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Abstract: To predict the two-year recurrence-free survival of patients with non-small cell lung cancer
(NSCLC), we propose a prediction model using radiomic features of the inner and outer regions of
the tumor. The intratumoral region and the peritumoral regions from the boundary to 3 cm were
used to extract the radiomic features based on the intensity, texture, and shape features. Feature
selection was performed to identify significant radiomic features to predict two-year recurrence-
free survival, and patient classification was performed into recurrence and non-recurrence groups
using SVM and random forest classifiers. The probability of two-year recurrence-free survival was
estimated with the Kaplan–Meier curve. In the experiment, CT images of 217 non-small-cell lung
cancer patients at stages I-IIIA who underwent surgical resection at the Veterans Health Service
Medical Center (VHSMC) were used. Regarding the classification performance on whole tumors, the
combined radiomic features for intratumoral and peritumoral regions of 6 mm and 9 mm showed
improved performance (AUC 0.66, 0.66) compared to T stage and N stage (AUC 0.60), intratumoral
(AUC 0.64) and peritumoral 6 mm and 9 mm classifiers (AUC 0.59, 0.62). In the assessment of the
classification performance according to the tumor size, combined regions of 21 mm and 3 mm were
significant when predicting outcomes compared to other regions of tumors under 3 cm (AUC 0.70)
and 3 cm~5 cm (AUC 0.75), respectively. For tumors larger than 5 cm, the combined 3 mm region was
significant in predictions compared to the other features (AUC 0.71). Through this experiment, it was
confirmed that peritumoral and combined regions showed higher performance than the intratumoral
region for tumors less than 5 cm in size and that intratumoral and combined regions showed more
stable performance than the peritumoral region in tumors larger than 5 cm.

Keywords: chest CT; radiomic; prognosis prediction; intratumoral; peritumoral; recurrence-free survival

1. Introduction

Lung cancer is the leading cause of cancer-related death worldwide [1]. NSCLC is
the predominantly diagnosed type of lung cancer, accounting for about 80~85% of all
types [2], and the major histological subtypes of NSCLC are adenocarcinomas, squamous
cell carcinomas, and large cell carcinomas [3]. In general, NSCLC spreads slowly and
gradually throughout the body through the surrounding lymph nodes, and the extent of
the spread of NSCLC is described according to the TNM stage considering three factors:
the size and location of the tumor (T), the degree of lymph node invasion (N), and the
presence of metastasis to other organs (M) [4,5]. Overall tumor stages are defined as stages
I to IV by combining the three factors of the TNM stage, and patients with stage I–II NSCLC
and some patients with resectable stage IIIA NSCLC undergo curative resection surgery
as a treatment [6,7]. However, the recurrence rate after surgery is quite high at 50% [7–9].

Diagnostics 2022, 12, 1313. https://doi.org/10.3390/diagnostics12061313 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12061313
https://doi.org/10.3390/diagnostics12061313
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-5044-7909
https://doi.org/10.3390/diagnostics12061313
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12061313?type=check_update&version=3


Diagnostics 2022, 12, 1313 2 of 14

Therefore, predicting patient outcomes after surgery is important to improve the prognosis
of surgery by applying appropriate follow-up management strategies to patients.

Chest CT images are used to diagnose lung tumors, and the appearance of a lung
tumor, such as the size and location and the degree of invasion into normal organs, is
used as a reference to estimate the risk of the recurrence of lung tumors. Some tumors
have typical appearances associated with recurrence and non-recurrence, and these tumors
tend to be visually easy to distinguish as to whether or not they are actual recurrences.
The non-recurrent tumors are small in size, completely located in the lung parenchyma,
and there is no evidence of invasion into normal organs. The recurrent tumors are large,
attached to the chest wall or mediastinum, and appear to invade normal organs. However,
as shown in Figure 1, non-recurrent tumors and recurrent tumors have similar appearances
more frequently in practice. For this reason, the prognosis is difficult when using CT images
during visual evaluations. Thus, radiomics, which quantifies the tumor phenotype and
visually indistinguishable features, can help detect potentially recurrent tumors through
non-invasive biomarkers [10,11].

Diagnostics 2022, 12, x FOR PEER REVIEW 2 of 15 
 

NSCLC and some patients with resectable stage IIIA NSCLC undergo curative resection 

surgery as a treatment [6,7]. However, the recurrence rate after surgery is quite high at 

50% [7–9]. Therefore, predicting patient outcomes after surgery is important to improve 

the prognosis of surgery by applying appropriate follow-up management strategies to 

patients. 

Chest CT images are used to diagnose lung tumors, and the appearance of a lung 

tumor, such as the size and location and the degree of invasion into normal organs, is used 

as a reference to estimate the risk of the recurrence of lung tumors. Some tumors have 

typical appearances associated with recurrence and non-recurrence, and these tumors 

tend to be visually easy to distinguish as to whether or not they are actual recurrences. 

The non-recurrent tumors are small in size, completely located in the lung parenchyma, 

and there is no evidence of invasion into normal organs. The recurrent tumors are large, 

attached to the chest wall or mediastinum, and appear to invade normal organs. However, 

as shown in Figure 1, non-recurrent tumors and recurrent tumors have similar appear-

ances more frequently in practice. For this reason, the prognosis is difficult when using 

CT images during visual evaluations. Thus, radiomics, which quantifies the tumor phe-

notype and visually indistinguishable features, can help detect potentially recurrent tu-

mors through non-invasive biomarkers [10,11]. 

 

Figure 1. Examples of lung tumors with similar appearance between recurrence and non-recurrence. 

Non-recurrence tumors are in the first row, and recurrence tumors are in the second row. 

Several studies have used radiomic features to predict the prognosis of lung cancer 

patients using CT images, and these studies can be categorized into those that investigate 

only the intratumoral region or both the intratumoral and peritumoral regions [12–20]. In 

a radiomics study using intratumoral region information, Coroller et al. [12] predicted 

distant metastasis (DM) of lung adenocarcinoma patients at stages II–III who were treated 

with radiation. In their study, 635 radiomic features were used, including those based on 

the intensity, texture, shape, a Laplacian of Gaussian (LoG) filter, and a wavelet filter. 

Their findings demonstrate that the features of the texture heterogeneity and intensity 

skewness of the LoG and the wavelets are strongly associated with DM in patients. 

Coroller et al. [13] predicted the level of the pathological response of patients at stages II-

III who underwent neo-adjuvant chemotherapy and radiotherapy before surgery. In that 

study, 1603 radiomic features were used, including intensity, texture, shape, LoG-filter-

based, and wavelet-filter-based features. The study, in this case, showed that the spherical 

shape of the tumor is important when attempting to predict the pathological response to 

chemo-radiotherapy. Cong et al. [14] predicted lymph node metastasis in patients at stage 

IA who underwent curative resection surgery. In this study, 396 radiomic features were 

used, including intensity, texture, and shape features, indicating that significant features, 

such as the uniformity of the gray-level co-occurrence matrix and tumor homogeneity, 

provided predictive information about lymph node metastasis. 

In radiomics studies using intratumoral and peritumoral region information, Baek et 

al. [15] predicted two- and five-year overall survival and disease-specific survival rates 

Figure 1. Examples of lung tumors with similar appearance between recurrence and non-recurrence.
Non-recurrence tumors are in the first row, and recurrence tumors are in the second row.

Several studies have used radiomic features to predict the prognosis of lung cancer
patients using CT images, and these studies can be categorized into those that investigate
only the intratumoral region or both the intratumoral and peritumoral regions [12–20].
In a radiomics study using intratumoral region information, Coroller et al. [12] predicted
distant metastasis (DM) of lung adenocarcinoma patients at stages II–III who were treated
with radiation. In their study, 635 radiomic features were used, including those based on
the intensity, texture, shape, a Laplacian of Gaussian (LoG) filter, and a wavelet filter. Their
findings demonstrate that the features of the texture heterogeneity and intensity skewness
of the LoG and the wavelets are strongly associated with DM in patients. Coroller et al. [13]
predicted the level of the pathological response of patients at stages II-III who underwent
neo-adjuvant chemotherapy and radiotherapy before surgery. In that study, 1603 radiomic
features were used, including intensity, texture, shape, LoG-filter-based, and wavelet-filter-
based features. The study, in this case, showed that the spherical shape of the tumor is
important when attempting to predict the pathological response to chemo-radiotherapy.
Cong et al. [14] predicted lymph node metastasis in patients at stage IA who underwent cu-
rative resection surgery. In this study, 396 radiomic features were used, including intensity,
texture, and shape features, indicating that significant features, such as the uniformity of the
gray-level co-occurrence matrix and tumor homogeneity, provided predictive information
about lymph node metastasis.



Diagnostics 2022, 12, 1313 3 of 14

In radiomics studies using intratumoral and peritumoral region information,
Baek et al. [15] predicted two- and five-year overall survival and disease-specific survival
rates for NSCLC patients at stages I-IV who underwent stereotactic radiotherapy. Their
study used deep features extracted from the final layer of the encoding path of a U-net
trained with CT images and PET-CT images, finding that the encoded features of the
U-net depicted interpretable structural and geometric patterns of intratumoral and/or
peritumoral structures and that these features could be used to predict survival in can-
cer patients. Tai et al. [16] predicted distant metastasis in patients at stages II–III who
underwent radiotherapy. The peritumoral rim region was defined as the inner and outer
3 mm tumor margins from the tumor boundary, and the exterior region was defined as a
3 mm to 9 mm outside region. In this study, 2175 radiomic features were used, including
intensity, texture, and shape features. Their study found that the peritumoral rim features,
which show heterogenetic textures and sharp changes in intensity, can provide significant
information for predicting distant metastasis of NSCLC. Wang et al. [17] predicted lymph
node metastasis of adenocarcinomas patients at the T1 stage who underwent curative resec-
tion surgery and lymph node dissection. The peritumoral regions were defined as 15 mm
tumor margins toward the outside from the tumor boundary. In their study, 1946 radiomic
features were used, including intensity, shape, and texture features. They found that
peritumoral radiomic features are significant when predicting lymph node metastasis in
stage T1 lung adenocarcinoma. Khorrami et al. [18] used radiomic features to predict the
chemotherapy response of lung adenocarcinoma in patients at stages IIIB–IV. The peritu-
moral regions were defined as 15 mm tumor margins toward the outside from the tumor
boundary. In this study, 1542 radiomic features were used, including intensity, texture, and
shape features. Their study found that features reflecting the compactness shape of the
tumor and heterogeneous patterns in the intratumoral and the peritumoral regions provide
significant information for predicting chemotherapy responses. Vadiya et al. [19] predicted
three-year disease-free survival rates of patients at stages I–III who underwent surgery.
The peritumoral regions were defined as 15 mm tumor margins toward the outside from
the tumor boundary. In this study, 4464 radiomic features were used, including Gabor,
Haralick, CoLlAGe, Laws energy, and Laplace features. This study found that the radiomic-
based method could identify patients who received the benefit of adjuvant chemotherapy
after surgery. Akinci D’Antonoli et al. [20] predicted the recurrence-free survival of stage
I–IIB patients who underwent surgery. The peritumoral regions were defined as 20 mm
tumor margins toward the outside from the tumor boundary. In this study, 94 radiomic
features were used, including Gabor, Laws energy, Laws Laplacian, Haralick, and shape
features. It was found that the flatness and irregularity of the shape and the heterogeneity
of intratumoral and peritumoral regions were significant predictors of patient survival.
These related studies confirmed the ability of the radiomic features of intratumoral and
the peritumoral regions to predict prognosis. However, they only investigated specific
peritumoral regions up to 2 cm.

In the present study, we propose a method for predicting two-year recurrence-free
survival from tumor stages I to IIIA in NSCLC cases using intratumoral and peritumoral
radiomic features. To investigate potentially predictive information in the lung parenchyma,
we utilize the peritumoral region defined around the tumor. To identify the significant
range of the peritumoral region, the peritumoral regions are defined as up to 3 cm at a
3 mm interval. To evaluate the predictive performance according to the tumor size, the
results are analyzed by dividing the patient cohort into three size groups.

2. Materials and Methods

The pipeline of the proposed prediction model consists of five major steps, as shown
in Figure 2. First, the region of interest (ROI) is defined as inside and outside the tumor.
Second, radiomic features are extracted from these regions. Third, a set of significant
features is identified using the nearest neighborhood analysis (NCA) algorithm. Fourth,
patients are classified into recurrence and non-recurrence groups using the support vector
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machine (SVM) and random forest methods. Finally, Kaplan–Meier curves are used to
estimate the probability of recurrence-free survival within two years in predicted patients.

 

2 

Figure 2. The pipeline of radiomic-based prediction model for 2-year recurrence-free
survival prediction.

2.1. Materials

Preoperative chest CT images of 263 NSCLC patients who underwent curative surgical
resection were acquired from the Veterans Health Service Medical Center, Seoul, South Ko-
rea. The CT images were obtained from three different CT scanners (SIEMENS SOMATOM
Definition AS+, SIEMENS SOMATOM Sensation 64, GE Healthcare LightSpeed ULTRA)
using the following scan parameters: 99~129 kVp at 60~534 mAs. Each image had a matrix
size of 512 × 512 pixels with in-plane resolutions ranging from 0.54 to 0.83 mm. The slice
thickness ranged from 1.0 to 7.5 mm. This study was approved by the Institutional Review
Board of the Veterans Health Service Medical Center (IRB File Number: BOHUN 2018-07-
009-005). In the acquired data, patient selection was applied, as shown in Figure 3. This
study excluded patients without information pertaining to recurrence, those at the T stage
and N stage, and patients whose tumors are incorrectly labeled as too large. In addition,
according to the opinion of clinicians that it is better to exclude data with large deviations,
patients with a tumor larger than 19 cm based on the representative cross-section were
also excluded. Finally, the remaining 217 NSCLC patients served as the study group. The
patient characteristics are shown in Table 1.
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Table 1. Patient characteristics.

Patient Characteristics Total
(n = 217)

Non-Recurrence
(n = 103)

Recurrence
(n = 114)

Age 73.14 (62–89) 72 74.3
Gender

Male 212 (98%) 99 113
Female 5 (2%) 4 1

Histology
Adenocarcinomas 89 (41%) 47 42
Squamous cell carcinomas 128 (59%) 56 72

T stage 1

T1 90 (41%) 56 34
T2 113 (52%) 43 70
T3 14 (6%) 4 10

N stage 1

N0 122 (56%) 71 51
N1 56 (26%) 21 35
N2 39 (18%) 11 28

1 The T stage and N stage of tumors were determined by the American Joint Committee on Cancer (AJCC) staging
system, 6th and 7th editions.

2.2. Data Preparation

In the preprocessing step, intensity rescaling and region cropping are conducted on
the entire set of CT images, as shown in Figure 4a. The CT images with lung window
settings (WW: 1500 HU, WL: −600 HU) are rescaled with gray-scale intensity from 0 to 255
and cropped. In this study, a representative cross-section slice with the longest diameter in
the axial view was used. As shown in Figure 4b, the intratumoral region is defined as a
segmented region. Lung tumor segmentation was performed semi-automatically by a one-
board certified radiologist using in-house software in lung window settings. For tumors
that are difficult to distinguish from surrounding structures, a correction was performed
on mediastinal window settings (WW: 350 HU, WL: 50 HU). Areas of necrosis and cavities
appearing at a low-intensity level within the tumor are included. As shown in Figure 4c,
the peritumoral region is defined as the surrounding tumor region from the boundary to
3 cm with a 3 mm interval using the morphological dilation method [21]. The chest wall
and mediastinum are excluded by an intensity threshold of −224 HU, which is a value
that allows visually distinguishing of the region between the lungs and the chest wall.
The primary and secondary bronchi are excluded using airway segmentation [22,23]. In
Figure 4d, the combined region is defined as a combination of intratumoral regions and
peritumoral regions.
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2.3. Radiomic Feature Extraction and Selection

Table 2 shows the radiomic features used in this study. From the intratumoral region,
69 radiomic features, including intensity, texture, and shape features, are extracted. In
the case of intensity features, it consists of 7 histogram stisticis features and 5 histogram
percentile features [24]. The texture feature consists of 14 GLCM features, 22 GLRLM
features, and 10 LBP features, and the shape feature has 11 size and roundness-related
features [24]. From the peritumoral region, 58 radiomic intensity and texture features are
extracted, excluding 11 shape features. In the combined region, 127 radiomic features are
used by combining 69 intratumoral and 58 peritumoral radiomic features.

Table 2. List of radiomic features used in this study.

Categories Sub-Categories Features

Intensity
Histogram Statistics (7) mean, std, min, max, skewness, kurtosis, entropy

Histogram Percentile (5) 5%, 25%, 50%, 75%, 95%

Texture

GLCM features (14)
mean and std dev pairs of ASM, contrast, sum
average, sum variance, sum entropy, entropy,

difference entropy

GLRLM features (22)
mean and std dev pairs of short and long run
emphasis, low and high gray-level emphasis,

non-uniformity, run percentage, etc.

LBP features (10) local binary patterns using 10 visual descriptors.

Shape Size and Roundness (11)

area/perimeter ratio, convex area, eccentricity,
Euler number, major-minor axis ratio, major axis

length, minor axis length, area, perimeter,
curvature

Feature selection is performed using the NCA algorithm, which is based on distance
metric learning to find the optimal feature space for classification by defining a distance
function [25]. The weight of the feature is determined as the value in each case that
minimizes the distance among the intra-class points, and the leave-one-out validation error.
Features are incrementally included in the classifier according to their weights, and the
final significant feature set is determined as the values that maximize the classification
performance based on AUC in the intratumoral region, peritumoral regions up to 3 cm,
and combined regions up to 3 cm. In the equivocal case when identifying the maximum
classification performance, Youden’s J statistic value is used [26].

2.4. Prediction of the 2-Year Recurrence-Free Survival

To predict two-year recurrence-free survival rates, patients are classified into recur-
rence and non-recurrence groups, and the probability of recurrence-free survival within
two years is estimated. First, classification into recurrence and non-recurrence groups is
performed using SVM and random forest classifiers. The SVM is a supervised learning
method for classification that maximizes the margin between class boundaries and decision
boundaries [27]. In this study, the SVM is constructed with the radial basis function (RBF)
kernel for nonlinear classification and with the sequential minimal optimization (SMO) al-
gorithm for decision boundary optimization. Random forest refers to an ensemble learning
method that uses multiple decision trees for classification [28]. In this study, the random
forest is constructed with 60 decision trees trained by bootstrapped samples, and the output
of the model is determined by a majority voting technique from the decisions of individual
trees. Second, the Kaplan–Meier curve is used to estimate the predicted probability of
recurrence-free survival within two years [29]. In addition, comparisons between predicted
patient groups are provided as p-values calculated through a log-rank test [30].
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3. Results
3.1. Experimental Setting

Here, 217 NSCLC patients of stage I to stage IIIA formed the experimental group, and
they were divided into two groups according to recurrence within two years after surgical
resection. The stratified five-fold cross-validation method was used to complement the
limitations of the small dataset, with each fold constructed by preserving the percentage of
data for each class. Matlab 2020b software was used for feature extraction, feature selection,
and for recurrence predictions. Kaplan–Meier curves and ROC curves were drawn in
Python 3.7 using the scikit-learn library, version 0.23.2.

Classification of patients into recurrence and non-recurrence was performed using
the intratumoral, peritumoral, and combined radiomic features, respectively. To identify
the ability of radiomic features for prediction, the classification performance of clinical
information which is conventionally used for prognosis prediction was compared to that of
the radiomic features. In the experiment, the T stage and N stage of the tumor were used as
clinical information because the TNM stage represents details of the tumor status, and the
M stage was not used because the patients in this study did not have distant metastases.
In addition, the analysis of the classification performance according to the tumor size was
performed on the radiomic-based classifiers. Classification performance was evaluated by
accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive
value (NPV). True Positive (TP) is an outcome where the model correctly predicts the
recurrence, and True Negative (TN) is an outcome where the model correctly predicts the
non-recurrence. The area under the receiver operating characteristic curve (AUC ROC) was
used to evaluate the classification performance [31].

3.2. Classification into Recurrence and Non-Recurrence Group Using Radiomic Features

The classification performance outcomes of radiomic features for two-year recurrence-
free survival are shown in Table 3. The performance of each classifier means the average
performance of 5-folds, and the performance of each fold was selected from the model with
higher performance between the SVM and random forest. In all classifiers, the SVM was
selected more than random forest, and SVMs were selected at a rate of 80% in both T stage
and N stage and intratumoral radiomic features. For peritumoral and combined radiomic
features, SVMs were selected at rates of 74% and 58%, respectively. The T stage and N
stage showed lower performance than most radiomic-based classifiers with an AUC of
0.60. Regarding the peritumoral radiomic classifiers, the radiomic features of the 3 mm and
12 mm regions showed significantly better performance than other peritumoral regions
with AUC values of 0.66 and 0.63. For the combined radiomic classifiers, the radiomic
features of the 6 mm and 9 mm regions showed significantly better performance than other
combined regions with AUC outcomes of 0.66 and 0.66. The ROC curves of each classifier
are shown in Figure 5. In the curves for each fold, the C fold had a significantly higher AUC
for radiomic-based classifiers, and fold A showed a lower AUC for all classifiers. Most of
the non-recurrence tumors in the C fold were small and had few vessels in the peritumoral
region, but some tumors were at the N1 stage and N2 stage, known as high-risk factors
for recurrence. The recurrence tumors in the C fold were large in size and showed various
vessel distributions in the peritumoral region, but some tumors were small and at the N0
stage. Therefore, the classification results of the T stage and N stage in the C fold showed
that non-recurrent tumors in the N1 stage and N2 stage and recurrent tumors in the N0
stage were misclassified. However, most of these misclassification cases with radiomic
features were improved, with these results indicating that radiomic features can represent
recurrent and non-recurrent tumors which are difficult to express using the T stage and
N stage. In contrast, for the A fold, non-recurrent tumors were large, and some of the
tumors had various distributions of vessels in the peritumoral region. The recurrent tumors
in the A fold had various sizes and fewer vessels in the peritumoral region, but some of
these tumors were at the N0 stage, known to be a low-risk factor for recurrence. Therefore,
tumors in the A fold appear to be difficult to classify. To assess the discriminative ability of
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the radiomic-based classifiers through statistical comparison, the DeLong test was applied.
As shown in Figure 5, AUCs for almost all the radiomic-based classifiers are around 0.6.
However, in the C fold, the DeLong test found that the AUCs of peritumoral radiomic
features 3 mm (p-value = 0.0355), 12 mm (p-value = 0.0350) and combined radiomic features
of 6 mm (p-value = 0.0150), 9 mm (p-value = 0.0103) were statistically significantly higher
than that of the T stage and N stage with p-values of less than 0.05.

Table 3. Classification performance of radiomic features for 2-year recurrence-free survival.

Classifier ACC SEN SPEC AUC Classifier ACC SEN SPEC AUC

T stage and N stage 58.61 68.73 47.49 0.60 Intratumoral radiomic
features 63.23 70.82 55.03 0.64

Peritumoral
radiomic
features

3 mm 61.32 67.64 54.33 0.66

Combined
radiomic
features

3 mm 62.68 67.16 57.65 0.65
6 mm 57.70 65.10 49.59 0.59 6 mm 60.18 68.27 51.23 0.66
9 mm 58.60 68.04 48.14 0.62 9 mm 62.78 66.64 58.65 0.66

12 mm 58.60 64.90 51.59 0.63 12 mm 58.05 63.36 51.99 0.64
15 mm 57.58 59.72 55.04 0.58 15 mm 58.68 64.85 51.92 0.65
18 mm 58.09 64.94 50.36 0.61 18 mm 60.78 66.63 54.40 0.65
21 mm 57.75 69.24 44.99 0.60 21 mm 59.67 60.32 58.96 0.64
24 mm 58.75 67.93 48.52 0.60 24 mm 61.86 66.60 56.68 0.65
27 mm 58.06 70.98 43.76 0.60 27 mm 62.43 71.48 52.47 0.64
30 mm 56.49 69.93 41.57 0.60 30 mm 60.57 67.48 53.01 0.64

3.3. Probability Estimation of 2-Year Recurrence-Free Survival

The Kaplan–Meier curve in Figure 6 shows the probability of two-year recurrence-free
survival at a certain time. The curve in Figure 6a is a real curve drawn with the recurrence
information from 217 NSCLC patients. In Figure 6b–f, the curves of the radiomic-based
classifiers were better separated than those of the T stage and N stage, and the p-values of
radiomic-based classifiers were also lower than those of the T stage and N stage. Among the
radiomic-based classifiers, it was shown that the curves of the intratumoral and peritumoral
3 mm classifiers were better separated than the curves of the other classifiers. The curves of
all classifiers were found to be statistically significant, with p-values of less than 0.05.

3.4. Classification Performance of Radiomic Feature according to the Tumor Size

As the tumor sizes in our data vary widely from 1 cm to 12 cm, the overall performance
evaluation is limited with regard to considering various distributions of tumor sizes.
Therefore, the classification performance according to the tumor size was analyzed by
dividing the patients into three subgroups according to the size criteria of T stage in the
8th edition of the AJCC Cancer Staging System [4]: Group 1, tumors less than 3 cm; Group 2,
tumors between 3 cm and 5 cm; and Group 3, tumors exceeding 5 cm. Details of the three
subgroups are given in Table 4.

The classification performance of Group 1 is shown in Table 5 (a). For small tumors
less than 3 cm in size, the peritumoral and combined radiomic classifiers outperformed
the intratumoral radiomic classifier. As shown in Figure 7a, as most tumors showed a
similar round shape and homogeneous intensity level, the intratumoral region does not
appear to contain useful information for distinguishing recurrence from non-recurrence.
On the other hand, the peritumoral region appears to be informative due to the various
vessel distributions in the micro-environments of the tumors. For the combined radiomic
classifiers, the significant ranges appear to be wider than for peritumoral radiomic classifiers
because the intratumoral radiomic features performed poorly.



Diagnostics 2022, 12, 1313 9 of 14Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 15 
 

  
(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 5. ROC curves for each classifier. The blue line curve indicates the mean value of the 5-fold 

cross-validation results, and the gray band indicates the AUC variance of the 5-fold cross-validation: 

(a) T and N-stages; (b) Intratumoral radiomic classifier; (c) Peritumoral 3 mm radiomic classifier; (d) 

Peritumoral 12 mm radiomic classifier; (e) Combined 6 mm radiomic classifier; and (f) Combined 9 

mm radiomic classifiers. 

3.3. Probability Estimation of 2-Year Recurrence-Free Survival 

The Kaplan–Meier curve in Figure 6 shows the probability of two-year recurrence-

free survival at a certain time. The curve in Figure 6a is a real curve drawn with the recur-

rence information from 217 NSCLC patients. In Figure 6b–f, the curves of the radiomic-

based classifiers were better separated than those of the T stage and N stage, and the p-

values of radiomic-based classifiers were also lower than those of the T stage and N stage. 

Among the radiomic-based classifiers, it was shown that the curves of the intratumoral 

and peritumoral 3 mm classifiers were better separated than the curves of the other clas-

sifiers. The curves of all classifiers were found to be statistically significant, with p-values 

of less than 0.05. 

Figure 5. ROC curves for each classifier. The blue line curve indicates the mean value of the 5-fold
cross-validation results, and the gray band indicates the AUC variance of the 5-fold cross-validation:
(a) T and N-stages; (b) Intratumoral radiomic classifier; (c) Peritumoral 3 mm radiomic classifier;
(d) Peritumoral 12 mm radiomic classifier; (e) Combined 6 mm radiomic classifier; and (f) Combined
9 mm radiomic classifiers.

The classification performance of Group 2 is shown in Table 5 (b). In medium-sized
tumors between 3 cm and 5 cm, the intratumoral radiomic classifier performed better than
in small-sized tumors. Peritumoral and combined radiomic classifiers performed better
than the intratumoral radiomic classifier. As shown in Figure 7b, the intratumoral region
and the peritumoral regions appear to be significant for distinguishing between recurrence
and non-recurrence, as these regions show various appearances. For combined radiomic
classifiers, the significant ranges are considered to be narrower than that of the peritumoral
radiomic classifier because intratumoral radiomic features show improved performance.
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Figure 6. Kaplan–Meier curves for 2-year recurrence-free survival: (a) Real curve; (b) T stage and
N stage; (c) Intratumoral radiomic classifier; (d) Peritumoral 3 mm radiomic classifier; (e) Peri-
tumoral 12 mm radiomic classifier; (f) Combined 6 mm radiomic classifier; (g) Combined 9 mm
radiomic classifier.
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Table 4. Details of the patient groups according to the tumor size.

Group Tumor Size
Criteria (cm)

Number of Patients (n = 217)
(Recurrence/Non-Recurrence) Median Tumor Size (cm)

Group 1 <3 cm 88 patients (35/53) 2.22 cm (±0.48)
Group 2 ≥3 cm and <5 cm 83 patients (53/30) 3.77 cm (±0.59)
Group 3 ≥5 cm 46 patients (26/20) 6.78 cm (±1.8)

Table 5. Classification performance by tumor size group.

(a)

Group 1 (tumor size < 3cm)
Classifier ACC SEN SPEC AUC

Intratumoral radiomic features 53.70 39.92 59.25 0.47
Peritumoral

radiomic features
3 mm 58.81 52.58 65.24 0.61

12 mm 61.24 58.11 66.62 0.67
Combined

radiomic features
21 mm 66.2 53.94 80.78 0.70
24 mm 62.02 57.12 69.98 0.67

(b)

Group 2 (3 cm ≤ tumor size < 5 cm)
Classifier ACC SEN SPEC AUC

Intratumoral radiomic features 75.96 85.13 49.29 0.68
Peritumoral

radiomic features
18 mm 66.44 73.59 55.95 0.70
27 mm 71.48 80.51 58.81 0.73

Combined
radiomic features

3 mm 70.43 83.14 47.81 0.75
6 mm 65.11 76.88 44.43 0.72

(c)

Group 3 (5 cm ≤ tumor size)
Classifier ACC SEN SPEC AUC

Intratumoral radiomic features 63.40 82.67 42.50 0.63
Peritumoral

radiomic features
3 mm 61.86 82.00 32.50 0.66

24 mm 61.45 86.83 27.50 0.55
Combined

radiomic features
3 mm 61.73 83.67 42.50 0.71
6 mm 51.30 84.33 15.00 0.64
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The classification performance of Group 3 is shown in Table 5 (c). For tumors exceeding
5 cm, the intratumoral radiomic classifiers showed most stable performance outcomes than
the peritumoral radiomic classifiers, and the combined 3 mm radiomic classifier showed
the highest performance with an AUC value of 0.71. As shown in Figure 7c, for some
tumors filling most of the lung parenchyma, it appears to be difficult to use the peritumoral
region. For this reason, it is considered that the performance of the peritumoral radiomic
classifiers was low and that the significant range of the combined radiomic classifier was
narrow at 3 mm.
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4. Discussion and Conclusions

This study proposed a prediction model for predicting the two-year recurrence-free
survival of patients with NSCLC using radiomic features of intratumoral and peritumoral
regions. We used radiomic features to find that the peritumoral regions have potential
predictive ability for predicting two-year recurrence-free survival. This study identified that
combining the intratumoral radiomic features and peritumoral radiomic features improved
the predictive performance, and the combined regions of 6 mm and 9 mm showed the
highest performance. As a result of a performance analysis according to the size of the
tumor, it was found that radiomic features in a significant range differed according to the
size of the tumor. For tumors less than 5 cm in size, it was confirmed that the peritumoral
and combined radiomic features outperformed the intratumoral radiomic features. For
tumors larger than 5 cm, we found that the intratumoral radiomic features showed the
most stable performance outcomes compared to the peritumoral radiomic features.

The significant radiomic features of the intratumoral and peritumoral regions are
summarized in Table 6. In the intratumoral region, texture features accounted for most
of the significant features, and low-intensity features and shape features for size and
roundness were also significant. In CT texture analysis studies, it is known that intensity
and texture features reflect tumor heterogeneity, as determined by the histopathological
phenotype and genotype according to studies by Bashir et al. and Lubner et al. [32,33].
Therefore, it is considered that the texture features reflecting the heterogeneity of the
tumor and the intensity features reflecting the existence of necrosis were mainly selected as
significant features for the predictions here. In the peritumoral region, the intensity features
accounted for most of the significant features, and the texture features were also significant.
As the heterogeneity of the peritumoral region reflects evidence of tumor spread or invasion
in the microenvironment, the intensity, and texture features quantifying the heterogeneity
have been shown to be significant [34].

Table 6. List of significant radiomic features of intratumoral and peritumoral regions.

Intratumoral Radiomic Features
Category (#n) Feature

Intensity (2) Histogram 25% Percentile
Histogram 5% Percentile

Texture (8)

GLCM Sum Variance
GLRLM Long Run Emphasis

GLRLM Long Run High Gray-level Emphasis
GLRLM Long Run Low Gray-level Emphasis

GLRLM Low Gray-level Emphasis (std)
GLRLM Short Run Emphasis (std)

GLRLM Long Run High Gray-level Emphasis (std)
LBP #08

Shape (3)
Major Axis Length

Major-minor Axis Length Ratio
Convex Area

Peritumoral Radiomic Features
Category (#n) Feature

Intensity (5)

Histogram 75% Percentile
Histogram 95% Percentile

Histogram Std
Histogram Min

Histogram Mean

Texture (4)

GLCM ASM (std)
GLRLM Long Run High Gray-level Emphasis

GLRLM Run Percentage (std)
GLRLM Short Run Low Gray-level Emphasis (std)

#n means the number of features belongs to each category.

In the results of this study, we found that some specific folds resulted in inferior
performance compared to others for all classifiers. For non-recurrent tumors, there was a
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tendency to misclassify tumors that were relatively large, irregular in shape, and showed
various vessel distributions around the tumor as recurrent tumors, whereas for recurrent tu-
mors, relatively small tumors located in the lung parenchyma and the distribution of small
vessels around the tumor tended to cause them to be misclassified as non-recurrent tumors.

In prognosis prediction studies of NSCLC, the peritumoral regions were investigated
in an effort to improve the prediction performance. The peritumoral regions investigated
in the previous studies were limited up to 2 cm outside of the tumor, with those studies
using a specific peritumoral region. Tai et al. used the peritumoral region, defining inner
and outer 3 mm regions based on the tumor boundary as a “rim” region and the 3 mm
to 9 mm peritumoral region as an “exterior” region [16]. Wang et al., Khorrami et al.,
and Vadiya et al. defined the peritumoral region as 15 mm toward the outside and Akinci
D’Antonoli et al. defined the peritumoral region as 2 cm toward the outside [17–20]. These
studies did not investigate about the significance of the peritumoral region according to
tumor size. In contrast, our study investigated the peritumoral region from the boundary
to 3 cm with a 3 mm interval, and we found that peritumoral regions exceeding 2 cm were
significant for tumors of a specific size. For tumors less than 3 cm in size, the combined
regions of 21 mm and 24 mm were significant, while for tumors between 3 cm and 5 cm,
the peritumoral region of 27 mm was significant.

The size of the dataset in this study is limited in terms of its ability to reflect the various
characteristics of tumors. Therefore, in future work, we will use an external validation set
to validate the proposed method externally. This future study will also take into account
the clinical features of the tumors or patients to improve the performance outcomes. In
CT radiomics studies, it is known that there is an effect depending on the variability of
imaging acquisition parameters and post-process variables; however, this study did not
analyze them. This analysis will need to be considered in future work.
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