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Abstract

:

According to “Sepsis-3” consensus, sepsis is a life-threatening clinical syndrome caused by a dysregulated inflammatory host response to infection. A rapid identification of sepsis is mandatory, as the extent of the organ damage triggered by both the pathogen itself and the host’s immune response could abruptly evolve to multiple organ failure and ultimately lead to the death of the patient. The most commonly used therapeutic strategy is to provide hemodynamic and global support to the patient and to rapidly initiate broad-spectrum empiric antibiotic therapy. To date, there is no gold standard diagnostic test that can ascertain the diagnosis of sepsis. Therefore, once sepsis is suspected, the presence of organ dysfunction can be assessed using the Sepsis-related Organ Failure Assessment (SOFA) score, although the diagnosis continues to depend primarily on clinical judgment. Clinicians can now rely on several serum biomarkers for the diagnosis of sepsis (e.g., procalcitonin), and promising new biomarkers have been evaluated, e.g., presepsin and adrenomedullin, although their clinical relevance in the hospital setting is still under discussion. Non-codingRNA, including long non-codingRNAs (lncRNAs), circularRNAs (circRNAs) and microRNAs (miRNAs), take part in a complex chain of events playing a pivotal role in several important regulatory processes in humans. In this narrative review we summarize and then analyze the function of circRNAs-miRNA-mRNA networks as putative novel biomarkers and therapeutic targets for sepsis, focusing only on data collected in clinical settings in humans.
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1. Introduction


Sepsis is a life-threatening clinical syndrome caused by a dysregulated host inflammatory response to infection, often associated with multiple organ dysfunction syndrome and death [1]. It is recognized as a leading cause of death worldwide, as highlighted by the Global Burden of Disease, which estimated 48.9 million incident cases in 2017, accounting for 19.7% of all global deaths [2]. The economic and health burden of sepsis worldwide is alarming; mortality in sepsis patients has been estimated to be ≥10%, rising above 40% when evolving to septic shock [1]; in 2011 the total sepsis-related costs for US hospitals accounted for more than US $20 billion [1].



The definition of sepsis has undergone several revisions over the years because of the highly variable clinical spectrum: the 2001 American College of Chest Physicians/Society of Critical Care Medicine (ACCP/SCCM) Consensus Conference Committee criteria for the host systemic inflammatory response syndrome (SIRS) are currently outdated because of their demonstrated poor ability to discriminate between different degrees of clinical severity [3]. Reassessment of these criteria in a clinical setting has shown that they are often found in many inpatients, including those who are noninfectious and who do not proceed to adverse outcomes [3]. The latest definition of sepsis, named “Sepsis-3”, was proposed in 2016 by the SCCM and the European Society of Intensive Care Medicine (ESICM) [1]. According to the SCCM/ESICM, sepsis is defined as a life-threatening organ dysfunction (ascertained as acute change in Sepsis-related Organ Failure Assessment (SOFA score) total score ≥2) “due to a dysregulated host response to infection” [1]. Septic shock is defined as a “subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities substantially increase mortality” [1].



Rapid detection of sepsis is mandatory since the patient’s overall clinical impairment and degree of organ damage are triggered by an extremely complex chain of events involving the recognition of pathogen-associated molecular patterns (PAMPs) of microorganisms by the host immune system [4]. As happens in other acute pathologic conditions such as acute encephalitis [5], but also in several diseases not directly provoked by an infection such as ischemic stroke [6,7,8], atrial fibrillation [9], and many others [10], the characteristics of the interaction between host and pathogen fundamentally affect the degree and severity of the systemic involvement of the patient. The damage-associated molecular patterns (DAMPs) released by the spillover from the injured cells [11] can result in an escalating state of inflammation that can abruptly lead to multiple organ failure (MOF) and can result in death. The prompt initiation of a broad spectrum empirical antibiotic therapy and patient-driven supportive strategies such as fluid resuscitation optimize outcomes. The so-called early goal-directed therapy in the first hour of documented hypotension leads to a 79.9% survival rate, each hour of delay being associated with an average decrease in survival of 7.6% [12]. Despite the development of bedside screening tools to facilitate the early detection of septic patients, a tool to which a definitive diagnostic value can be attributed is still missing, thus the diagnosis is today still challenging, and it continues to depend on the clinical judgment based on nonspecific clinical and laboratory variables. In addition, rapid discrimination between infectious and noninfectious causes presents a daunting challenge. The diagnosis of systemic infection is mainly based on direct microbiological tests such as cultures or polymerase chain reaction-based methods or indirectly using specific immunoglobulin dosage. Unfortunately, microbiology results often take several days to became positive and are not diagnostic in patients with ongoing infection in up to one-third of cases, especially if cultures were collected when antibiotic treatment had already been started [13].



Since the combined sensitivity and specificity of actual biomarkers (e.g., C-reactive protein (CPR), Procalcitonin (PCT) and Interleukin-6 (IL-6)) do not allow for the rapid ascertainment of the diagnosis [14,15] and sepsis-related adverse outcomes rise with every hour of delay of proper intervention, new early biomarkers are urgently needed.



There is a growing amount of data about non-codingRNA, a group of transcripts that do not code proteins at first deemed as redundant RNAs but lately described as highly conserved transcripts involved in gene expression regulation through the modulation of chromatin rearrangement, histone modification, alternative splicing regulation and many other biological processes [16]. Recent findings speculate that circularRNAs (circRNAs), a particular type of long non-codingRNAs (lncRNAs) distinguished by a covalently closed-loop structure with neither 5′ to 3′ polarity nor polyadenosine tail, participates in gene regulation in a different way, regulating the microRNA (miRNAs) concentration in body fluids by competing with several miRNAs and regulating the downstream of messenger RNAs (mRNAs) [17].



Further demonstrating the increasing biological value that non-coding RNAs are proving to have, they seem to play a role in the pathogenesis of different diseases [18], and, given the complex interweaving between circRNAs, miRNAs, lncRNAs and mRNAs, various studies have addressed the issue of their role as novel diagnostic markers and therapeutic targets in many pathologic conditions including sepsis [19,20,21,22,23,24,25].



The objective of this review is to summarize the current findings of circRNA-miRNA-lncRNA networks in the context of sepsis as a biomarker and therapeutic target with a focus on their clinical use in a hospital setting and their effectiveness in providing reliable data for the improvement of clinical practice in the adequacy of early diagnosis and treatment of sepsis and septic shock.




2. Methodology of Literature Search


A comprehensive literature search was carried out in the MEDLINE database (search terms: “sepsis” + “noncodingRNA”, “miRNA”, “circRNA”, “mRNA”, “lncRNA”, “RNA”, “network”, “biomarker”, “therapy”, “prognosis”, “organ failure”). The search has been restricted to papers published in English without time limit. The authors sought literature by examining reference lists in original articles and reviews. We have included in this review only systematic reviews, metanalyses, randomized trials and randomized controlled trials, selecting studies in which the main objective of the study was the identification and function of circRNA, miRNA, or mRNA networks in the context of novel biomarkers with remarkable prognostic value and/or therapeutic target for sepsis and sepsis-related organ failure.



Each author involved independently evaluated the results of the literature research extracting the most pertinent knowledge, while others verified the accuracy and completeness of the extracted data. Each author made a judgement as to whether the search results were different or confounding, trying to provide as complete an overview of the field as possible to date.




3. Role of Biomarkers in Sepsis


According to the Biomarkers Definitions Working Group, a biological marker or biomarker is “a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes or pharmacologic responses to a therapeutic intervention” [26].



A biomarker finds application across four domains or functional classes:




	
As a diagnostic tool, i.e., a biomarker able to confirm a disease;



	
As a tool able to stage or to stratify disease severity;



	
As a prognostic tool;



	
An effective tool for prediction and monitoring of clinical response of an intervention [26].








Biomarkers of sepsis hold the promise of closing the gap in obtaining mycobacterial cultures by providing clinicians with clinically useful data. There is a strong demand for new and accurate sepsis biomarkers, especially in the era of personalized medicine in which physicians must increasingly tailor clinical and therapeutic management to each patient. In the following part of our manuscript, without aiming to address this topic comprehensively, the role of some of the major biomarkers currently used in sepsis will be analyzed by discussing the merits and demerits of their use during the management and treatment of such a serious disease that has its cornerstone in the timeliness of identification and early and appropriate intervention.



3.1. C-Reactive Protein (CRP)


C-Reactive Protein (CRP) is a plasma protein belonging to the group of the so-called acute phase reactants which may increase rapidly during inflammatory conditions or secondary to non-specific acute inflammatory stimuli [26]. The acute-phase proteins are produced in the liver during inflammatory states under the control of cytokines: CRP is mainly synthesized through Interleukin-6 (IL-6) and Interleukin-1β (IL-1β) stimulation via the transcription factors STAT3 and NF-κB [27]. CRP, as a component of the innate immune system, during infection may recognize various pathogens associated molecular patterns (PAMPs) such as phospholipid fragments released from damaged cells consequently activating the complement system and finally inducing the death of the targeted cells [28]. CRP is released into the bloodstream after 4–6 h after an inflammatory stimulus and a plasma peak is reached in 36 to 50 h [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]. Several conditions besides infection can result in the elevation of the CRP-serum level [30]; a meta-analysis of Simon et al. [31] demonstrated a sensitivity of 75% [95% CI: 62–84%] and a specificity of 67% [95% CI: 56–77%] for CRP in differentiating bacterial infection from the noninfective cause of inflammation.



Liu et al. [32], in a systematic review and meta-analysis including 45 studies and 5654 patients, showed an acceptable level of sensitivity of 75% (95% CI: 69–79%) but a weak level of specificity of 67% (95% CI: 58–74%) for the ability of CRP to differentiate patients with sepsis vs. non-infectious inflammatory state/disorders. Tan et al. [33], comparing the ability of CRP and PCT to serve as biomarkers for sepsis diagnosis show similar sensitivity (CRP: 80%, 95% CI: 63–90%, procalcitonin: 80%, 95% CI: 69–87%) but significantly lower specificity for CRP (61%; 95% CI: 50–72%) than procalcitonin (77%; 95% CI: 60–88%) [33]. A possible explanation for the lower diagnostic accuracy of CRP as a sepsis biomarker (low specificity and moderate sensibility) could account for the slow-release kinetics as a consequence of the inflammatory stimulus and its increase also due to other pathological conditions besides infections (e.g., trauma, burns, surgery or various immune-inflammatory conditions [34,35].



Finally, the limits showed that CRP remains a widely used diagnostic and therapeutic biomarker in sepsis to date, mainly because a decrease in its values correlates with the success of antimicrobial treatment [36].




3.2. Procalcitonin (PCT)


Procalcitonin is the precursor of calcitonin, released by the C-cells of parathyroid glands. Assicot et al. [37] in 1993 for the first time described the association between PCT serum levels and severe bacterial infection. Compared to CRP, the PCT has a better kinetic profile, increasing within 3–6 h after the onset of infection reaching its serum peak after 6–8 h [29]. Several studies investigated the diagnostic performance of PCT. A meta-analysis of Uzzan et al. [35], including studies from 1996 to 2004, showed a higher accuracy of PCT levels than CRP levels for the diagnosis of sepsis (Global diagnostic accuracy odds ratios: CRP 5.43 [95% CI: 3.19–9.23] vs. PCT 14.69 [95% CI 7.12–30.27] [35]. However, the authors included a restricted cohort study based only on surgery or trauma patients, and thus the conclusion cannot be extended to patients other than surgical conditions [35].



Tang et al. [38], in a meta-analysis of 18 studies, pointed out that PCT was not adequate in discriminating between sepsis and SIRS (both sensitivity and specificity were 71% [95% CI: 67–76] and the Area Under the Summary Receiver Operator Characteristic Curve was 0.78 [95% CI: 0.73–0.83] [38]. Another meta-analysis of 30 observational studies evaluating 3244 mixed subjects (pediatric and adult patients admitted in the Intensive Care Unit or Emergency Room), has given the PCT a sensitivity of 77% [95% CI: 72–81%] and a specificity of 79% [95% CI: 74–84%], with AUC 0.85 [95% CI 0.81–0.88] for accuracy in discriminating sepsis from a non-infectious state [39].



Several studies have also confirmed the clinical utility of PCT in driving antimicrobial therapy surveillance and the eventual de-escalation of antibiotic treatment [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29].



To date, there are no established cut-off values of serum PCT concentrations that are able to discriminate sepsis versus septic shock [29].




3.3. Presepsin


Presepsin, the N-terminal fragment of 13 kDa of the sCD14 (the soluble form of the receptor of lipopolysaccharide-lipopolysaccharide binding protein), is an emerging biomarker and early indicator of bacterial infections [40]. Presepsin, as part of the Toll-like receptor group, takes part of the innate immune system, binding several pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) of Gram- or peptidogligans [40]. In recent years, sCD14 has become one of the most widely sepsis biomarkers studied: the level of sCD14 increased significantly in patients with sepsis and septic shock compared with healthy people, and the change was significantly related to the severity and prognosis of the disease [29,41,42,43,44]. The diagnostic power of presepsin in detecting sepsis showed with a pooled sensitivity of 77–86% and a specificity of 73–78% [41,42,43,44]. Nevertheless, presepsin still needs wider investigation and further validation and comparison with standard sepsis biomarkers prior to being recommended for the hospital-setting.





4. Non-CodingRNA


Non-codingRNA, including long non-codingRNAs (lncRNAs), circularRNAs (circRNAs) and microRNAs (miRNAs), take part in a complex chain of events playing a pivotal role in several important regulatory processes in humans. Non-codingRNAs are traditionally classified based on the length of nucleotides (nt) in small non-codingRNAs (sncRNAs) and long non-codingRNAs. The ncRNAs with 200 nt or lower are referred to as sncRNAs including microRNAs (miRNAs), small interfering RNAs (siRNAs) and piwi-interactingRNAs (piRNAs) whereas those with 200 nt or higher are referred as lncRNAs, such as promoter-associated transcripts (PATs), enhancerRNAs (eRNAs) and circularRNAs (circRNAs).



Numerous studies have demonstrated that exosomes, phospholipid bilayer vesicles that originate from the membrane vesicles of the endosomes and are secreted by almost all cells, contain a variety of functional molecules that are crucial mediators of intercellular communication including lncRNAs, circRNAs and miRNAs. After exosomes are released into the tissue fluid, they arrive at the target cells and begin to deliver the different molecules contained (such as circRNAs), thus initiating functional responses and inducing subsequent phenotypic changes [45,46,47]. Recent studies have shown altered expressions of several non-coding RNAs such as lncRNAs, circRNAs and miRNAs during sepsis. Interestingly, noncoding RNAs have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. In the following section of the review, the role of these three classes of noncoding RNAs in the pathophysiology of sepsis and sepsis-related multi-organ failure (MOF) will be examined.



4.1. CircRNAs


CircRNAs are an endogenous non-codingRNA which have as their main characteristic a closed loop structure with a covalent bond linking the 3′ to 5′ ends [48,49].



CircRNAs are highly conserved molecules expressed in a broad range of human cells, both in physiologic and pathologic conditions [50]. Memczak et al. detected 1950 circRNAs in HEK293 cells, 1903 circRNAs in the brain and fetal cells of mouse and through 724 circRNAs from different developing stages of Caenorhabditis Elegans (a nematode worm about 1 mm in length) [48].



Enuka et al. [51] estimate that circRNAs have a half-life of 18.8–23.7 h, roughly 2.5-fold higher that their linear form [52]. Also, circRNAs are insensitive to the common degradation pathways (i.e., RNAase or RNAexonucleases) [53]. Mature circRNAs are usually found in cytoplasms, whereas immature circRNAs that are still susceptible to intronic splicing remain in the nucleus [54].



4.1.1. CircRNAs Biogenesis


CircRNAs are primarily generated by the transcription of exonic and/or intronic sequences of a protein-coding gene in a complex reaction catalyzed by the RNA polymerase II (RNApol II). Both circRNAs and mRNAs, in their linear forms, are produced by the same precursor or pre-mRNAs undergoing a totally different splicing mechanism [55]. CircRNAs are produced by spliceosome machinery through a back-splicing process, resulting in a covalently closed loop structure between the 3′ upstream splice site and the 5′ downstream splice site [56,57,58,59,60,61].




4.1.2. CircRNAs Functions


CircRNAs act by separating miRNAs from their target mRNAs, thereby influencing miRNA-mediated gene suppression or expression. The interaction between circRNA-miRNA appears to be critical to the optimal functionality of our organism [62,63]. CircRNAs may act as a dynamic scaffold influencing protein interactions having the potential to regulate protein function by binding, storing, sequencing and isolating proteins to specific subcellular locations [64]. Finally, nuclear circRNAs may act as regulators of the transcription by promoting the extended activity of RNA polymerase II [46,65] or through other alternative pathways which are still being studied.



Considering all of these features, the tissue development specific expression patterns and the putative crucial regulatory functions in various diseases, circRNAs thus have all of the qualities to be used as novel biomarkers in several pathologic conditions [19,21,66,67].





4.2. Long Non-CodingRNAs (lncRNAs)


The lncRNAs (200 nt or more) belong to the large class of non-codingRNAs that perform housekeeping functions in numerous biological processes through the regulation of gene expression at the post-transcriptional and transcriptional level [68,69,70]. Changes in the expression levels of lncRNAs affect the malignancy phenotype in various types of cancer such as colorectal, lung, liver, breast, ovarian cancers and leukemia [71,72], and are linked to development state [73] and may be observed during various phases of T-cell differentiation [74].



4.2.1. lncRNAs Biogenesis


To date, the lncRNAs biogenesis is not completely clarified. Transcriptome-wide studies show that lncRNAs biogenesis owns a peculiar expression pattern that is cell type-specific and stage-specific [75,76], which is also regulated by cell type and stage-specific stimuli [77] Briefly, lncRNAs are widely interspersed in the genome. Enhancers, promoters, and intragenic regions are the main DNA elements from which lncRNAs are transcribed [78].




4.2.2. lncRNAs Functions


The molecular function of lncRNAs may be summarized as four archetypes: (1) signal: lncRNAs can serve as molecular signal able to activate/silence specific genome sequences by interacting with chromatin and recruiting the chromatin modifying systems [76]; (2) Decoy: lncRNAs play a central role in the regulation of genome transcription, mainly by inhibiting it but occasionally also by activating it [76,77]; (3) Guide: lncRNAs can modify the chromatin structure guiding specific proteins to specific targets that ultimately cause gene silencing [76,77]; (4) Scaffold: lncRNAs can serve as a scaffold for assembling two or more proteins by inducing changes in chromatin as a consequence. They may therefore play a role in the activation or transcriptional silencing of specific genome sequences [76,77].





4.3. MicroRNAs (miRNAs)


miRNAs are endogenous non-coding transcripts of 19–22 nucleotides that modulate the translation of target mRNAs at a post-transcriptional level [79].



4.3.1. miRNAs Biogenesis


The RNA polymerase II transcribes a primary miRNA called pri-miRNA (~500–3000 nt); starting with this precursor a premature miRNA (pre-miRNA) is formed [80,81]. Through exportin 5, the pre-miRNA is exported in the cytoplasm and an miRNA duplex is processed. The “miRNA duplex” is bound into the RISC (RNA-induced silencing complex) with the final release of the mature miRNA [80]. As previously mentioned, circRNAs sequester mature miRNAs, acting as an miRNA sponge, through the interaction between the RNA binding proteins, diminishing miRNA functions.




4.3.2. miRNAs Functions


miRNAs are believed to be among the most important regulators of cellular communication, playing a pivotal role in maneuvering the linear RNA’s expression at various levels. The most notably and predominant function of miRNAs is the binding of complementary sequences of the target linear RNAs that results in the inhibition of mRNA translation [82].






5. Non-Coding RNA and Sepsis


During sepsis the immune system is widely activated; the level and extent of the immune response triggered by the pathogen is different from subject to subject and depends largely on his/her state of immunocompetence [83,84].



Studies performed mostly in experimental animal models investigating the role of non-codingRNAs in the modulation of inflammation have identified some interesting networks that have been shown to be actively involved. Accumulating evidence shows that lncRNAs and miRNAs are involved in the sepsis inflammatory response, but the role played by different non-coding RNA networks in different biological contexts is extremely complex, variable, and involves the intervention of several mediators and effectors. An example will make clear the complexity of the field of research we are discussing: lncRNA taurine upregulated gene 1 (lncRNA TUG1) seems to participate in several pathophysiological processes. The overexpression of TUG1 has demonstrated the ability to alleviate the inflammatory response (including apoptosis and autophagy) in acute lung injury [85]. These relevant clinical effects seem to be mediated via targeting miR-34b-5p [86] and miR-27a-3p [87]. On the other hand, TUG1 silencing reduces the inflammation and apoptosis of renal tubular cells in an ischemia-reperfusion model via targeting of miR-449B-5p [88], and regulates the expression of various genes such as matrix metalloproteinase [89], protects against myocardial ischemia upregulating miR 142-3p [90] and downregulating miR-29a-3p [91] through the modulation of the miR-532-5p/Sox8 axis [92] and the miR-145-5p-Binp3 axis [93,94]. These are just a few of the many and complex interactions highlighted to date.



Despite the mentioned challenge of accurately defining the roles played by specific non-coding RNAs, some research has helped us identify some molecules of likely clinical interest. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been linked to sepsis. MALAT1 downregulation inhibits the LPS-induced inflammatory response by preventing the release of IL-6 and TNF-α and the NF-κB signaling pathway by upregulating miR-150-5p [95]. The MALAT1/miR-214/Toll-like receptor (TLR)5 signaling pathway dysregulation enhances the risk of post-burn sepsis by promoting greater production of proinflammatory cytokines [96]. LncRNA nuclear-enriched abundant transcript 1 (NEAT1) seems to also be involved in sepsis progression. In rats, NEAT1 knockdown could significantly improve the sepsis-induced myocardial injury preventing cardiac insufficiency and consensually increasing the ejection fraction (p < 0.05) [97]. Furthermore, another study indicates that NEAT1 inhibits the LPS-induced progression of sepsis in RAW264.7 cells by modulating the miR-31-5p/POU2F1 axis [98], suggesting that NEAT1, which also positively correlates with Th1 and Th17 levels [99], will be a potential target for clinical treatment of sepsis-induced organ damage.



Several miRNAs have been found to influence the course of sepsis, providing another substantial amount of evidence [100]. Over a hundred of different miRNAs have been investigated [101], identifying more or less prominent roles in the pathophysiology of sepsis-related injury by influencing the level of inflammasome induced.



What emerges is therefore an extremely interconnected network in which it is difficult to disentangle, especially if the objective is, as in our case, to try to determine whether there are the premises to attribute the role of biomarker of sepsis to one or more of the non-coding RNAs analyzed so far. It is a picture in which for each different pathological condition studied, different networks of non-coding RNA play different roles, making it impossible to assign a unique label to a specific lncRNA or miRNA.




6. Assessment of the Clinical and Prognostic Value of Non-Coding RNAs as Biomarkers in Sepsis


The role actually played in sepsis by the many non-coding RNAs that have been studied so far is only partially clarified. Many studies using cell and animal models have tried to demonstrate that non-coding RNAs may be used to control the multi-organ damage due to the septic process, but considerable challenges must be overcome in order to successfully translate these approaches into clinical practice. The concrete risk is to discuss notions that remain theoretical, not having the clinical relevance to propose themselves as concrete novelties in the future day-to-day clinical practice. Attempting to provide indications that are as translatable as possible into clinical practice, the following will be listed only the evidence available to date in which it was assessed the usefulness of miRNAs in sepsis in human clinical settings.



6.1. circRNAs


Using the research criteria previously described, only three studies to date have evaluated circ-RNAs by addressing the issue of their reliability as biomarker and prognostic value in clinical settings of sepsis in humans.



Wei et al. [102] explored the clinical values of circular RNA protein kinase C iota (circ-PRKCI) and its target microRNA-545 (miR-545) in sepsis patients. Plasma samples of 121 sepsis patients and 60 healthy controls were collected. Decreased circ-PRKCI expression and increased miR-545 expression were observed in sepsis patients compared to healthy controls, both of which had close correlations with sepsis risk. Decreased circ-PRKCI and increased miR-545 expressions were associated to 28-day mortality risk in sepsis patients, which were slightly lower than the predictive values of APACHE II score and SOFA score for predicting 28-day mortality risk.



Tian et al. [103] studied changes in circRNA expression in exosomes by circRNA microarray analysis in sepsis patients. ROC analysis showed that hsa_circRNA_104484 and hsa_circRNA_104670 have the potential to be used as novel diagnostic biomarkers and molecular therapeutic targets for sepsis.



Hong et al. [104] evaluated circFADS2 expression, a circRNA with putative protective roles in LPS-induced inflammation. Their results suggest that CircFADS2 is upregulated in sepsis to suppress LPS-induced lung cell apoptosis.




6.2. lncRNAs


Using the research criteria previously described, twelve studies addressed the issue of reliability as a biomarker and prognostic tool of lncRNAs in clinical settings of sepsis in humans. Table 1 shows the main findings as well as the diagnostic power of the different lncRNAs evaluated.




6.3. miRNAs


The research that has evaluated miRNAs with this aim in clinical settings of sepsis are of significant number, attracting the interest of researchers. We have tried to summarize in Table 2 the main elements of all available studies and in Figure 1 the main regulatory mechanisms of the pro-inflammatory state and interaction with host defense mechanisms that may substantiate their role as biomarkers in sepsis.





7. Conclusions


When facing sepsis or septic shock, time management is crucial to ensure the maximum chance of survival for the patient. Since the combined sensitivity and specificity of actual biomarkers (e.g., CPR, PCT, IL-6, etc.) do not allow for the rapid ascertainment of the diagnosis [14,15], they cannot always discriminate early enough between infectious and non-infectious patients and rapidly evolving patients from the more stable ones, whilst sepsis-related adverse outcomes rise with every hour of delay of proper intervention; new early biomarkers are urgently needed.



Non-codingRNA, including lncRNAs, circRNAs and miRNAs, cooperate in a comprehensive network deeply involved in gene function modulation, playing a pivotal role in several important regulatory mechanisms in humans, including the pathophysiology of sepsis and the sepsis-associated organ dysfunction.



The numerous studies carried out in the field of non-coding RNAs, their biogenesis, and their biological and clinical significance in recent years have identified the finding of the selective enrichment of exosomes with various networks of non-codingRNAs, different in health and disease according to options and mechanisms almost unknown today. This issue is certainly one of those most deserving of attention and investigation in the future.



Among the many studies conducted in clinical settings to ascertain the effective role of specific non-coding RNAs in supporting the early diagnosis of sepsis and in guiding therapeutic management, some have provided data that are worthy of highlighting and may provide a concrete starting point for future investigations. Some lncRNa, such as NEAT1, MALAT1, and HULC have shown interesting and promising potentials, as well as many dozens of miRNAs that seem to have the potential to flank, if not replace, the role of biomarkers in the molecules that we currently use today.



Much remains to be investigated and written about non-coding RNAs as a prognostic biomarker for sepsis. Targeted clinical studies aimed at identifying their role in everyday practice more accurately are therefore needed in the coming years.
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Figure 1. MicroRNAs (miRNAs) in sepsis. Regulatory mechanisms of the pro-inflammatory state and interaction with host defense mechanisms that may substantiate their role as biomarkers. 
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Table 1. Main findings of the study regarding lncRNAs addressing the issue of their reliability as biomarker and prognostic tool in clinical settings of sepsis in humans.
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Ref.

	
Year

	
lncRNA

	
Novel/Validation

	
Pattern of Expression

	
Sample Size

	
Diagnostic Power

	
Other Results




	
Sepsis Cases

	
Control

	
N°

	
1. Sensitivity (%)

	
2. Specificity (%)

	
AUC






	
[105]

	
2019

	
lncRNA ITSN1-2

	
Validation

	
Upregulated

	
309

	
HC

	
300

	
59.5

	
86.3

	
0.777

	
Positive correlation with APACHE II, CRP, TNF-α, IL-6, il-8; Negative correlation with IL-10




	
[106]

	
2019

	
lncRNA ZFAS1

	
Novel

	
Downregulated

	
202

	
HC

	
200

	
NR

	
NR

	
0.814

	
Negative correlation with APACHE II, CRP, TNF-α, IL-6; Positive correlation with IL-10; predicts survivor from non-survivor




	
[107]

	
2019

	
lncRNA

ANRIL

	
Novel

	
Upregulated

	
126

	
HC

	
126

	
NR

	
NR

	
0.800

	
Positive correlation with CRP, PCT, APACHE II, SOFA, TNF-α, IL-8




	
[108]

	
2019

	
lncRNA

MALAT1

	
Novel

	
Upregulated

	
190

	
HC

	
190

	
NR

	
NR

	
0.823

	
Positive correlation with PCT, Scr, WBC, CRP, SOFA and APACHE II; predict 28-day mortality




	
[109]

	
2020

	
lncRNA THRIL

	
Novel

	
Upregulated

	
32 ARDS +sepsis

	
nonARDS-sepsis

	
77

	
NR

	
NR

	
0.706

	
Positive correlation with CRP, PCT, TNF-α, IL-1β




	
[110]

	
2020

	
lncRNA GAS5

	
Novel

	
Downregulated

	
60

	
HC

	
60

	
NR

	
NR

	
NR

	
Positive correlation with miRNA-214




	
[111]

	
2020

	
lncRNA MEG3

	
Validation

	
Upregulated

	
112

	
HC

	
100

	
77.7

	
94

	
0.893

	
Predictive role for ARDS-sepsis




	
[112]

	
2020

	
lncRNA MALAT1

	
Validation

	
Upregulated

	
120

	
HC

	
60

	
NR

	
NR

	
0.910

	
Positive correlation with PCT, Lactate levels, SOFA and APACHE II




	
[113]

	
2020

	
lncRNA MALAT1

	
Validation

	
Upregulated

	
196

	
HC

	
196

	
91.3

	
78.6

	
0.931

	
Negative correlation with miR125a and albumin; positive correlation with APACHE II, SOFA, Scr, CRP, IL-6, IL-8, IL-1β, TNF-α




	
[114]

	
2020

	
lncRNA NEAT1

	
Validation

	
Upregulated

	
102

	
HC

	
100

	
NR

	
NR

	
0.992

	
Negative correlation with miR-125a




	
[115]

	
2021

	
lncRNA HULC

	
Novel

	
Upregulated

	
174

	
HC

	
100

	
78.7

	
97

	
0.939

	
Positive correlation with TNF-α, IL-6, IL-17, ICAM1, and VCAM1 APACHE II, SOFA Score,




	
[116]

	
2021

	
lncRNA PVT1

	
Validation

	
Upregulated

	
109

	
HC

	
100

	
NR

	
NR

	
NR

	
Predictive role for ARDS and 28-day mortality, positive correlation with disease severity;








Novel: lncRNA identified for the first time; Validation: confirmation of a finding already reported in the literature. Ref: reference; NR: Not Report; HC: Healthy controls; IL: Interleukin; TNF-α: Tumor necrosis factor-α; SOFA: Sequential Organ Failure Assessment; APACHE II: Acute Physiologic Assessment and Chronic Health Evaluation II; PCT: procalcitonin; CRP: C-reactive protein; Scr: serum creatinine; WBC: white blood count; AUC: Area under the curve; miR: microRNA; ARDS: Acute respiratory Distress Syndrome.
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Table 2. Main findings of the study regarding miRNA addressing the issue of their reliability as biomarkers and prognostic tools in clinical settings of sepsis in humans.
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Ref.

	
Year

	
miRNA

	
Novel/Validation

	
Pattern of Expression

	
Sample Size

	
Diagnostic Power

	
Other Results




	
Sepsis Cases

	
Control

	
Number

	
Sensitivity (%)

	
Specificity (%)

	
AUC

	






	
[117]

	
2009

	
miR-146a

	
Novel

	
Downregulated

	
50

	
SIRS + HCs

	
30 + 20

	
NR

	
NR

	
0.804

	
N/A




	
[117]

	
2009

	
miR-223

	
Novel

	
Downregulated

	
50

	
SIRS + HCs

	
30 + 20

	
NR

	
NR

	
0.858

	
N/A




	
[118]

	
2012

	
miR-15a

	
Novel

	
Downregulated

	
166

	
SIRS

	
32

	
68.3

	
94.4

	
0.858

	
N/A




	
[119]

	
2013

	
miR-150

	
Novel

	
Upregulated

	
23

	
SIRS

	
22

	
72.7

	
85.7

	
0.830

	
N/A




	
[119]

	
2013

	
miR-4772-5p-iso

	
Novel

	
Downregulated

	
23

	
SIRS

	
22

	
68.2

	
71.4

	
0.760

	
N/A




	
[120]

	
2013

	
miR-146a

	
Validation

	
Downregulated

	
14

	
SIRS

	
14

	
60

	
87.5

	
0.813

	
N/A




	
[121]

	
2013

	
miR-146a

	
Validation

	
Upregulated

	
40

	
SIRS

	
20

	
77.5

	
77

	
0.815

	
Positive correlation with miR-223, IL-10, TNF-α




	
[121]

	
2013

	
miR-123

	
Novel

	
Upregulated

	
40

	
SIRS

	
20

	
77.5

	
55

	
0.678

	
Positive correlation with miR-146a, IL-10, TNF-α




	
[122]

	
2014

	
miR-25

	
Novel

	
Downregulated

	
70

	
SIRS

	
30

	
NR

	
NR

	
0.806

	
Negative correlation with SOFA, PCT, CRP.

Predictive role in 28-day mortality risk (AUC: 0.756)




	
[123]

	
2014

	
miR-155

	
Novel

	
Upregulated

	
60

	
HCs

	
30

	
NR

	
NR

	
NR

	
Positive correlation with SOFA; predictive role in 28-days mortality risk (AUC: 763)




	
[124]

	
2014

	
miR-143

	
Novel

	
Upregulated

	
103

	
SIRS

	
95

	
78.6

	
91.6

	
0.910

	
Positive correlation with SOFA, APACHE II




	
[125]

	
2015

	
miR-499

	
Novel

	
Upregulated

	
112

	
HCs

	
20

	
86.7

	
90.8

	
0.838

	
N/A




	
[126]

	
2016

	
miR-223

	
Validation

	
Upregulated

	
187

	
HCs

	
186

	
56.6

	
86.6

	
0.754

	
Positive correlation with CRP, TNF-α, IL-1β, IL-6, IL-8 and negatively with IL-10; predicts survivor from non-survivor




	
[127]

	
2016

	
miR-155-5p

	
Validation

	
Upregulated

	
105

	
HCs

	
35

	
85.3

	
80.6

	
0.855

	
N/A




	
[127]

	
2016

	
miR-133a-3p

	
Novel

	
Upregulated

	
105

	
HCs

	
35

	
97.9

	
54.8

	
0.769

	
N/A




	
[128]

	
2017

	
miR-328

	
Novel

	
Upregulated

	
110

	
HCs

	
89

	
87.6

	
86.4

	
0.926

	
Positive correlation with Scr, WBC, CRP, PTC, APACHE II, SOFA,




	
[129]

	
2017

	
miR-495

	
Novel

	
Downregulated

	
105

	
HCs

	
100

	
89.5

	
83

	
0.915

	
Distinguishes sepsis from sepsis shock (Sen: 85.3%; Spec: 87.3; AUC 0.885);

Negative correlation with Scr, WBC, CRP, PCT, APACHE II, SOFA




	
[130]

	
2017

	
miR-7110-5p

	
Novel

	
Upregulated

	
44

	
Non sepsis pneumonia + HC

	
96

	
84.2

	
90.5

	
0.883

	
N/A




	
[130]

	
2017

	
miR-223-3p

	
Validation

	
Upregulated

	
44

	
Non sepsis pneumonia + HCs

	
96

	
82.9

	
100

	
0.964

	
N/A




	
[131]

	
2017

	
miR-19b-3p

	
Novel

	
Downregulated

	
103

	
HCs

	
98

	
85.4

	
85.7

	
0.921

	
Independent prognostic factor for 28-days survival; Negative correlation with IL-6, TNF-α




	
[132]

	
2018

	
miR-126

	
Novel

	
Upregulated

	
208

	
HCs

	
210

	
NR

	
NR

	
0.726

	
Positive correlation with APACHE II, ICU stay, MCD, Scr, CRP, TNF-α, IL-6, IL-8 and negative with IL-10




	
[133]

	
2018

	
miR-122

	
Validation

	
Upregulated

	
108

	
Non sepsis infection

	
20

	
58.3

	
95

	
0.760

	
Independent prognostic factor for 30-days mortality (HR: 4.3)




	
[134]

	
2018

	
miR-10a

	
Novel

	
Downregulated

	
62

	
HCs

	
20

	
NR

	
NR

	
0.804

	
Negative correlation with APACHE II, SOFA, CRP, PCT;

predictive role in 28-days mortality risk (AUC: 0.795)




	
[135]

	
2018

	
miR-125b

	
Novel

	
Upregulated

	
120

	
HCs

	
120

	
49.2

	
80

	
0.658

	
Positive correlation with APACHE II, SOFA, Scr, CRP, PCT, TNF-α, IL-6; Independent factor for mortality risk. In this study miR-125a upregulation was not associated with enhanced disease severity, inflammation, and increased mortality in sepsis patients




	
[136]

	
2018

	
miR-146a

	
Validation

	
Downregulated

	
55

	
HCs

	
60

	
86.6

	
56.6

	
0.803

	
Negative correlation with CRP, PCT, IL-6, TNF-α




	
[137]

	
2018

	
miR-181a

	
Novel

	
Downregulated

	
102

	
Local infection

	
50

	
83.3

	
84

	
0.893

	
N/A




	
[138]

	
2018

	
miR-101

	
Novel

	
Upregulated

	
50

	
SIRS

	
30

	
84

	
84

	
0.908

	
N/A




	
[138]

	
2018

	
miR-187

	
Novel

	
Upregulated

	
50

	
SIRS

	
30

	
72

	
76

	
0.789

	
N/A




	
[138]

	
2018

	
miR-21

	
Novel

	
Upregulated

	
50

	
SIRS

	
30

	
64

	
66

	
0.711

	
N/A




	
[139]

	
2019

	
miR-494-3p

	
Novel

	
Downregulated

	
NR

	
HCs

	
NR

	
NR

	
NR

	
0.837

	
N/A




	
[140]

	
2019

	
miR-122

	
Novel

	
Upregulated

	
25

	
LWI

	
25

	
100

	
100

	
1.000

	
Higher AUC than CRP and WBC;

56% of accuracy as a prognostic biomarker




	
[141]

	
2019

	
miR-21

	
Validation

	
Downregulated

	
219

	
HCs

	
219

	
NR

	
NR

	
0.801

	
Negative correlation with APACHE II, SOFA, Scr, CRP, TNF-α, IL-1β, IL-6, IL-17;




	
[142]

	
2019

	
miR-103

	
Novel

	
Downregulated

	
196

	
HCs

	
196

	
NR

	
NR

	
NR

	
Negative correlation with APACHE II, SOFA, Scr, CRP, TNF, IL-1β, IL-6, IL-8 positive with albumin;

predicted high ARDS risk (AUC: 0.727) and increased 28-days mortality risk (AUC: 0.704)




	
[142]

	
2019

	
miR-107

	
Novel

	
Downregulated

	
196

	
HC

	
196

	
NR

	
NR

	
NR

	
Negative correlation with APACHE II, SOFA, Scr, CRP, TNF, IL-1β, IL-6, IL-8 positive with albumin;

predicted high ARDS risk (AUC: 0.694) and increased 28-days mortality risk (AUC: 0.649)




	
[143]

	
2019

	
miR-146a

	
Validation

	
Upregulated

	
180

	
HCs

	
180

	
NR

	
NR

	
0.774

	
Positive correlation with APACHE II, SOFA, Scr, CRP, TNF-α, IL-1β, IL-6, IL17 and negative with albumin




	
[143]

	
2019

	
miR-146b

	
Novel

	
Upregulated

	
180

	
HCs

	
180

	
NR

	
NR

	
0.897

	
Good predictive value in 28-days mortality risk (AUC: 0.703);Positive correlation with APACHE II, SOFA, Scr, CRP, TNF-α, IL-1β, IL-6, IL17 and negative with albumin




	
[144]

	
2019

	
miR-125a

	
Novel

	
Upregulated

	
150

	
HCs

	
150

	
NR

	
NR

	
0.749

	
Positive correlation with APACHE II, SOFA. Not correlates with level of inflammation, disease severity, and 28-day mortality risk in sepsis patients




	
[144]

	
2019

	
miR-125b

	
Validation

	
Upregulated

	
150

	
HCs

	
150

	
NR

	
NR

	
0.839

	
Positive correlation with APACHE II, SOFA, CRP, TNF-α, IL-6, IL-17, IL-23; predictive role in 28-days mortality risk (AUC: 0.699)




	
[145]

	
2019

	
miR-210

	
Novel

	
Upregulated

	
125

	
HCs

	
110

	
81

	
80.9

	
0.852

	
Positive correlation with BUN, Scr, CysC




	
[145]

	
2019

	
miR-494

	
Validation

	
Upregulated

	
125

	
HCs

	
110

	
80.9

	
72.1

	
0.847

	
Positive correlation with BUN, Scr, CysC




	
[145]

	
2019

	
miR-205

	
Novel

	
Upregulated

	
125

	
HCs

	
110

	
78.6

	
90.5

	
0.860

	
Negative correlation with BUN, Scr, CysC




	
[146]

	
2020

	
miR-452

	
Novel

	
Upregulated

	
97

	
HCs

	
89

	
NR

	
NR

	
NR

	
High efficacy in distinguishing AKI in sepsis patients




	
[147]

	
2020

	
miR-125a

	
Validation

	
Upregulated

	
41

	
noARDS-sepsis

	
109

	
NR

	
NR

	
0.650

	
Positive correlation with Scr, APACHE II, SOFA




	
[147]

	
2020

	
miR-125b

	
Validation

	
Upregulated

	
41

	
noARDS-sepsis

	
109

	
NR

	
NR

	
0.739

	
Positive correlation with with Scr, APACHE II, SOFA




	
[148]

	
2021

	
miR-29c-3p

	
Novel

	
Upregulated

	
86

	
HCs

	
85

	
80.2

	
81.1

	
0.872

	
Positive correlation with APACHE II, SOFA, CRP, PCT








NOVEL (identified for the first time); VALIDATION (confirmation of a finding already reported in the literature). Ref: reference; NR: data not reported; N/A: not applicable; HC: Healthy controls; LWI: local wound infection; MCD: mechanical ventilation duration; SIRS: systemic inflammatory response syndrome; IL: Interleukin; TNF-α: Tumor necrosis factor-α; SOFA: Sequential Organ Failure Assessment; APACHE II: Acute Physiologic Assessment and Chronic Health Evaluation II; PCT: procalcitonin; CRP: C-reactive protein; Scr: serum creatinine; WBC: white blood count; BUN: blood urea nitrogen; CysC: Cystatin C; AUC: Area under the curve; Sen; sensibility; Spec: Specificity; miR: microRNA; ICU: Intensive Care Unit; HR: Hazard Ratio; ARDS: Acute respiratory Distress Syndrome; AKI: Akute Kidney Injury.
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