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Abstract: Through a multitude of studies, the gut microbiota has been recognized as a significant in-
fluencer of both homeostasis and pathophysiology. Certain microbial taxa can even affect treatments
such as cancer immunotherapies, including the immune checkpoint blockade. These taxa can impact
such processes both individually as well as collectively through mechanisms from quorum sensing to
metabolite production. Due to this overarching presence of the gut microbiota in many physiological
processes distal to the GI tract, we hypothesized that mice bearing tumors at extraintestinal sites
would display a distinct intestinal microbial signature from non-tumor-bearing mice, and that such a
signature would involve taxa that collectively shift with tumor presence. Microbial OTUs were deter-
mined from 16S rRNA genes isolated from the fecal samples of C57BL/6 mice challenged with either
B16-F10 melanoma cells or PBS control and analyzed using QIIME. Relative proportions of bacteria
were determined for each mouse and, using machine-learning approaches, significantly altered taxa
and co-occurrence patterns between tumor- and non-tumor-bearing mice were found. Mice with a
tumor had elevated proportions of Ruminococcaceae, Peptococcaceae.g_rc4.4, and Christensenellaceae, as
well as significant information gains and ReliefF weights for Bacteroidales.f__S24.7, Ruminococcaceae,
Clostridiales, and Erysipelotrichaceae. Bacteroidales.f__S24.7, Ruminococcaceae, and Clostridiales were also
implicated through shifting co-occurrences and PCA values. Using these seven taxa as a melanoma
signature, a neural network reached an 80% tumor detection accuracy in a 10-fold stratified random
sampling validation. These results indicated gut microbial proportions as a biosensor for tumor
detection, and that shifting co-occurrences could be used to reveal relevant taxa.

Keywords: gut microbiota; machine learning; statistical algorithms; co-occurrence patterns; melanoma

1. Introduction

The gastrointestinal microbiota contains a diverse and dense collection of symbiotic or-
ganisms that contribute to intestinal homeostasis. Nutrient digestion, synthesis of vitamins,
protection against pathologic organisms, and production of neurotransmitters are just a few
of the biological functions that these organisms provide [1–3]. The host’s immune system
plays an essential role in controlling microbial growth and development in the microbiome
to ensure that a mutual relationship is maintained between the host and organism.
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At the same time, the microbiota plays a role in adapting the host’s immune system
to various stressors [4]. In fact, evidence is accumulating that the intestinal microflora
can respond to changes in host health status by sensing soluble host elements and local
micro-environmental cues [5]. For this reason, the gastrointestinal microbiota is affected by
the pathological immune responses derived from diseases such as diabetes mellitus, cancer,
obesity, and inflammatory diseases, which impacts the body’s immune response against
disease [2,6,7].

It is increasingly being recognized that the gut microbiome composition differs sig-
nificantly between healthy individuals and those with various pathological conditions.
Dongmei et al. found that healthy individuals have a more diverse gut flora than those with
colorectal cancer. In addition, certain bacterial populations were more likely to co-occur
in patients with colorectal cancer than in healthy individuals [3]. While alterations in
microbiome composition can be seen in pathologic conditions such as cancer, it is unclear
whether these changes are a cause or a consequence of the disease [6]. Multiple studies
that analyzed the composition of the gut microbiota in colorectal cancer patients suggested
the presence of both “driver bacteria”, or those that promote cancer growth, and “passen-
ger bacteria”, or those that solely flourish in the proinflammatory environment, but do
not impact tumor progression. Geng et al. found that in their colorectal cancer patients,
members of the Enterobacteriaceae family promoted cancer growth, whereas members of the
Streptococcaceae family merely flourished in a proinflammatory environment [7].

The presence of these microbial mechanisms in which bacterial taxa have a certain
level of dependency have wide implications for their use in modeling respective patho-
logical conditions. Typically, connectivity and dependency between variables such as
bacterial taxa in the context of predictive modeling has typically been a hindrance to model
performance [8–10]. It is widely understood with many kinds of algorithms that, in various
circumstances, variables with some manner of co-occurrence provide a certain level of
redundant information, and therefore reduce the variability explained in models [8]. This
presence of redundant information decreases the model’s fit to the training dataset, as well
as its prediction accuracy in the testing dataset [10–12].

Despite these limitations, co-occurrences in the context of pathological prediction with
microbial taxa may still hold significance in the application of diagnostic signatures [8,13].
When co-occurrences shift between conditions, so does the direction of variability rep-
resented by relevant taxa in planes of higher dimensionality [9,10,14]. These shifts are
reflected in principal component analysis, in which each principal component represents
a different proportion of the total variability present [8,13]. They are also represented in
ReliefF and information gain values, in which microbial taxa with these differences in
variability have increased reliability as predictors [11,15]. Therefore, the identification of
these shifts in co-occurrences in pathological conditions such as cancer is optimal for the
implementation of gut microbial diagnostic signatures.

The implementation of machine-learning algorithms for the prediction of the presence
of various cancers using the gut microbiome has been widely studied [16–18]. However, to
date, relatively little work has been done regarding the use of the gut microbiome to predict
the presence of melanoma. In addition, one of the challenges of predicting the presence
of a specific disease with the gut microbiota is the variability in relative proportions of
specific gut bacteria that can exist between patients and populations [12]. Through our
analyses, we have indicated shifts in microbial co-occurrences as a potential method in
accounting for such variability. Therefore, we hypothesized that models based on gut
microbial proportion profiles of taxa involved in co-occurrence shifts could form a distinct
diagnostic signature that effectively differentiated mice bearing mouse melanoma tumors
from non-tumor-bearing mice. This implies that the intestinal microflora may function as a
biosensor for the presence of cancer, and that its manipulation may alter cancer prognoses.
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2. Results
2.1. Shifts in Microbial Taxon Proportions of Melanoma-Bearing Mice

Mice bearing melanoma tumors displayed significant shifts in gut microbial propor-
tions compared to non-tumor-bearing mice, which: (1) implicated consistency in changes
in gut microbiota data with tumors in the skin, distal to the gut; and (2) implied that such
changes could be used by an algorithm to detect the presence of cancer. We compared
the microbial composition of fecal samples of melanoma-bearing and tumor-free mice
by terminal restriction fragment length polymorphism (T-RFLP) analysis [14,16]. This
technique is commonly used to study complex microbial communities based on 16S rRNA
gene variation, and has been applied in the study of microbial communities in soil and
sludge systems [19]. T-RFLP analysis was carried out in a blinded fashion as previously
described [4]. It was readily seen for the two mouse experiments (Figure 1) that the co-
occurrences of relative taxon proportions shifted in the presence of B16 melanoma. In
addition, Peptococcaceae.g_rc4.4 was significantly increased (Wilcoxon p < 0.05) in both
groups of mice (Figure 1). These data demonstrated that the intestinal flora developed
detectable changes that discriminated a tumor-bearing from a tumor-free host. In order to
more fully determine the extent to which these results distinguished between hosts that
had a tumor and those that did not, the two mouse groups were combined and further
analyzed as a single dataset (n = 56).
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Figure 1. Shifted co-occurrences of microbial taxa and increased Peptococcaceae.g_rc4.4 characterize
tumor presence. (A) C57BL/6 (B6) male mice were injected with either 105 B16 melanoma cells (n = 19)
or PBS (n = 16). After 10 days, fecal samples were collected and 16S rRNA genes were analyzed
using terminal restriction fragment length polymorphism (T-RFLP) analysis. From individual taxon
proportion and co-occurrence patterns, it could be seen that such patterns shifted with melanoma
presence, and Peptococcaceae.g_rc4.4 levels increased. (B) B6 male mice were injected with either 105

B16 melanoma cells (n = 11) or PBS (n = 10). After 16 days, fecal samples were collected and 16S rRNA
genes were analyzed using terminal restriction fragment length polymorphism (T-RFLP) analysis.
The results of these data directly corresponded with the mice in (A).
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2.2. Co-Occurrence between Bacteroidales.f__S24.7, Clostridiales, and Ruminococcaceae
Proportions in Mouse Melanoma

Seeking to identify the specific bacterial co-occurrences that were altered in the pres-
ence of a tumor, we first used Cytoscape to map them in the B16-melanoma- and PBS-
treated mice. From these diagrams (Figure 2A,B), it was found that the co-occurrences of
Bacteroidales.f__S24.7 greatly differed between the two treatments. When looking further
into this taxon, it was found that its co-occurrences with Clostridiales and Ruminococcaceae
had changed the most between tumor and nontumor/PBS (Figure 2C,D), with Pearson
correlation values of approximately −0.9 and −0.8 for tumor, as well as −0.15 and −0.13
for nontumor, respectively. Interestingly, however, when looking at the individual relative
amounts of these taxa, the only one that was significantly different between tumor and
nontumor was Ruminococcaceae (Wilcoxon p < 0.05, T-test p < 0.05; Figure 2E). Thus, we
concluded that the potential for these taxa to predict tumor presence relied heavily on the
extent to which their co-occurrences shifted in that condition, rather than changes in their
individual relative amounts.
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Figure 2. Co-occurrence changes between Bacteroidales.f__S24.7, Clostridiales, and Ruminococcaceae
occur with tumor presence. (A,B) Pearson correlation matrices were determined for microbiotas
from tumor and nontumor mice and displayed using Cytoscape. From these visualizations, Bac-
teroidales.f__S24.7 co-occurrences greatly changed with tumor presence. (C,D) Using the R program-
ming language, it was found that the most dramatic shifts of Bacteroidales.f__S24.7 were in conjunction
with Clostridiales and Ruminococcaceae. (E) When comparing each taxon individually between tumor
and nontumor, only Ruminococcaceae was significantly different.

2.3. Differences in Principal Components between Tumor and Nontumor

Considering our results for both individual microbial taxa and co-occurrence shifts,
we wanted to assess the relevance of each taxon in the context of predictive modeling.
Thus, we calculated the information gains and ReliefF weights for each taxon (Figure 3A,B).
In the scoring for information gains, Ruminococcaceae, Peptococcaceae.g_rc4.4, and Chris-
tensenellaceae consistently scored higher than the majority of taxa (Figure 3A). For the
ReliefF algorithm, Bacteroidales.f__S24.7 had a fairly high weight, along with Peptococ-
caceae.g_rc4.4 and Christensenellaceae (Figure 3A). Further, Christensenellaceae was found to
be significantly different between tumor and nontumor (Wilcoxon p < 0.05, Figure 3A,B).
Considering that Bacteroidales.f__S24.7 shifted its co-occurrences and its ReliefF weight
indicated variable importance, we performed a principal component analysis (PCA) using
this taxon (Figure 3C,D). Two PCAs were performed, one with Clostridiales and the other
with Ruminococcaceae (Figure 3C,D). After performing the PCAs, we compared the resulting
principal component coordinates between tumor and nontumor mice. From this compar-
ison, we found that, although the first principal components did not differ between the
two groups (Figure 3C), the second ones did (Wilcoxon p < 0.05, T-test p < 0.05; Figure 3D).
These results indicated that the coordinates of these second principal components could be
implemented in predictive modeling.



Diagnostics 2022, 12, 958 6 of 12

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 12 
 

 

ing principal component coordinates between tumor and nontumor mice. From this com-
parison, we found that, although the first principal components did not differ between 
the two groups (Figure 3C), the second ones did (Wilcoxon p < 0.05, T-test p < 0.05; Figure 
3D). These results indicated that the coordinates of these second principal components 
could be implemented in predictive modeling. 

  

  

Figure 3. Cont.



Diagnostics 2022, 12, 958 7 of 12Diagnostics 2022, 12, x FOR PEER REVIEW 7 of 12 
 

 

  

Figure 3. Significant predictors of tumor presence include the second principal components involv-
ing Bacteroidales.f__S24.7, Clostridiales, and Ruminococcaceae. (A,B) Using the CORElearn package in 
the R programming language, the information gains and ReliefF weights were calculated for each 
taxon. (A) Ruminococcaceae, Peptococcaceae.g_rc4.4, and Christensenellaceae were found significantly 
altered with tumor presence and having high information gains. (B) Along with Peptococca-
ceae.g_rc4.4 and Christensenellaceae, Bacteroidales.f__S24.7 and Erysipelotrichaceae had high ReliefF 
weights. (C,D) Two PCAs using Bacteroidales.f__S24.7, one with Ruminococcaceae and the other with 
Clostridiales, were conducted using R. While their first principal components did not change with 
tumor, their second ones did (Wilcoxon p < 0.05, T-test p < 0.05 (D)). 

2.4. Prediction of Tumor Presence Using Microbial Taxa Involved in Altered Co-Occurrences 
Since the second principal components involving Bacteroidales.f__S24.7, Ruminococca-

ceae, and Clostridiales were found to significantly differ with tumor presence, the propor-
tions of those taxa, along with those of Peptococcaceae.g_rc4.4, Christensenellaceae, and Ery-
sipelotrichaceae, were implemented as a mouse melanoma signature (Figure 4A,B). The 10-
fold stratified random sampling used to obtain melanoma prediction results with ma-
chine-learning algorithms was performed by randomly selecting 90% of the mouse sam-
ples to train the algorithms and then testing them with the remaining 10% of samples 
(Figure 4A). This process was repeated 10 times, and the prediction results were averaged 
over those repeats (Figure 4A). Using this protocol, the highest percent accuracy in mela-
noma prediction was achieved by the neural network, with 80% (Figure 4A,B). Thus, the 
implementation of microbial taxa indicated by the second principal components in the 
prediction signature allowed for the identification of melanoma presence. 

 
(A) 

Figure 3. Significant predictors of tumor presence include the second principal components involving
Bacteroidales.f__S24.7, Clostridiales, and Ruminococcaceae. (A,B) Using the CORElearn package in the R
programming language, the information gains and ReliefF weights were calculated for each taxon.
(A) Ruminococcaceae, Peptococcaceae.g_rc4.4, and Christensenellaceae were found significantly altered
with tumor presence and having high information gains. (B) Along with Peptococcaceae.g_rc4.4 and
Christensenellaceae, Bacteroidales.f__S24.7 and Erysipelotrichaceae had high ReliefF weights. (C,D) Two
PCAs using Bacteroidales.f__S24.7, one with Ruminococcaceae and the other with Clostridiales, were
conducted using R. While their first principal components did not change with tumor, their second
ones did (Wilcoxon p < 0.05, T-test p < 0.05 (D)).

2.4. Prediction of Tumor Presence Using Microbial Taxa Involved in Altered Co-Occurrences

Since the second principal components involving Bacteroidales.f__S24.7, Ruminococ-
caceae, and Clostridiales were found to significantly differ with tumor presence, the pro-
portions of those taxa, along with those of Peptococcaceae.g_rc4.4, Christensenellaceae, and
Erysipelotrichaceae, were implemented as a mouse melanoma signature (Figure 4A,B). The 10-
fold stratified random sampling used to obtain melanoma prediction results with machine-
learning algorithms was performed by randomly selecting 90% of the mouse samples to
train the algorithms and then testing them with the remaining 10% of samples (Figure 4A).
This process was repeated 10 times, and the prediction results were averaged over those re-
peats (Figure 4A). Using this protocol, the highest percent accuracy in melanoma prediction
was achieved by the neural network, with 80% (Figure 4A,B). Thus, the implementation of
microbial taxa indicated by the second principal components in the prediction signature
allowed for the identification of melanoma presence.

Diagnostics 2022, 12, x FOR PEER REVIEW 7 of 12 
 

 

  

Figure 3. Significant predictors of tumor presence include the second principal components involv-
ing Bacteroidales.f__S24.7, Clostridiales, and Ruminococcaceae. (A,B) Using the CORElearn package in 
the R programming language, the information gains and ReliefF weights were calculated for each 
taxon. (A) Ruminococcaceae, Peptococcaceae.g_rc4.4, and Christensenellaceae were found significantly 
altered with tumor presence and having high information gains. (B) Along with Peptococca-
ceae.g_rc4.4 and Christensenellaceae, Bacteroidales.f__S24.7 and Erysipelotrichaceae had high ReliefF 
weights. (C,D) Two PCAs using Bacteroidales.f__S24.7, one with Ruminococcaceae and the other with 
Clostridiales, were conducted using R. While their first principal components did not change with 
tumor, their second ones did (Wilcoxon p < 0.05, T-test p < 0.05 (D)). 

2.4. Prediction of Tumor Presence Using Microbial Taxa Involved in Altered Co-Occurrences 
Since the second principal components involving Bacteroidales.f__S24.7, Ruminococca-

ceae, and Clostridiales were found to significantly differ with tumor presence, the propor-
tions of those taxa, along with those of Peptococcaceae.g_rc4.4, Christensenellaceae, and Ery-
sipelotrichaceae, were implemented as a mouse melanoma signature (Figure 4A,B). The 10-
fold stratified random sampling used to obtain melanoma prediction results with ma-
chine-learning algorithms was performed by randomly selecting 90% of the mouse sam-
ples to train the algorithms and then testing them with the remaining 10% of samples 
(Figure 4A). This process was repeated 10 times, and the prediction results were averaged 
over those repeats (Figure 4A). Using this protocol, the highest percent accuracy in mela-
noma prediction was achieved by the neural network, with 80% (Figure 4A,B). Thus, the 
implementation of microbial taxa indicated by the second principal components in the 
prediction signature allowed for the identification of melanoma presence. 

 
(A) 

Figure 4. Cont.



Diagnostics 2022, 12, 958 8 of 12
Diagnostics 2022, 12, x FOR PEER REVIEW 8 of 12 
 

 

 
(B) 

Figure 4. Implementation of microbial taxa implicated in second principal components accurately 
predict tumor presence. (A) Using Orange3, 10-fold stratified shuffle splits were performed. (B) Us-
ing a prediction signature which included Bacteroidales.f__S24.7, Ruminococcaceae, and Clostridiales, 
implicated in the second principal components, resulted in an average accuracy of 80% achieved 
with a Neural Network classifier. AUC, area under the curve; CA, classification accuracy; F1, F1 
score). 

3. Discussion 
Our findings demonstrated that the presence of a mouse melanoma tumor can be 

detected through the altered gut microbial proportions using classification algorithms. By 
using the gut microbial taxa to model tumor presence, it became apparent that such a 
condition manifested in more ways than just changes in individual amounts of certain 
taxa. Indeed, one of the main implications of this study is that considering gut microbial 
taxa co-occurrences and dependencies in predictive modeling can significantly increase 
predictive power in melanoma, more so than analyzing only statistical significance be-
tween groups. This concept of intertaxa correlations in modeling microbial-based condi-
tions has wide applications in the interpretation of the gut microbiota, as it suggests that 
the role of an individual taxon in manifesting a biological phenotype is not solely at-
tributed to its unique characteristics [17,18]. Rather, this role also depends on the extent 
to which a single taxon can communicate and affect other taxa through various mecha-
nisms, from quorum sensing to metabolite production [20–23]. 

Despite this apparent, predictive relationship between murine melanoma and the gut 
microbiota, certain experimental limitations still existed. The primary limitation for con-
sideration was the external validity of these results. It is often the case that gut microbiota 
data do not directly correspond between murine and human subjects, with various mech-
anisms implicated, from general differences in GI physiology to lifestyle, epigenetics, and 
immune responses [24–26]. Thus, in order for gut microbial associations to be imple-
mented in clinical cancer diagnoses, further work needs to be done to elucidate pertinent 
taxa in a variety of human populations and pathophysiological states, including cancer, 
as well as the interaction between shifts in gut microbial content and certain factors such 
as diet and lifestyle. Most pertinent to patient treatment is the level of interaction between 
host immune responses and the gut microbiota, as antitumor immunity and immunother-
apies may affect prediction outcomes [27,28]. These studies would also need to consider 

10-fold Stratified Random Sampling with Taxon Proportions 

Model AUC CA F1 Precision Recall 
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SVM 0.771 0.783 0.773 0.849 0.783 

AdaBoost 0.750 0.750 0.747 0.764 0.750 

CN2 rule inducer 0.775 0.733 0.733 0.734 0.733 

Random Forest 0.861 0.733 0.729 0.751 0.733 

kNN 0.660 0.667 0.665 0.670 0.667 

Naive Bayes 0.852 0.667 0.661 0.679 0.667 

Tree 0.686 0.650 0.645 0.659 0.650 

Logistic Regression 0.590 0.550 0.436 0.763 0.550 

Figure 4. Implementation of microbial taxa implicated in second principal components accurately
predict tumor presence. (A) Using Orange3, 10-fold stratified shuffle splits were performed. (B) Using
a prediction signature which included Bacteroidales.f__S24.7, Ruminococcaceae, and Clostridiales, impli-
cated in the second principal components, resulted in an average accuracy of 80% achieved with a
Neural Network classifier. AUC, area under the curve; CA, classification accuracy; F1, F1 score).

3. Discussion

Our findings demonstrated that the presence of a mouse melanoma tumor can be
detected through the altered gut microbial proportions using classification algorithms. By
using the gut microbial taxa to model tumor presence, it became apparent that such a
condition manifested in more ways than just changes in individual amounts of certain
taxa. Indeed, one of the main implications of this study is that considering gut microbial
taxa co-occurrences and dependencies in predictive modeling can significantly increase
predictive power in melanoma, more so than analyzing only statistical significance between
groups. This concept of intertaxa correlations in modeling microbial-based conditions has
wide applications in the interpretation of the gut microbiota, as it suggests that the role
of an individual taxon in manifesting a biological phenotype is not solely attributed to its
unique characteristics [17,18]. Rather, this role also depends on the extent to which a single
taxon can communicate and affect other taxa through various mechanisms, from quorum
sensing to metabolite production [20–23].

Despite this apparent, predictive relationship between murine melanoma and the gut
microbiota, certain experimental limitations still existed. The primary limitation for consid-
eration was the external validity of these results. It is often the case that gut microbiota data
do not directly correspond between murine and human subjects, with various mechanisms
implicated, from general differences in GI physiology to lifestyle, epigenetics, and immune
responses [24–26]. Thus, in order for gut microbial associations to be implemented in
clinical cancer diagnoses, further work needs to be done to elucidate pertinent taxa in
a variety of human populations and pathophysiological states, including cancer, as well
as the interaction between shifts in gut microbial content and certain factors such as diet
and lifestyle. Most pertinent to patient treatment is the level of interaction between host
immune responses and the gut microbiota, as antitumor immunity and immunotherapies
may affect prediction outcomes [27,28]. These studies would also need to consider the
correlation between patient stool sampling and gut microbial content with cancer presence,
as sampling variation may be a confound [24]. Finally, since our gut microbiota data had a
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certain level of variation, other parameters should be considered in the future predictive
modeling of human melanoma, such as biochemical and clinical observations [29].

In the statistical analysis of gut microbial taxa, algorithms have been developed to
accurately detect the presence of these intertaxa co-occurrences [30–32]. Such algorithms
for the detection of microbial “co-occurrence networks” include Sparse Inverse Covariance
Estimation for Ecological Association Inference (SPEIC-EASI) and Sparse Correlations for
Compositional Data (SparCC) [31–33]. However, despite these advances in the statistical
detection of these interactions, there has not been as much work to determine their efficacy
in different types of classification algorithms in conditions such as melanoma. In fact, their
presence in predictive models has generally been discouraged, as the collinearity they create
have been shown to compromise the performance of many model types [34–36]. Further,
even for models that can more readily account for collinearity, the use of such interactions
in these models does not consistently increase the performance of those models [34–36].
Thus, there is a necessity for a new statistical interpretation of intertaxa co-occurrences
in order for them to be optimally utilized in a predictive model. Perhaps new insights
into such interpretations can be eventually made when taxa indicated by shifts in co-
occurrence networks are further tested in more architecturally complex algorithms such as
deep-learning neural networks.

Traditionally, one of the most common procedures in dealing with collinearity between
variables such as microbial taxa is the use of principal components in principal component
analysis (PCA) [34–37]. By definition, the resulting principal components do not signifi-
cantly correlate with each other, and are thus used in various model types [34–37]. These
components are not usually interpretable from the perspective of the original data because
they are linear transformations of that data [34–37]. However, if a small number of variables
(e.g., two or three) is used, the principal components can be more easily interpreted [34–37].
In this study, PCA analysis was able to differentiate the two groups of mice successfully;
however, much work still needs to be done to characterize the significance of individual
PCs in different situations, such as in other clinically relevant tumor types.

4. Methods
4.1. Cell Culture

B16-F10 cells (ATCC) were cultured in RPMI 1640 plus 10% heat-inactivated fetal
bovine serum (Atlanta Biologicals, Flowery Branch, GA, USA), 2 mM L-glutamine (Mediat-
ech, Manassas, VA, USA), and 1% penicillin/streptomycin (Mediatech).

4.2. Mouse Experiments

C57BL/6 mice (B6; no. 00664; Jackson Laboratory) were housed in a specific pathogen-
free facility at the Rutgers Cancer Institute of New Jersey. Experiments involving animals
were carried out in accordance with respective Institutional Animal Care and Use Commit-
tee (IACUC) and Institutional Biosafety Committee (IBC) guidelines.

In the first experiment, 35 B6 male mice, aged 6 to 8 weeks old from the Jackson
Laboratory were intradermally challenged in the right flank with 105 cells of the highly
aggressive and poorly immunogenic melanoma B16 cell line (n = 19) [17] or phosphate
buffered saline (PBS) (n = 16) under isoflurane anesthesia. Mice were fed regular chow
according to animal care institutional guidelines. Fecal sample collection to compare
tumor-bearing to non-tumor-bearing mice was carried out on day 10, when tumors were
approximately 25–50 mm2. Samples were stored immediately at −80 ◦C until DNA extrac-
tion [38] and sequencing.

The second experiment at this facility followed the identical protocol, using 21 B6
male mice aged 6 to 8 weeks old that were intradermally challenged in the right flank
with 105 cells of the highly aggressive and poorly immunogenic melanoma B16 cell line
(n = 11) [17] or phosphate buffered saline (PBS) (n = 10) under isoflurane anesthesia. Fecal
sample collection to compare tumor-bearing to non-tumor-bearing mice was carried out on
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day 16, when tumors were approximately 25–50 mm2 in diameter. Samples were stored
immediately at −80 ◦C until DNA extraction [38] and sequencing.

4.3. DNA Extraction

Fecal pellets were homogenized and extracted using the QIAamp PowerFecal DNA
Extraction kit following the manufacturer’s protocols [39].

4.4. 16S rRNA Gene Sequencing and Data Analysis

The 16S rRNA genes were amplified from purified DNA using PCR primers specific to
the V3–V4 region of the 16S rRNA gene and sequenced by Illumina MiSeq in a 2 × 150 bp
configuration at the Rutgers New Jersey Medical School Genomics Core. Quantitative
Insights Into Microbial Ecology (QIIME) software was used for open-reference operational
taxonomic unit (OTU) classification with OTU clustering at 0.97, followed by rarefaction
and taxonomic classification of de novo OTUs [40].

4.5. qPCR for Bacterial Load and Taxa Assays

Bacterial loads of extracted fecal DNA were determined by qPCR. DNA were quan-
tified against a standard curve, and the results were normalized to the weight of fecal
samples [40].

4.6. Taxon Comparisons, Analyses, and Statistical Modeling

Using the R programming language, microbial taxa between tumor-bearing and PBS
control mice were compared using Welch’s t-test as well as the Mann–Whitney U test (a
p-value of <0.05 was considered to denote statistically significant differences). Between
these two groups of mice, general taxa and comparison attributes were determined using
the Orange3 v3.27.1 data-mining program and the CORElearn package in CRAN. PCA
analysis and principal components were determined using the prcomp function in R.
General machine-learning model analyses and cross-validation procedures were performed
using the Orange3 program with these settings:

The neural network was a 100-neuron single hidden layer that used the ReLu activation
function and the Adam solver.

The support vector machine (SVM) used a radial basis function (RBF) kernel with a
cost of 1.0 and a regression loss epsilon of 0.1.

The AdaBoost used a SAMME.R classification algorithm with a linear regression loss
function, 50 estimators, and learning rate of 1.0.

The CN2 rule inducer used entropy as the evaluation measure, a beam width of 5, and
a maximum rule length of 5.

The random forest used a 12-tree ensemble with subsets split no smaller than 5.
The k-nearest neighbor (kNN) used 5 neighbors and considered the Euclidean distance

and uniform weights.
For the naïve Bayes, the attributes were not weighted.
Tree used a maximal tree depth of 100 and subsets not split smaller than 5.
In the logistic regression, a ridge regularization was implemented.
Quality parameters for this model were determined using an internal 10-fold stratified

shuffle split, with 90% of the samples selected for training and the remaining 10% for
testing in Orange3. Results were graphed using the ggplot2, ggrepel, and ggpubr packages
in CRAN, as well as Orange3 and Cytoscape v3.7.2. Heatmaps were generated using
the ComplexHeatmap package in CRAN. Tables were formatted using the sjPlot package
in CRAN.
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