StripCoris BioConceptUp to 40Rapid503911
Okoye et al. [196]USANnspLFIAAbbott BinaxNOW COVID-19 antigen cardAbbott Diagnostics Scarborough, Inc.Up to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid2638452593
Kurtulmus et al. [47]TurkeyNurineUFTIn-house Up to 40Rapid20186115
Saadi et al. [37]FranceNnsp1. LFIA
2. LFIA
3. LC-MS
1. NG Test Ag
2. COVID-19 Ag Respi-Strip
3. In-house
1. NG Biotech, France
2. Coris, Belgium
Up to 20/Up to 30/Up to 40/0–20/20–30/30–401. Rapid
2. Rapid
3. NA/detector
19127
James et al. [197]USANnspLFIABinaxNOW COVID-19 Ag Card testsAbbott Diagnostics, ScarboroughUp to 40Rapid23391522187
Villaverde et al. [198]SpainNnspLFIAPanbio COVID-19 Ag Rapid TestAbbott Rapid DiagnosticUp to 40Rapid1620771543
Pekosz et al. [199]USANnspLFIA/virus culture dataBD Veritor Antigen TestBecton, Dickinson and Company, BD Life Sciences–, San Diego, CaliforniaUp to 40Rapid3838NA
Kohmer et al. [200]GermanyNnspLFIA/virus culture data1. RIDA®QUICK SARS-CoV-2 Antigen
2. SARS-CoV-2 Rapid Antigen Test
3. NADAL® COVID-19 Ag Test (test cassette)
4. LumiraDx™ Platform SARS-CoV-2 Ag Test
1. R-Biopharm AG, Darmstadt, Germany
2. Roche Diagnostics GmbH, Mannheim, Germany
3. Nal von Minden GmbH, Regensburg, Germany
4. LumiraDx GmbH, Cologne, Germany
Up to 40Rapid1007426
Prince-Guerra et al. [201]USANnspLFIA/virus culture dataBinaxNOW COVID-19 Ag CardAbbott Diagnostics Scarborough, Inc.Up to 40Rapid34192993120
Möckel et al. [202]GermanyNnspLFIA/virus culture dataRoche SARS-CoV-2 rapid antigen testSD BiosensorUp to 40Rapid27189182
Rottenstreich et al. [203]IsraelNnspLFIANowCheck COVID-19 Ag TestBionote Inc., Hwaseong-si, Republic of KoreaUp to 30/Up to 40/30–40Rapid132691317
Favresse et al. [204]BelgiumNnsp1. LFIA
2. LFIA
3. LFIA
4. LFIA
5. CLEIA
1. Biotical SARS-CoV-2 Ag card
2. Panbio™ COVID-19 Ag Rapid Test Device
3. Coronavirus Ag Rapid Test Cassette
4. Roche SARS-CoV-2 Rapid Antigen Test
5. VITROS Immunodiagnostic Products SARS-CoV-2 Antigen test
1. Biotical Health, Madrid, Spain
2. Abbott, Chicago, IL, USA
3. Healgen Scientific, Houston, TX, USA
4. Roche Diagnostics, Basel, Switzerland
5. Ortho Clinical Diagnostics, Raritan, NJ, USA
Up to 20/Up to 30/Up to 40/0–20/20–30/30–401. Rapid
2. Rapid
3. Rapid
4. Rapid
5. Quick/detector
1889692
Osterman et al. [205]GermanyNnsp-ts1. LFIA
2. FIA
1. SARS-CoV-2 Rapid Antigen Test
2. STANDARD™ F COVID-19 Ag
1. SD Biosensor, Suwon, Korea
2. Roche, Switzerland
Up to 401. Rapid
2. Rapid/detector
1572826746
Pollock et al. [206]USANnspCLEIA/virus culture dataMSD S-PLEX SARS-CoV-2 N assayMSD Meso Scale Discovery [MSD]Up to 40Quick/detector22613690
Aoki et al. [207]JapanNnspCLEIALumipulse® SARS-CoV-2 AgFujirebio Inc., Tokyo, JapanUp to 40Quick/detector54830518
Torres et al. [208]SpainNnspLFIAPanbio™ COVID-19 AgAbbott Diagnostics, Jena, GermanyUp to 40Rapid63479555
Alemany et al. [209]SpainNnspLFIAPanbio COVID-19 Ag TestAbbott Rapid Diagnostics, GermanyUp to 30/Up to 40/30–40Rapid1406951455
Rastawicki et al. [210]PolandNnspFIAPCL COVID-19 AgPCL Inc., KoreaUp to 40Rapid42366
Yamamoto et al. [211]JapanNnspLFIAESPLINE SARS-CoV-2Fujirebio Inc., JapanUp to 40Rapid229128101
Kashiwagi et al. [212]JapanN1. ts
2. nsp
LFIAESPLINE® SARS-CoV-2Fujirebio Inc., TokyoUp to 40Rapid642
Pilarowski et al. [213]USANnspLFIA/virus culture dataBinaxNOW rapid antigen testAbbott Diagnostics Scarborough, Inc.Up to 30/Up to 40/30–40Rapid87126845
Aoki et al. [214]JapanNnspLFIAEspline® SARS-CoV-2Fujirebio Inc., JapanUp to 40Rapid1296366
Pray et al. [215]WisconsinNnspFIA/virus culture dataSofia SARS AntigenQuidel CorporationUp to 40Rapid/detector1098571041
Strömer et al.
[216]
GermanyNnspLFIA/virus culture data1. NADAL® COVID-19 Ag Test
2. Panbio™ COVID-19 Antigen
Nal von Minden GmbH, Moers, Germany
Abbott Rapid Diagnostics, Germany
Up to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid124124NA
Toptan et al. [217]GermanyNnsp-tsLFIA/virus culture datanovel antigen testR-BiopharmUp to 40Rapid67589
Turcato et al. [218]ItalyNtsLFIASTANDARD Q COVID-19 Ag (R-Ag)SD BIOSENSOR, KRUp to 40Rapid34102233187
Mak et al. [219]Hong KongN1. nsp-ts
2. nsp
3. ts
LFIA/virus culture dataPanbio COVID-19 Ag Rapid Test DeviceAbbott Rapid Diagnostics, GermanyUp to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid35827
Zhang et al. [220]ChinaNnsp-tsFIA/virus culture dataSARS-CoV-2 N-protein test stripBeijing Savant Biotechnology Co., Ltd.Up to 40Rapid/detector547247300
Agulló et al. [221]SpainN1. nsp
2. ts
3. nsp-ts
LFIAPanbio COVID-19 Ag-RDTAbbott Rapid Diagnostic Jena GmbH, Jena, Germany)Up to 40Rapid659126527
Tanimoto et al. [222]JapanNnspLFIAESPLINE SARS-CoV-2®Fujirebio Inc., Tokyo, JapanUp to 40Rapid826
Lindner et al. [223]GermanyNnspLFIASTANDARD Q COVID-19 Ag TestSD Biosensor, Inc., Gyeonggi-do, KoreaUp to 20/Up to 30/Up to 40/0–20/20–30/30–40Rapid3939NA
Abdelrazik et al. [224]EgyptNnspLFIABIOCREDIT COVID-19 Ag testRapiGEN Inc.Up to 30/Up to 40/30–40Rapid188188NA
Weitzel et al. [225]ChileN1. nsp-ts
2. nsp
1. LFIA
2. FIA
3. FIA
1. Biocredit One Step SARS-CoV-2 Antigen Test
2. Huaketai New Coronavirus (SARS-CoV-2) N Protein Detection Kit (FIA)
3. Diagnostic Kit for 2019-Novel Coronavirus (2019-nCoV)
1. RapiGen Inc., Anyang-si, Gyeonggi-do, Rep. of Korea
2. Savant Biotechnology Co., Beijing, China
3. Bioeasy Biotechnology Co., Shenzhen, China
Up to 401. Rapid
2. Rapid/detector
3. Rapid/detector
1118031
Winkel et al. [226]NetherlandsNnspLFIAPanbioTM COVID-19 AgAbbottUp to 40Rapid2390632327
Hoehl et al.
[227]
GermanyNnspLFIARIDA® QUICK SARS80 CoV-2 Antigen testR-BiopharmUp to 20Rapid6028594
Priya Kannian et al.
[228]
IndiaNnspLFIASARS-CoV2 antigen kitSD BiosensorUp to 40Rapid302010
Lindner et al.
[229]
GermanyNnspLFIASTANDARD Q COVID-19 Ag TestSD Biosensor, Inc., Gyeonggi-do, KoreaUp to 40Rapid14640106
Filgueiras et al.
[230]
BrazilNnspLFIASARS-CoV-2 rapid antigen testECODiagnosticaUp to 40Rapid1395584
Peto et al.
[231]
UKNnsp-tsLFIASARS-CoV-2 Antigen Rapid Qualitative TestInnovaUp to 30Rapid834198636
Jakobsen et al.
[232]
DenmarkNnspLFIASTANDARD Q COVID-19 Ag testSD BIOSENSORUp to 40Rapid48112214590
Miyakawa et al.
[233]
JapanNnspLFIA/virus culture data1. SARS-CoV-2 Ag-RDT
2. Panbio COVID-19 Ag Rapid Test
3. SARS-CoV-2 Rapid Antigen Test
4. SD Biosensor Standard Q COVID-19 Ag
5. Espline SARS-CoV-2
1. YCU-FF
2. Abbott
3. Roche
4. SD Bio
5. Fujirebio
Up to 40Rapid1084563
Torres et al. [186]SpainNnspLFIA/virus culture dataCLINITEST® Rapid 29 COVID-19 Antigen TestSiemens, Healthineers, Erlangen, GermanUp to 40Rapid27033237
Pollock et al. [234]MassachusettsNnspLFIAAccess Bio CareStart COVID-19 Antigen test Up to 30/Up to 40Rapid14982341264
Shidlovskaya et al.
[235]
RussiaNnspLFIA/virus culture data1. SGTI-flex COVID-19 Ag
2. Biocredit COVID-19 Ag
1. SUGENTECH, INC
2. RapiGEN Inc.
Up to 40Rapid1061492
Faíco-Filho et al.
[236]
BrazilNnspLFIAPanbio™ COVID-19 Ag Rapid TestAbbottUp to 30/Up to 40/30–40Rapid1277057
Schuit et al.
[237]
NetherlandsNnspLFIA/virus culture data1. BD VeritorTM System Ag-RDT
2. SD Biosensor Ag-RDT
1. Becton, Dickinson and Company, Franklin Lakes, NJ, USA
2. Roche
Up to 40Rapid42743654274
Ducrest et al.
[238]
SwitzerlandNnspLFIACOVIDia-AntigenGaDia SAUp to 30Rapid602040
Vecchio et al.
[239]
ItalyNnspLFIAPanbio™ COVID-19 Ag testAbbottUp to 30Rapid1441611380
Bonde et al.
[240]
DenmarkNtsLFIABD VERITOR Ag Rapid testBecton-Dickinson and Company, USAUp to 30Rapid80965744
Igloi et al.
[241]
NetherlandsNtsLFIA/virus culture dataSARS-CoV-2 Rapid Antigen TestDistributed by Roche (SD Biosensor)Up to 30Rapid77030740
Thell et al. [242]AustriaNnspLFIASARS-CoV-2 Rapid Antigen TestRoche DiagnosticsUp to 30Rapid541213328
Pollock et al.
[243]
MassachusettsNnspLFIABinaxNOW COVID-19 AgAbbottUp to 30Rapid9898NA
Hagbom et al.
[244]
SwedenNtsLFIA/virus culture data1. Rapid Response™ COVID-19 Antigen Rapid Test Cassette for oral fluids
2. DIAGNOS™ COVID-19 Antigen Saliva Test
1. BioServ
2. DIAGNOS
Up to 30Rapid341519
Thirion-Romero
et al.
[245]
MexicoNnspLFIAPanbio™AbbottUp to 30Rapid1064474590
Chiu et al.
[246]
Hong KongNnspLFIAINDICAID™ Rapid TestPHASE Scientific iUp to 30Rapid23,34312823,215
Abusrewil et al. [247]LibyaNnspLFIA1. SARS-CoV-2 spike protein test
2. Shenzhen Microprofit Biotech Co
3. ESPLINE SARS-CoV-2
4. RapiGen COVID-19 Ag Detection Kit
5. Panbio™ COVID-19 Ag Rapid Test
6. Flowflex™ SARS-CoV-2 Antigen Rapid Test
7. Europe antigen testing COVID-19
8. Bioperfectus SARSCoV-2 Antigen Rapid Test Kit
9. AMP Rapid Test SARS-CoV-2 Ag
10. Coronavirus ag rapid test cassette
1. Fluorecare
2. Biotech
3. Fujirebio
4. Biocredit
5. Abbott
6. Acon
7. Assut
8. BIOPERFECTUS
9. AMP
10. Orient GENE
Up to 30/Up to 40Rapid23183145
Muthamia et al.
[248]
KenyaNnspLFIABD Veritor antigen testBecton-Dickinson and Company, USAUp to 20/Up to 30/0–20/20–30Rapid27247225
Abdul-Mumin et al.
[249]
GhanaNnspLFIASTANDARD Q SARS-CoV-2 Ag TestSD BiosensorUp to 40Rapid19342151
Akashi et al. [250]JapanNnspLFIAQuickNavi™-COVID19 AgOtsuka Pharmaceutical Co., Ltd. (Otsuka) and Denka CompanyUp to 40Rapid9696NA
Lindner et al.
[251]
GermanyNnspLFIA1. Espline SARS-CoV-2
2. Sure Status COVID-19 Antigen Card Test
3. Mologic COVID-19 Rapid Test
1. Fujirebio Inc.
2. Premier Medical Corporation Private Limited
3. Fujirebio Inc
Up to 40Rapid329329NA
Suliman et al.
[252]
MassachusettsNnspLFIAAccess Bio CareStart™ COVID-19 RDTCareStartUp to 30Rapid63137594
Bruins et al.
[253]
NetherlandsNnspLFIAPanbio™ COVID-19 Ag Rapid TestAbbottUp to 30Rapid110184917
Ford et al.
[254]
WisconsinNnspLFIA/virus culture dataBinaxNOW SARS-CoV-2 antigen testAbbott Laboratories, Abbott Park, ILUp to 40Rapid21103341776
Koskinen et al.
[255]
FinlandNnspLFIA/virus culture datamariPOC SARS-CoV-2 Antigen TestmariPOCUp to 30Rapid/optional detector21113198
Nikolai et al. [256]GermanyNnspLFIASTANDARD Q COVID-19 Ag TestSD Biosensor, Inc. Gyeonggi-do, KoreaUp to 40Rapid22870188
Stohr et al.
[257]
NetherlandsNnspLFIA/virus culture data1. BD Veritor System for Rapid Detection of SARS-CoV-2
2. Roche SARS-CoV-2 antigen detection test
Becton Dickinson company, USA
Roche, Switzerland
Up to 40Rapid32394541528
LFIA: Lateral Flow Immunoassay; FIA: Fluorescence Immunoassay; CLEIA: Chemiluminescence Enzyme Immunoassay; FET: Field-Effect Transistors; Ag: Antigen; nsp: nasopharengeal; ts: oropharyngeal/throat/saliva; Rapid: detection time 5–20 min (mainly 15) but never exceeding 30 min; Quick: detection time 30–35 min; Quick *: 60 min; w/wo: with/without; Detector: a detector in needed to read the developed signal; NA: Not applicable; NR: Not reported; Cases: SARS-CoV-2 positive samples according to RT-PCR; Controls: healthy individuals and RT-PCR negative (for SARS-CoV-2); Virus culture data: study that provides any kind of data on the correlation between virus culture [cytopathic effect, tissue culture infective dose 50% (TCID 50), limit of detection (LoD)], and rapid Antigen Test positivity, RNA copies number, Ct values of RT-PCR positive samples.
Table 2. Results of the multivariate meta-analysis for the different types of assays using different samples and stratified according to different cut-off rt-PCR values. Listed information includes the pooled sensitivity and specificity along with the 95% confidence intervals (NSP: pharyngeal, nasopharyngeal, nasal specimens, TS: throat, saliva, N: nucleocapsid protein, S: spike protein, M: membrane E: envelope, NS: nucleocapsid and Spike proteins).
Table 2. Results of the multivariate meta-analysis for the different types of assays using different samples and stratified according to different cut-off rt-PCR values. Listed information includes the pooled sensitivity and specificity along with the 95% confidence intervals (NSP: pharyngeal, nasopharyngeal, nasal specimens, TS: throat, saliva, N: nucleocapsid protein, S: spike protein, M: membrane E: envelope, NS: nucleocapsid and Spike proteins).
SampleAgMethodCt
Values
Studies/Patients/
Controls
Sensitivity (95% CI)Specificity (95% CI)Studies w/o Controls
NSPNLFIA0–2041/7464/39450.945 (0.930, 0.961)0.993 (0.987, 0.998)22
NSPNLFIA0–3099/66,939/47,7190.853 (0.826, 0.879)0.991 (0.988, 0.995)44
NSPNLFIA0–40207/88,008/69,4150.702 (0.676, 0.727)0.990 (0.987, 0.993)30
NSPNLFIA20–3046/7817/43600.790 (0.739, 0.841)0.987 (0.976, 0.998)35
NSPNLFIA30–4071/5150/9110.329 (0.265, 0.393)0.959 (0.923, 0.995)51
TSNLFIA0–205/90/NA0.805 (0.599, 1.000)-5
TSNLFIA0–3010/2136/17560.636 (0.477, 0.795)0.994 (0.989, 0.998)5
TSNLFIA0–4023/10,249/92320.354 (0.238, 0.470)0.996 (0.993, 0.998)12
TSNLFIA20–306/160/NA0.394 (0.086, 0.702)-6
TSNLFIA30–404/44/NA0.085 (0.000, 0.176)-4
NSP-TSNLFIA0–207/4240/38590.999 (0.000, 1.000)0.999 (0.000, 1.000)6
NSP-TSNLFIA0–3012/9229/81330.867 (0.792, 0.942)0.999 (0.997, 1.000)10
NSP-TSNLFIA0–4030/23,970/21,6990.696 (0.638, 0.754)0.992 (0.987, 0.996)4
NSP-TSNLFIA20–3010/1995/15040.575 (0.279, 0.870)0.997 (0.987, 1.000)7
NSP-TSNLFIA30–4010/217/NA0.417 (0.242, 0.593)-9
NSPNFIA0–203/97/NA0.935 (0.880, 0.990)-3
NSPNFIA0–3010/2221/4210.807 (0.726, 0.889)0.992 (0.979, 1.000)6
NSPNFIA0–4029/36,425/33,7180.707 (0.631, 0.783)0.984 (0.970, 0.997)1
NSPNFIA20–303/598/NA0.729 (0.544, 0.915)-3
NSPNFIA30–4012/2283/6650.435 (0.190, 0.680)0.983 (0.971, 0.995)9
TSNFIA0–402/114/310.162 (0.083, 0.241)0.984 (0.941, 1.000)1
NSP-TSNFIA0–304/195/770.944 (0.904, 0.985)0.975 (0.944, 1.000)1
NSP-TSNFIA0–4011/2779/20180.691 (0.520, 0.862)0.971 (0.953, 0.989)2
NSP-TSNFIA30–403/72/320.792 (0.434, 1.000)0.969 (0.926, 1.000)1
NSPNCLEIA0–203/789/1520.955 (0.907, 1.000)0.997 (0.000, 1.000)2
NSPNCLEIA0–303/1268/1110.980 (0.960, 0.999)0.995 (0.000, 1.000)2
NSPNCLEIA0–4021/7626/59100.818 (0.774, 0.862)0.978 (0.968, 0.988)1
NSPNCLEIA20–304/378/680.900 (0.672, 1.000)0.986 (0.960, 1.000)2
NSPNCLEIA30–404/416/2610.515 (0.220, 0.810)0.978 (0.957, 0.999)2
TSNCLEIA0–201/136/NA0.875 (0.550, 1.000)-1
TSNCLEIA0–301/136/NA0.928 (0.738, 1.000)-1
TSNCLEIA0–403/376/1790.709 (0.359, 1.000)0.977 (0.950, 1.000)1
TSNCLEIA20–301/3/NA0.875 (0.550, 1.000)-1
TSNCLEIA30–401/3/NA0.667 (0.000, 1.000)-1
NSP-TSNCLEIA0–401/4266/37630.867 (0.837, 0.896)0.973 (0.968, 0.978)0
NSP-TSNCLEIA20–301/978/8170.795 (0.733, 0.857)0.997 (0.000, 1.000)0
NSPNother0–202/45/70.973 (0.921, 1.000)0.9375 (0.769, 1.000)1
NSPNother0–304/219/510.923 (0.807, 1.000)0.963 (0.890, 1.000)1
NSPNother0–408/1228/3880.768 (0.643, 0.894)0.915 (0.821, 1.000)0
NSPNother20–302/110/NA0.842 (0.422, 1.000)-2
NSPNother30–404/73/NA0.540 (0.147, 0.934)-4
NSPSLFIA0–201/90/490.976 (0.928, 1.000)0.857 (0.000, 1.000)0
NSPSLFIA0–302/407/2340.783 (0.627, 0.938)0.942 (0.833, 1.000)0
NSPSLFIA0–402/129/540.848 (0.768, 0.930)0.862 (0.771, 0.954)0
NSPSLFIA20–301/80/490.677 (0.513, 0.842)0.857 (0.000, 1.000)0
NSPSother0–404/286/2070.872 (0.780, 0.963)0.911 (0.761, 1.000)0
TSSother0–403/96/420.817 (0.635, 1.000)0.931 (0.856, 1.000)0
TSN, Sother0–401/433/3970.986 (0.949, 1.000)0.962 (0.943, 0.981)0
NSP-TSS + E + Mother0–401/94/490.955 (0.895, 1.000)0.959 (0.904, 1.000)0
URINEN, Sother, FIA0–403/271/1450.715 (0.310, 1.000)0.869 (0.647, 1.000)0
Table 3. Results of the multivariate meta-analysis performed cumulatively for methods and/or antigen tested, in <30 and <40 Ct values. Listed information includes the pooled sensitivity and specificity along with the 95% confidence intervals (NSP: pharyngeal, nasopharyngeal, nasal specimens, TS: throat, saliva, oropharyngeal, N: nucleocapsid protein, S: spike protein, M: membrane E: envelope, NS: nucleocapsid and Spike proteins).
Table 3. Results of the multivariate meta-analysis performed cumulatively for methods and/or antigen tested, in <30 and <40 Ct values. Listed information includes the pooled sensitivity and specificity along with the 95% confidence intervals (NSP: pharyngeal, nasopharyngeal, nasal specimens, TS: throat, saliva, oropharyngeal, N: nucleocapsid protein, S: spike protein, M: membrane E: envelope, NS: nucleocapsid and Spike proteins).
SampleAgMethod (LFIA, FIA, CLEIA)Ct ValuesStudiesSensitivity (95% CI)Specificity (95% CI)Studies w/o Controls
NSPNSLFIA or FIA or CLEIA301180.858 (0.835, 0.881)0.991 (0.987, 0.995)53
NSPNSLFIA or FIA or CLEIA403250.726 (0.706, 0.746)0.989 (0.987, 0.992)39
TSNSLFIA or FIA or CLEIA30100.637 (0.478, 0.795)0.994 (0.989, 0.998)5
TSNSLFIA or FIA or CLEIA40360.438 (0.332, 0.547)0.993 (0.987, 0.999)14
NSPNSLFIA or FIA301140.854 (0.830, 0.878)0.991 (0.987, 0.995)50
NSPNSLFIA or FIA403030.718 (0.697, 0.739)0.989 (0.987, 0.992)38
TSNSLFIA or FIA30100.637 (0.478, 0.795)0.994 (0.989, 0.998)5
TSNSLFIA or FIA40320.395 (0.285, 0.505)0.995 (0.993, 0.997)13
NSPNSLFIA301010.852 (0.825, 0.878)0.991 (0.987, 0.995)44
NSPNSLFIA402690.715 (0.692, 0.738)0.990 (0.987, 0.992)35
TSNSLFIA30100.637 (0.478, 0.795)0.994 (0.989, 0.998)5
TSNSLFIA40290.408 (0.292, 0.523)0.995 (0.993, 0.997)12
NSPNSFIA30130.868 (0.813, 0.924)0.991 (0.981, 1.000)6
NSPNSFIA40350.730 (0.674, 0.785)0.986 (0.976, 0.995)3
TSNSFIA30----
TSNSFIA4020.162 (0.083, 0.242)0.984 (0.941, 1.000)1
NSPNSCLEIA3040.977 (0.955, 0.998)0.995 (0.000, 1.000)3
NSPNSCLEIA40230.816 (0.761, 0.870)0.979 (0.971, 0.988)1
TSNSCLEIA30----
TSNSCLEIA4030.720 (0.380, 1.000)0.957 (0.889, 1.000)1
Table 4. Results of the meta-analysis for the different types of assays for symptomatic and asymptomatic patients. Listed information includes the pooled sensitivity and specificity along with the 95% confidence intervals. (NSP: pharyngeal, nasopharyngeal, nasal specimens, TS: throat, saliva, N: nucleocapsid protein, S: spike protein, NS: nucleocapsid and Spike proteins).
Table 4. Results of the meta-analysis for the different types of assays for symptomatic and asymptomatic patients. Listed information includes the pooled sensitivity and specificity along with the 95% confidence intervals. (NSP: pharyngeal, nasopharyngeal, nasal specimens, TS: throat, saliva, N: nucleocapsid protein, S: spike protein, NS: nucleocapsid and Spike proteins).
SampleAgMethodCtStudiesSensitivity (95% CI)Specificity (95% CI)Studies w/o
Controls
SYMPTOMATIC INDIVIDUALS
NSPNLFIA2010.976 (0.911, 1.000)-1
NSPNLFIA30210.823 (0.765, 0.882)0.993 (0.989, 0.997)7
NSPNLFIA40440.753 (0.713, 0.794)0.992 (0.987, 0.997)7
NSPNLFIA20–3020.881 (0.765, 0.996)-2
NSPNLFIA30–40130.469 (0.228, 0.709)0.947 (0.880, 1.000)4
NSPNFIA3020.694 (0.509, 0.878)0.996 (0.993, 0.998)0
NSPNFIA4040.605 (0.292, 0.918)0.948 (0.827, 1.000)1
NSPNFIA30–4010.921 (0.868, 0.973)0.923 (0.000, 1.000)0
TSNLFIA3020.669 (0.119, 1.000)0.998 (0.994, 1.000)0
TSNLFIA4040.426 (0.029, 0.823)0.986 (0.977, 0.996)0
TSNLFIA30–4010.025 (0.000, 1.000)0.5 (0.000, 1.000)0
TSNFIA4010.083 (0.000, 1.000)-1
NSP-TSNLFIA2020.957 (0.889, 1.000)-2
NSP-TSNLFIA3040.873 (0.788, 0.958)0.998 (0.993, 1.000)3
NSP-TSNLFIA40110.767 (0.695, 0.836)0.996 (0.992, 0.999)3
NSP-TSNLFIA20–3020.901 (0.795, 1.000)-2
NSP-TSNLFIA30–4040.260 (0.142, 0.378)0.500 (0.000, 1.000)3
ASYMPTOMATIC INDIVIDUALS
NSPNLFIA30150.665 (0.558, 0.772)0.992 (0.981, 1.000)6
NSPNLFIA40350.561 (0.499, 0.622)0.995 (0.992, 0.998)5
NSPNLFIA20–3010.371 (0.270, 0.471)-1
NSPNLFIA30–40100.233 (0.061, 0.405)0.947 (0.880, 1.000)6
NSPNFIA3050.808 (0.714, 0.901)0.997 (0.989, 1.000)3
NSPNFIA4060.782 (0.614, 0.949)0.949 (0.904, 0.995)1
NSPNFIA30–4020.734 (0.253, 1.000)0.882 (0.774, 0.991)1
TSNLFIA3020.484 (0.000, 1.000)0.995 (0.986, 1.000)0
TSNLFIA4090.167 (0.034, 0.301)0.990 (0.974, 1.000)6
TSNLFIA30–4010.050 (0.000, 0.185)0.5 (0.000, 1.000)0
TSNFIA4010.166 (0.000, 1.000)0.984 (0.941, 1.000)0
NSP-TSNLFIA3010.300 (0.136, 0.464)0.997 (0.000, 1.000)0
NSP-TSNLFIA4050.481 (0.291, 0.671)0.997 (0.995, 0.998)1
NSP-TSNLFIA30–4010.050 (0.000, 0.185)0.997 (0.000, 1.000)0
NSP-TSNFIA4010.850 (0.772, 0.928)0.984 (0.941, 1.000)0
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Tapari, A.; Braliou, G.G.; Papaefthimiou, M.; Mavriki, H.; Kontou, P.I.; Nikolopoulos, G.K.; Bagos, P.G. Performance of Antigen Detection Tests for SARS-CoV-2: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 1388. https://doi.org/10.3390/diagnostics12061388

AMA Style

Tapari A, Braliou GG, Papaefthimiou M, Mavriki H, Kontou PI, Nikolopoulos GK, Bagos PG. Performance of Antigen Detection Tests for SARS-CoV-2: A Systematic Review and Meta-Analysis. Diagnostics. 2022; 12(6):1388. https://doi.org/10.3390/diagnostics12061388

Chicago/Turabian Style

Tapari, Anastasia, Georgia G. Braliou, Maria Papaefthimiou, Helen Mavriki, Panagiota I. Kontou, Georgios K. Nikolopoulos, and Pantelis G. Bagos. 2022. "Performance of Antigen Detection Tests for SARS-CoV-2: A Systematic Review and Meta-Analysis" Diagnostics 12, no. 6: 1388. https://doi.org/10.3390/diagnostics12061388

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop