
����������
�������

Citation: Villavicencio, C.N.;

Macrohon, J.J.; Inbaraj, X.A.; Jeng,

J.-H.; Hsieh, J.-G. Development of a

Machine Learning Based Web

Application for Early Diagnosis of

COVID-19 Based on Symptoms.

Diagnostics 2022, 12, 821. https://

doi.org/10.3390/diagnostics12040821

Academic Editor: Damiano Caruso

Received: 17 February 2022

Accepted: 24 March 2022

Published: 27 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Development of a Machine Learning Based Web Application
for Early Diagnosis of COVID-19 Based on Symptoms
Charlyn Nayve Villavicencio 1,2,* , Julio Jerison Macrohon 1 , Xavier Alphonse Inbaraj 1, Jyh-Horng Jeng 1

and Jer-Guang Hsieh 3

1 Department of Information Engineering, I-Shou University, Kaohsiung City 84001, Taiwan;
isu10903050d@cloud.isu.edu.tw (J.J.M.); xalphonse@gmail.com (X.A.I.); jjeng@isu.edu.tw (J.-H.J.)

2 College of Information and Communications Technology, Bulacan State University,
Malolos City 3000, Philippines

3 Department of Electrical Engineering, I-Shou University, Kaohsiung City 84001, Taiwan; jghsieh@gmail.com
* Correspondence: charlyn.villavicencio@bulsu.edu.ph; Tel.: +886-958-450-028

Abstract: Detecting the presence of a disease requires laboratory tests, testing kits, and devices;
however, these were not always available on hand. This study proposes a new approach in disease
detection using machine learning algorithms by analyzing symptoms experienced by a person
without requiring laboratory tests. Six supervised machine learning algorithms such as J48 decision
tree, random forest, support vector machine, k-nearest neighbors, naïve Bayes algorithms, and
artificial neural networks were applied in the “COVID-19 Symptoms and Presence Dataset” from
Kaggle. Through hyperparameter optimization and 10-fold cross validation, we attained the highest
possible performance of each algorithm. A comparative analysis was performed according to accuracy,
sensitivity, specificity, and area under the ROC curve. Results show that random forest, support
vector machine, k-nearest neighbors, and artificial neural networks outweighed other algorithms by
attaining 98.84% accuracy, 100% sensitivity, 98.79% specificity, and 98.84% area under the ROC curve.
Finally, we developed a web application that will allow users to select symptoms currently being
experienced, and use it to predict the presence of COVID-19 through the developed prediction model.
Based on this mechanism, the proposed method can effectively predict the presence or absence of
COVID-19 in a person immediately without using laboratory tests, kits, and devices in a real-time
manner.

Keywords: COVID-19; COVID-19 symptoms; disease detection; machine learning algorithms; hy-
perparameter optimization; cross-validation; online disease diagnosis; online symptom checker;
web application

1. Introduction

A global pandemic called coronavirus disease (COVID-19) is a contagious disease
caused by SARS-CoV-2 virus. COVID-19 carriers will experience mild to moderate respira-
tory illness, while some may experience serious symptoms that requires immediate medical
attention, especially older people with underlying comorbidities [1]. What is alarming
about COVID-19 is that anyone who gets infected with this virus may be seriously ill or
die at any age. However, there were many ways to prevent and slow down COVID-19
transmission. According to the World Health Organization (WHO), getting vaccinated,
practicing social distancing for at least one meter, wearing masks properly, staying in
well-ventilated places, frequent hand washing, using alcohols, and covering your nose and
mouth when coughing or sneezing can prevent an individual from getting infected [1].
As of 16 February 2022, there were 416,014,373 confirmed COVID-19 cases and 5,856,697
reported deaths worldwide [2]. Confirmed cases increased by almost 100% in just a span of
5 months as reported last 30 September 2021 with 234,057,967 COVID-19 cases [3].

Diagnostics 2022, 12, 821. https://doi.org/10.3390/diagnostics12040821 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12040821
https://doi.org/10.3390/diagnostics12040821
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-6905-8727
https://orcid.org/0000-0003-2738-4932
https://orcid.org/0000-0003-0026-8333
https://doi.org/10.3390/diagnostics12040821
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12040821?type=check_update&version=1

Diagnostics 2022, 12, 821 2 of 30

COVID-19 has mutated into several variants, and the Centers for Disease Control and
Prevention (CDC) recorded two variants of concern (VOC). VOC refers to a variant that has
evidence of increased transmissibility and severity of the disease, significant reduction in
neutralization against a person’s antibodies, reduced effectivity of treatments or vaccines,
or failures in the diagnosis [4]. A VOC requires more appropriate and immediate public
health actions as its outbreak will cause danger to human lives. The first VOC was the delta
variant as labeled by the WHO, which was first identified in India [4]. The delta variant
has evidence of increased transmissibility and resistance to the developed vaccines. The
second VOC was labeled the omicron variant, which was first identified in South Africa
with potential increase of the virus transmissibility as well as reduction in neutralization by
antibodies and vaccines [4].

Since COVID-19 is a contagious disease and has mutated into several variants that
reported increased transmissibility, it is necessary to prioritize its early detection. Through
early diagnosis of the virus, isolation can be immediately imposed to prevent the spread
of the virus. A COVID-19 positive person can be identified through the use of testing kits
such as COVID-19 real-time reverse transcription–polymerase chain reaction (RT-PCR)
and antigen testing. However, these testing kits have costs and are not always available
on hand. Due to the virus outbreak, limited access to COVID-19 testing kits hinder the
early diagnosis of the disease [3]. In line with this, an accessible and real-time COVID-19
prediction model is necessary.

This study focuses on developing a machine learning-based web application for
the early diagnosis of COVID-19. Many research attempts utilizing machine learning
algorithms to detect the presence of COVID-19 e were published, and we devised a list in
Table 1.

Table 1. COVID-19 Prediction Models.

References COVID-19 Prediction Predictors Used Algorithms Accuracy

[5] COVID-19 prediction using
laboratory findings Laboratory findings Convolutional Neural

Network (CNN) 76.00%

[6] Prediction of the severity of
COVID-19 using blood test results Blood test results Multiple-criteria

decision-making (MCDM) 82.00%

[7] COVID-19 prediction using X-ray
images X-ray images Visual Geometry Group

(VGG16) 98.60%

[8] Prediction of the mortality of a
patient Blood samples Extreme Gradient Boosting

(XGBoost) 90.00%

[9] COVID-19 prediction using CT
images

Computed tomography
(CT) images

DenseNet201 Feature
Pyramid Network (FPN) 98.96%

[10] COVID-19 prediction using X-ray
images X-ray images Deep Neural Network

(DNN) 90.50%

Proposed Method COVID-19 prediction based on
symptoms COVID-19 symptoms Supervised Machine

Learning Algorithms 98.84%

Based on previous researches, it is evident that machine learning can be utilized to
detect the presence of COVID-19, reduce the spread of the virus, predict cases, minimize the
death counts, and most of all, take over some of the workload of doctors and nurses during
the pandemic. Predictors utilized to detect COVID-19 presence were laboratory findings,
blood test results, X-ray images, and CT Images; however, none has focused specifically
on detecting COVID-19 presence using symptoms without the need of laboratory tests.
Since COVID-19 demands early diagnosis to prevent the transmission to other people, a
COVID-19 prediction model that will allow users to provide the current symptoms being
experienced will be proposed in this study. In this way, the potential beneficiaries of this
prediction model can be notified with immediate results as to whether they are COVID-19
positive or negative. This application does not require any laboratory tests, and it is accessi-
ble anywhere even at home as long as the user is connected to the internet. The model will
be developed by applying a supervised machine learning algorithm through analyzing

Diagnostics 2022, 12, 821 3 of 30

COVID-19 symptoms using the Python programming language. Google colab research
(Mountain View, CA, USA) was used in developing the model, and the developed model
was integrated in the web application using the Django Framework (Django Software Foun-
dation, Atlanta, GA, USA). The source codes and the prediction model will be deployed
using the Github repository (San Francisco, CA, USA) and Azure Web Services (Microsoft,
Redmond, WA, USA) to make it available for public use.

The rest of this study was organized as follows: Section 2 discusses the methodology
of this study including the machine learning modeling steps. Section 3 is the results and
discussion section, which briefly explains the development process of a machine learning-
based web application integrating the developed model and its workflow. Section 3 also
discusses the overview on how to use the web application, and the deployment of the
project to make it accessible online. Lastly, Section 4 is the conclusions section.

2. Materials and Methods

The machine learning modeling process was performed using Google colab research,
which is a platform used to write and execute Python codes, with free access to a Graphics
Processing Unit (GPU) that is well suited for data science [11]. The process of machine
learning modeling can be seen in the block diagram shown in Figure 1.

Diagnostics 2022, 12, x FOR PEER REVIEW 3 of 31

of this prediction model can be notified with immediate results as to whether they are
COVID-19 positive or negative. This application does not require any laboratory tests, and
it is accessible anywhere even at home as long as the user is connected to the internet. The
model will be developed by applying a supervised machine learning algorithm through
analyzing COVID-19 symptoms using the Python programming language. Google colab
research (Mountain View, CA, USA) was used in developing the model, and the devel-
oped model was integrated in the web application using the Django Framework (Django
Software Foundation, Atlanta, GA, USA). The source codes and the prediction model will
be deployed using the Github repository (San Francisco, CA, USA) and Azure Web Ser-
vices (Microsoft, Redmond, WA, USA) to make it available for public use.

The rest of this study was organized as follows: Section 2 discusses the methodology
of this study including the machine learning modeling steps. Section 3 is the results and
discussion section, which briefly explains the development process of a machine learning-
based web application integrating the developed model and its workflow. Section 3 also
discusses the overview on how to use the web application, and the deployment of the
project to make it accessible online. Lastly, Section 4 is the conclusions section.

2. Materials and Methods
The machine learning modeling process was performed using Google colab research,

which is a platform used to write and execute Python codes, with free access to a Graphics
Processing Unit (GPU) that is well suited for data science [11]. The process of machine
learning modeling can be seen in the block diagram shown in Figure 1.

Figure 1. The Block Diagram of the process of machine learning modeling. Figure 1. The Block Diagram of the process of machine learning modeling.

In Figure 1, the 10 phases of the development of a COVID-19 prediction model were
displayed. The steps were importing dependencies, loading the dataset, data analysis, fea-
ture selection, data balancing, data splitting, modeling, comparative analysis, serialization,
and finally, the developed prediction model to determine the presence of COVID-19.

Diagnostics 2022, 12, 821 4 of 30

2.1. Importing Dependencies and Loading the Dataset

We used the pandas, numerical python (Numpy), matplotlib, sea-born, and sci-kit
learn (sklearn) packages in developing the model. The Pandas package is a fast and easy
data manipulation tool that can be used in data analysis, from reading the data from
the spreadsheet to devising data frames for facilitating the presentation of the data [12].
Together with Pandas, the Numpy package was also used to perform mathematical and
scientific calculations as well as perform high-level mathematical functions on its multi-
dimensional arrays and matrices [13]. The data distribution of every column in the dataset
must be performed to give a glimpse on how the data are distributed throughout the dataset,
and each column must be analyzed according its relationship with random attributes
present in the dataset. The data distribution and the correlation coefficient plot can be
successfully made through importing the Matplotlib package, particularly the pyplot
function, which is intended to perform interactive and programmatic plot generation
in a MATLAB-like way [14]. To provide attractive and informative data visualization
graphs [15], the Seaborn package was imported, particularly the distplot and heatmap
functions. Lastly, the sklearn package was imported since it supports both supervised and
unsupervised machine learning by providing various tools for splitting the dataset, model
selection, model’s performance evaluation by computing statistical measures, and many
other useful functions [16].

Importing the dependencies were required to perform every process included in
developing the model such as loading the dataset. For the data collection, we utilized a
dataset available from Kaggle entitled “COVID-19 Symptoms and Presence”. There were
21 attributes in the dataset wherein 20 were the possible factors related to acquiring the
virus, and the remaining 1 attribute determines the presence or absence of COVID-19 in
the sample. The dataset has a total of 5434 rows. The attributes and the descriptions of the
dataset are displayed in Table 2.

Table 2. COVID-19 predictors and descriptions of the COVID-19 symptoms and presence dataset [3].

Attribute Name Description

Breathing problems Experiencing shortness of breath, having trouble breathing
Fever Temperature is above normal
Dry cough Continuous coughing without phlegm
Sore throat Experiencing pain, scratchiness, and irritation in the throat
Runny nose Having a nasal drainage such as thin fluids, thick mucus, or frequent sneezing
Asthma Diagnosed with asthma
Chronic lung disease Diagnosed with lung disease
Headache Pain in the head or in a certain part of the head
Heart disease Diagnosed with cardiovascular disease
Diabetes Diagnosed with diabetes
Hypertension Having a high blood pressure
Fatigue Constantly feeling tired and weak
Gastrointestinal Digestive system problems
Abroad travel Has recent travel history
Contact with COVID-19 patient Physical contact with COVID-19 positive people
Attended large gathering The person or anyone from the family recently attended a mass gathering.
Visited public exposed places Recently visited malls, temples, and other public places
Family working in public exposed places Relatives are working in a market, hospital, or crowded place.
Wearing masks Wearing face masks properly
Sanitation from market Disinfecting products bought from market before using
COVID-19 The presence of COVID-19

In Table 2, the predictors and its description are presented. This is a publicly available
dataset and the sources are the World Health Organization (WHO) Coronavirus Symptoms
and the All India Institute of Medical Sciences (AIIMS).

Diagnostics 2022, 12, 821 5 of 30

2.2. Data Analysis and Feature Selection

To be able to depict the distribution of data across the whole dataset, the displot
function of the Seaborn package was used along with the Matplotlib. This function plots
the data by a histogram combined with a line on it, representing the univariate distribution
of a variable against the density distribution [17]. The distplot of the collected dataset can
be seen in Figure 2.

Diagnostics 2022, 12, x FOR PEER REVIEW 5 of 31

In Table 2, the predictors and its description are presented. This is a publicly available
dataset and the sources are the World Health Organization (WHO) Coronavirus Symp-
toms and the All India Institute of Medical Sciences (AIIMS).

2.2. Data Analysis and Feature Selection
To be able to depict the distribution of data across the whole dataset, the displot func-

tion of the Seaborn package was used along with the Matplotlib. This function plots the
data by a histogram combined with a line on it, representing the univariate distribution
of a variable against the density distribution [17]. The distplot of the collected dataset can
be seen in Figure 2.

Figure 2. The distplot of the collected dataset.

In Figure 2, 20 columns in the dataset were presented, which were referred to as the
COVID-19-related symptoms, namely breathing problems, fever, dry cough, sore throat,
runny nose, asthma, chronic lung disease, headache, heart disease, diabetes, hypertension,
fatigue, gastrointestinal, abroad travel, contact with a COVID-19 patient, attended a large
gathering, visited public areas, family working in public areas, wearing masks, and sani-
tization of things bought from the market. The vertical labels (y-axis) represent the density
of the samples in the dataset, while the horizontal labels (x-axis) represent the classes
wherein 0 or the indicated symptom is not present in the person, while number 1 means
yes or currently being experienced by the person. Based on the distribution plot, a prelim-
inary intuition can be drawn such as the majority of the samples in the dataset were hav-
ing breathing problems, fever, dry cough, sore throat, runny nose, headache, fatigue, and
visited public areas. Meanwhile, some samples in the dataset do not have asthma, chronic

Figure 2. The distplot of the collected dataset.

In Figure 2, 20 columns in the dataset were presented, which were referred to as the
COVID-19-related symptoms, namely breathing problems, fever, dry cough, sore throat,
runny nose, asthma, chronic lung disease, headache, heart disease, diabetes, hyperten-
sion, fatigue, gastrointestinal, abroad travel, contact with a COVID-19 patient, attended
a large gathering, visited public areas, family working in public areas, wearing masks,
and sanitization of things bought from the market. The vertical labels (y-axis) represent
the density of the samples in the dataset, while the horizontal labels (x-axis) represent the
classes wherein 0 or the indicated symptom is not present in the person, while number 1
means yes or currently being experienced by the person. Based on the distribution plot, a
preliminary intuition can be drawn such as the majority of the samples in the dataset were
having breathing problems, fever, dry cough, sore throat, runny nose, headache, fatigue,
and visited public areas. Meanwhile, some samples in the dataset do not have asthma,
chronic lung disease, heart disease, diabetes, hypertension, gastrointestinal, abroad travel
history, attended a large gathering, and family working in public areas. Dataset samples

Diagnostics 2022, 12, 821 6 of 30

have a slightly close density of having contact with COVID-19 patients, while wearing
masks and sanitization from the market have only one content that is 0 or no.

We used the variance threshold to perform feature selection to remove the attribute
values that do not have significant variance or have the same value for all samples [18]. We
used 80% as the threshold and found out that the attributes wearing masks and sanitization
from the market exceeded the threshold, since the values were the same for all samples.
These columns were removed from the dataset having only 18 features left.

Another feature selection method, which is the Pearson Correlation Coefficient (PCC),
was applied in the dataset. This is a statistical measure to determine the correlation of two
random attributes [19]. The formula used in this method can be seen in Equation (1).

r = ∑(xi − x)(y− y)√
∑(xi − x)2 ∑(y− y)2

(1)

where r is the Pearson correlation coefficient, xi is the variable’s samples, x is the sample
mean, yi is the samples of another variable, and y is the value of its sample. The value
of r ranges from −1 to +1. PCC was applied to measure the correlation of the attributes
to the target variable, which is the COVID-19 attribute and to know which features were
positively and negatively correlated to the target class. By doing this, we can have intuition
on what features must be retained in training the model, and the results are displayed in
Table 3.

Table 3. The correlation of predictors to COVID-19 attributes.

Attribute Name Correlation Value

Sore Throat 0.503
Dry Cough 0.464
Abroad Travel 0.444
Breathing Problems 0.444
Attended a Large Gathering 0.390
Contact with COVID-19 Patient 0.357
Fever 0.353
Family Working in Public 0.160
Visited Public Exposed Places 0.112
Hypertension 0.103
Asthma 0.090
Diabetes 0.041
Heart Disease 0.027
Gastrointestinal −0.003
Runny Nose −0.006
Headache −0.028
Fatigue −0.044
Chronic Lung Disease −0.057

In Table 3, the correlation values of each feature toward the target variable were listed.
The highest correlation goes to the symptom sore throat having 0.503 correlation, next is the
Dry Cough with 0.464 correlation value, and the Abroad Travel and Breathing Problems
have a 0.444 correlation value. Having a positive correlation means that the variables were
positively correlated: as x increases, the value of y also increases, and vice versa. In contrast,
the negative correlation means that the variables were negatively correlated: when the
value of x decreases, the value of y increases, and vice versa [20]. Symptoms that were
found to be negatively correlated to the target variable were gastrointestinal, runny nose,
headache, fatigue, and chronic lung disease. Features that have very low correlation to
the COVID-19 variable were asthma, diabetes, and heart disease, which were mostly were
termed as comorbidities.

After studying the correlation of the predictors to the target, we also took into consid-
eration the collinearity. Collinearity happens when two predictors are linearly associated

Diagnostics 2022, 12, 821 7 of 30

or having a high correlation to each other, and both were used as predictors of the target
variable [21]. Multicollinearity may also happen, which is a situation wherein the variable
has collinearity with more than one predictors in the dataset. We used the Variance Inflation
Factor (VIF) to detect the collinearity of the predictors in the dataset. The VIF starts from 1
to infinity, and the value of 1 means that the features were not correlated. VIF values less
than 5 are moderately correlated, while VIF values of 10 and above are highly correlated
and a cause of concern [21]. The VIF values of each predictor in the dataset can be seen in
Table 4.

Table 4. VIF of predictors in the dataset.

Attribute Name VIF

Dry cough 5.38
Fever 4.95
Sore throat 4.79
Breathing problems 3.48
Contact to COVID patient 2.28
Abroad travel 2.19
Runny nose 2.17
Attended a large gathering 2.12
Visited public 2.09
Headache 2.06
Hypertension 2.01
Asthma 1.95
Diabetes 1.94
Fatigue 1.93
Gastrointestinal 1.89
Heart disease 1.85
Family working in public 1.84
Chronic lung disease 1.76

Table 4 displays the VIF of each predictor in the dataset. The highest is dry cough
at 5.38, which is not surprising, since it is one of the most common symptoms of COVID-
19 [22]. Predictors such as fever, sore throat, and breathing problems attained the next
highest VIF having scores lower than 5. A VIF of 1 to 5 means that the predictors were not
correlated and can be considered in building the COVID-19 prediction model. However,
we still consider including the dry cough as a predictor in the building of the COVID-19
prediction model even if it has a VIF of 5.38, since this symptom can contribute to predicting
COVID-19 in a person, and it is included in the most common symptoms declared by the
World Health Organization (WHO).

Aside from the variance threshold, PCC, and VIF, we also used the WHO website
to determine the common symptoms of the disease because it has been validated by the
experts in the medical field and is updated regularly. Table 5 shows the most common, less
common, and serious symptoms of COVID-19.

Table 5. Symptoms of COVID-19 [22].

Most Common Less Common Serious

Fever Sore throat Difficulty in breathing
Cough Headache, aches and pains Shortness of breath
Fatigue Diarrhea Loss of speech or mobility
Loss of smell Rashes/discoloration of skin, fingers or toes Confusion
Loss of taste Red or irritated eyes Chest pain

Table 5 displays the list of symptoms from the WHO’s website. According to the
WHO, people who suffer from serious symptoms may cause danger to human lives, so it
is necessary to go the nearest hospital to seek immediate medical attention. People who

Diagnostics 2022, 12, 821 8 of 30

experience mild symptoms but are still healthy may manage themselves at home [22]. It is
necessary to undergo self-isolation immediately to prevent the virus from spreading and to
prevent possible transmission until tested COVID-19 negative through a Polymerase Chain
Reaction (PCR) test.

Based on the findings in the feature selection process, the feature combination that can
be used in building the prediction model was devised, which is composed of the positive
correlation features. Negatively correlated symptoms were also included but with respect
to the symptoms declared by the WHO. The features that will be included in the training
process were the sore throat, dry cough, abroad travel, breathing problems, attended a
large gathering, contact with COVID-19 patient, fever, family working in public, visited
public exposed places, hypertension, asthma, diabetes, heart disease, runny nose, headache,
and fatigue.

2.3. Data Balancing and Dataset Splitting

In preprocessing the dataset, we used data balancing, which is important to promote a
balanced prediction rate. Dataset splitting was utilized to divide the samples into training
and testing datasets. For the COVID-19 Symptoms and Presence dataset, the classes have
a 4:1 class imbalance [3], and to address this, we make use of a data balancing technique
named “Synthetic Minority Oversampling Technique” (SMOTE) proposed by Chawla et al.
in 2002 to perform oversampling in the minority dataset. SMOTE generates additional
instances for the minority group by generating additional synthetic samples based on
a selected number of neighbors of a random sample [23]. By doing this, the class with
fewer samples in the dataset will be increased. It is necessary to balance the dataset to
obtain a high accuracy rate, very low error rate, and to avoid classification bias. A bar plot
representing the class distribution of the target variable can be seen in Figure 3.

Diagnostics 2022, 12, x FOR PEER REVIEW 8 of 31

Table 5. Symptoms of COVID-19 [22].

Most Common Less Common Serious
Fever Sore throat Difficulty in breathing
Cough Headache, aches and pains Shortness of breath
Fatigue Diarrhea Loss of speech or mobility

Loss of smell
Rashes/discoloration of skin, fingers
or toes

Confusion

Loss of taste Red or irritated eyes Chest pain

Table 5 displays the list of symptoms from the WHO’s website. According to the
WHO, people who suffer from serious symptoms may cause danger to human lives, so it
is necessary to go the nearest hospital to seek immediate medical attention. People who
experience mild symptoms but are still healthy may manage themselves at home [22]. It
is necessary to undergo self-isolation immediately to prevent the virus from spreading
and to prevent possible transmission until tested COVID-19 negative through a Polymer-
ase Chain Reaction (PCR) test.

Based on the findings in the feature selection process, the feature combination that
can be used in building the prediction model was devised, which is composed of the pos-
itive correlation features. Negatively correlated symptoms were also included but with
respect to the symptoms declared by the WHO. The features that will be included in the
training process were the sore throat, dry cough, abroad travel, breathing problems, at-
tended a large gathering, contact with COVID-19 patient, fever, family working in public,
visited public exposed places, hypertension, asthma, diabetes, heart disease, runny nose,
headache, and fatigue.

2.3. Data Balancing and Dataset Splitting
In preprocessing the dataset, we used data balancing, which is important to promote

a balanced prediction rate. Dataset splitting was utilized to divide the samples into train-
ing and testing datasets. For the COVID-19 Symptoms and Presence dataset, the classes
have a 4:1 class imbalance [3], and to address this, we make use of a data balancing tech-
nique named “Synthetic Minority Oversampling Technique” (SMOTE) proposed by
Chawla et al. in 2002 to perform oversampling in the minority dataset. SMOTE generates
additional instances for the minority group by generating additional synthetic samples
based on a selected number of neighbors of a random sample [23]. By doing this, the class
with fewer samples in the dataset will be increased. It is necessary to balance the dataset
to obtain a high accuracy rate, very low error rate, and to avoid classification bias. A bar
plot representing the class distribution of the target variable can be seen in Figure 3.

Figure 3. Bar plot of COVID-19 variable class distribution in the raw dataset. Figure 3. Bar plot of COVID-19 variable class distribution in the raw dataset.

In Figure 3, the COVID-19 variable class distribution was presented according to the
number of samples in the raw dataset collected from Kaggle. The vertical labels indicate the
frequency or the number of the samples, while the horizontal label 1 implies the COVID-19
positive samples, and the label 0 indicates COVID-19 negative samples. The total number of
samples in the dataset is 5434, where COVID-19 positive samples were 4383 and COVID-19
negative samples were 1051. This kind of dataset will cause prediction bias because a lot
of samples were in the COVID-19 positive class, making it well known to the classifier,
and there is a high chance that the majority of the data may be predicted as COVID-19
positive. To address this, we used the available imbalanced-learn python package, which
offers several re-sampling techniques that can be applied in datasets showing strong data
imbalance [24]. This package must be installed in the Google colab research notebook; then,
from its oversampling module, the SMOTE function was imported and was applied to the
dataset, and the result is presented in Figure 4.

Diagnostics 2022, 12, 821 9 of 30

Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 31

In Figure 3, the COVID-19 variable class distribution was presented according to the
number of samples in the raw dataset collected from Kaggle. The vertical labels indicate
the frequency or the number of the samples, while the horizontal label 1 implies the
COVID-19 positive samples, and the label 0 indicates COVID-19 negative samples. The
total number of samples in the dataset is 5434, where COVID-19 positive samples were
4383 and COVID-19 negative samples were 1051. This kind of dataset will cause predic-
tion bias because a lot of samples were in the COVID-19 positive class, making it well
known to the classifier, and there is a high chance that the majority of the data may be
predicted as COVID-19 positive. To address this, we used the available imbalanced-learn
python package, which offers several re-sampling techniques that can be applied in da-
tasets showing strong data imbalance [24]. This package must be installed in the Google
colab research notebook; then, from its oversampling module, the SMOTE function was
imported and was applied to the dataset, and the result is presented in Figure 4.

Figure 4. Bar plot of COVID-19 variable class distribution in the balanced dataset.

In Figure 4, the dataset is presented in a balanced number of samples as a result of
the SMOTE function. The total number of samples in the dataset after applying SMOTE
became 8766 where 4383 still belongs to the COVID-19 positive class, and the remaining
4383 samples belong to the COVID-19 negative class. Now that the dataset is balanced,
we divided the dataset using a ratio of 7:3; 70% of the samples will be used as the training
dataset to develop the COVID-19 prediction model, and the remaining 30% will be used
for testing the performance of the model. The data-splitting process was performed using
the “train_test_split” function from the sklearn’s “model_selection” module, which ran-
domly splits the given samples, arrays, and matrices into training and testing subsets [16].

By applying the train_test_split function, 6136 samples were included in the training
dataset, and the remaining 2630 samples were taken to be used as the testing dataset,
which makes the dataset ready for the next process, which is the modeling. We used the
10-fold cross-validation resampling method for all the experiments.

2.4. Modeling of the COVID-19 Prediction Model Using Supervised Machine Learning Algo-
rithms

The modeling phase of this study discusses the process of how to develop a COVID-
19 prediction model including the hyperparameter optimization, training, testing and
evaluation. After data processing using the variance threshold, PCC, VIF, feature selection
techniques, and finally, the SMOTE data balancing technique, several models were built

Figure 4. Bar plot of COVID-19 variable class distribution in the balanced dataset.

In Figure 4, the dataset is presented in a balanced number of samples as a result of
the SMOTE function. The total number of samples in the dataset after applying SMOTE
became 8766 where 4383 still belongs to the COVID-19 positive class, and the remaining
4383 samples belong to the COVID-19 negative class. Now that the dataset is balanced,
we divided the dataset using a ratio of 7:3; 70% of the samples will be used as the training
dataset to develop the COVID-19 prediction model, and the remaining 30% will be used for
testing the performance of the model. The data-splitting process was performed using the
“train_test_split” function from the sklearn’s “model_selection” module, which randomly
splits the given samples, arrays, and matrices into training and testing subsets [16].

By applying the train_test_split function, 6136 samples were included in the training
dataset, and the remaining 2630 samples were taken to be used as the testing dataset, which
makes the dataset ready for the next process, which is the modeling. We used the 10-fold
cross-validation resampling method for all the experiments.

2.4. Modeling of the COVID-19 Prediction Model Using Supervised Machine Learning Algorithms

The modeling phase of this study discusses the process of how to develop a COVID-
19 prediction model including the hyperparameter optimization, training, testing and
evaluation. After data processing using the variance threshold, PCC, VIF, feature selection
techniques, and finally, the SMOTE data balancing technique, several models were built
using the Google colab research utilizing different supervised machine learning algorithms,
namely, J48 DT, RF, SVM, k-NN, NB, and ANN.

1. J48 Decision Tree

The first algorithm we included in this study is the DT, which is an algorithm that
creates a tree-like plot wherein nodes represent a condition for any classification task.
A generated tree starts with a root node that tests a given sample; an example of a test
condition is whether the person has a dry cough or not. After testing the samples using a
condition, branches will be generated that separate the samples into their respective classes.
J48 DT is a kind of decision tree algorithm primarily utilized in classification tasks.

To attain the highest possible performance of the J48 DT algorithm, we performed
hyperparameter tuning using GridSearchCV and 10-fold cross validation for all the experi-
ments. The following hyperparameters were tuned: For the maximum depth of the decision
tree, we used the values 2, 3, 5, 10, and 20. In terms of the minimum samples required to be
in the leaf node, we used 5, 10, 20, 50, and 100. Lastly, to measure the information gain or
the purity of the nodes of the decision tree, the criterion we used were the Gini index and
entropy. An innovation of this algorithm was made using several decision trees known as
random forest.

Diagnostics 2022, 12, 821 10 of 30

2. Random Forest

The RF algorithm provides a significant amount of improvement in the classification
accuracy of a model because it is capable of producing multiple decision trees. Each
decision tree will generate a result about the sample, and the final result will be generated
according to the results of the majority of the decision trees [25]. To obtain the highest
possible performance of the RF algorithm, we performed hyperparameter tuning using
GridSearchCV and 10-fold cross validation for all the experiments. We also tuned same set
of hyperparameters as what we tuned in the DT wherein the maximum depth values of the
decision trees to be created are 2, 3, 5, 10, and 20, and the minimum samples required to
be in the leaf node, we used 5, 10, 20, 50, and 100. To measure the quality of the split of
each node, the criterion we used were the Gini index and entropy. Since the RF algorithm
produces several decision trees, we used the number of estimators to set how many trees
to be created in the forest. The values used for this hyperparameter were 100, 200, and
300. Each decision tree learns from random sets of samples from the dataset and using
bootstrap means that the samples were drawn with replacement [26]. The hyperparameter
bootstrap was also tuned with the values either True or False; the entire dataset was used
to build a decision tree if the bootstrap parameter was set to False. The next algorithm used
in this study is the SVM.

3. Support Vector Machine

Generating hyperplanes is a significant part of the SVM algorithm. Hyperplanes are
utilized by SVM in separating the samples in the dataset according to their respective classes.
SVM prioritizes in maximizing the distance of each group to the dividing hyperplane.
Through the use of hyperplanes, we can minimize the errors in separating the instances. [27].
The kernels used in the experiment were the linear, radial, polynomial, and sigmoid kernels;
these kernels will help the SVM algorithm determine which are the best hyperplanes that
can separate the dataset into COVID-19 positive and negative classes. A mathematical
trick called the “Kernel trick” allows the SVM to create a higher dimensional space from a
low-dimensional space dataset; specifically, a single-dimensional data will be converted
into two-dimensional data according to their respective classes [28].

A radial basis function (RBF) is one of the most popular among all the kernels, for it
can be used to separate datasets that are not linearly separable by adding curves or bumps
in the data points. Next is the polynomial kernel function, whose result depends on the
direction of the two vectors, and it is the only kernel that has the hyperparameter named
“degree”, which determines the flexibility of the decision boundary [29]. The sigmoid
kernel which is a quite popular kernel that originated in the neural networks field was
also included. The selection of kernel to be used in the classifier depends on the kind of
classification to be done; it is not fixed [28]. In line with this, we included linear, radial,
polynomial, and sigmoid kernels in the hyperparameter optimization process to find out
which kernel will perform better.

The regularization parameter C, which is a hyperparameter common to all the ker-
nels that regulates the misclassification of the samples and the simplicity of the decision
boundaries, was tuned. The C values used in the hyperparameter optimization were 0,
0.01, 0.5, 0.1, 1, 2, 5, and 10. The gamma was also considered, which determines how much
influence a training sample has. The values used for the gamma were 1, 0.1, 0.01, and
0.001. Large values of gamma means that the other examples are closer to be affected [30].
Another supervised machine learning algorithm used is the k-NN, which uses a number of
neighbors or samples surrounding a random sample in the dataset.

4. K-Nearest Neighbors

k-NN uses a sample’s nearest neighbors in the dataset to determine to which class it
belongs. k-NN is an old and simple supervised machine learning algorithm used to solve
classification tasks [31]. To determine a sample’s nearest neighbor, k-NN uses distance

Diagnostics 2022, 12, 821 11 of 30

metrics, which are Euclidean and Manhattan distance. The most commonly used distance
metric of k-NN is the Euclidean distance, which can be expressed in Equation (2).

d
(

xi, xj
)
=
√

∑n
r=1 wr

(
ar(xi)− ar

(
xj
))2 (2)

where x = (a1, a2, a3 . . . an) is a sample in the dataset in a vector format, the number of
the sample’s attributes is expressed as n, ar is the rth attribute, the weight is expressed as
wr, and xi and xj are the two samples. Another distance metric used is the Manhattan
distance. The Manhattan distance is also called “Taxicab Geometry” and “City Block
Distance” [32]. A Minkowski distance formula is used to find the Manhattan distance that
works by calculating the distance between the samples in a grid-like path.

Hyperparameter optimization was used to determine the k-NN algorithm configu-
ration that will yield the best possible performance of the model. The total number of
neighbors used in the hyperparameter optimization were 3, 5, 7, 9, 11, and 13. The weights
hyperparameters used were the uniform and distance. Uniform weights means that all
the points in each neighborhood of the sample are weighted equally, while the distance
weight allocates points by the inverse of their distance. The closer neighbors of the sample
will have more influence than the other neighbors, which are more distant [33]. The next
supervised machine learning algorithm used in this study is the naïve Bayes which is based
on Bayes’ theorem.

5. Naïve Bayes

NB is another supervised machine learning algorithm based on the Bayes theorem
by Thomas Bayes, an English mathematician, which was created in 1763 [34]. The NB
algorithm is called naïve because it does not depend on the existence of other parameters;
its formula can be expressed in Equation (3).

P(A|B) = P(B|A) P(A)

P(B)
(3)

In Equation (3), the priori probability is expressed as P(A), which means the probability
of event A happening. The marginal probability is expressed as P(B), which means the
probability of the event B happening. Then, the expression P(A|B) means the posterior
probability or probability of A happening given that B has occurred. The expression P(B|A)
means the likelihood probability, which is the probability of B happening given that A is
true [35]. Dividing the product of the likelihood and priori probability by the marginal
probability will determine the posterior probability [35].

We used the GausianNB, which is a special kind of NB algorithm, and tuned its
only parameter, the variance smoothing. Variance smoothing is another form of Laplace
smoothing, which is a technique that helps in the problem of zero probability in the NB.
In using high values of alpha, it will push the likelihood toward a value of 0.5 [36]. We
used np.logspace(0, −9, num = 100) as the var_smothing value in the GridSearchCV
hyperparameter tuning function.

6. Artificial Neural Network

The last machine learning algorithm we used is the multilayer perceptron (MLP)
artificial neural network, which is one of the most commonly used architectures of neural
network because of its versatility in classification and regression problems [37]. We plotted
an illustration of MLP including the input layer, hidden layer, and the output layer; it can
be seen in Figure 5.

Diagnostics 2022, 12, 821 12 of 30

Diagnostics 2022, 12, x FOR PEER REVIEW 12 of 31

smoothing, which is a technique that helps in the problem of zero probability in the NB.
In using high values of alpha, it will push the likelihood toward a value of 0.5 [36]. We
used np.logspace(0, −9, num = 100) as the var_smothing value in the GridSearchCV hy-
perparameter tuning function.
6. Artificial Neural Network

The last machine learning algorithm we used is the multilayer perceptron (MLP) ar-
tificial neural network, which is one of the most commonly used architectures of neural
network because of its versatility in classification and regression problems [37]. We plot-
ted an illustration of MLP including the input layer, hidden layer, and the output layer; it
can be seen in Figure 5.

Figure 5. A sample topology of multilayer perceptron with 4 inputs, 3 hidden layers with size of 4,
3, and 4 neurons, respectively, and 2 neurons as the output layer [37].

In Figure 5, the first and the last layer are called the input layer and the output layer,
respectively. The input layer introduces the MLP to the predictors given in the dataset.
The output layer carries the final classification result as computed and processed by the
hidden layers. The layers in between are called the hidden layers, where all the data pro-
cessing and the classification of the predictors take place. Commonly, two hidden layers
is enough to perform a classification task, but additional hidden layers are recommended
to solve more complicated classifications and to discover deeper patterns from the predic-
tors.

We tuned the following hyperparameters to attain the highest possible performance
of the MLP ANN. As for the hidden layer sizes, first, there are 3 hidden layers with the
size of 50, 50, 50; next, there are 3 hidden layers of 50, 100, and 50 sizes, and lastly, there
is 1 hidden layer with the size of 100 neurons. For the activation function of the hidden
layer, the “tanh” or hyperbolic tan function and relu rectified linear unit or “relu” were
used. For weight optimization solver, we used “sgd” or the stochastic gradient descent.
In addition, the solver adam was used, which is the default solver in the MLP classifier of
sci-kit learn, which performs well in the training and validation of large datasets. Alpha
values are 0.0001 and 0.05. Lastly, the learning rate is either constant or adaptive.

There are a few methods to fine-tune parameters, e.g., grid search, random search,
and Bayesian optimization. Grid search requires defined values of the hyperparameters
to be evaluated, which performs generally well especially in spot checking combinations
[38]. Random search defines a search space wherein random points will be evaluated; it
performs great in discovering good hyperparameters combinations not particularly
guessed by the developers; hence, it requires more time to execute [38]. Lastly, the Bayes-
ian optimization algorithm is used for more complex optimization problems such as

Figure 5. A sample topology of multilayer perceptron with 4 inputs, 3 hidden layers with size of 4, 3,
and 4 neurons, respectively, and 2 neurons as the output layer [37].

In Figure 5, the first and the last layer are called the input layer and the output layer,
respectively. The input layer introduces the MLP to the predictors given in the dataset. The
output layer carries the final classification result as computed and processed by the hidden
layers. The layers in between are called the hidden layers, where all the data processing
and the classification of the predictors take place. Commonly, two hidden layers is enough
to perform a classification task, but additional hidden layers are recommended to solve
more complicated classifications and to discover deeper patterns from the predictors.

We tuned the following hyperparameters to attain the highest possible performance
of the MLP ANN. As for the hidden layer sizes, first, there are 3 hidden layers with the
size of 50, 50, 50; next, there are 3 hidden layers of 50, 100, and 50 sizes, and lastly, there
is 1 hidden layer with the size of 100 neurons. For the activation function of the hidden
layer, the “tanh” or hyperbolic tan function and relu rectified linear unit or “relu” were
used. For weight optimization solver, we used “sgd” or the stochastic gradient descent.
In addition, the solver adam was used, which is the default solver in the MLP classifier of
sci-kit learn, which performs well in the training and validation of large datasets. Alpha
values are 0.0001 and 0.05. Lastly, the learning rate is either constant or adaptive.

There are a few methods to fine-tune parameters, e.g., grid search, random search, and
Bayesian optimization. Grid search requires defined values of the hyperparameters to be
evaluated, which performs generally well especially in spot checking combinations [38].
Random search defines a search space wherein random points will be evaluated; it performs
great in discovering good hyperparameters combinations not particularly guessed by the
developers; hence, it requires more time to execute [38]. Lastly, the Bayesian optimization
algorithm is used for more complex optimization problems such as global optimization
that finds an input that determines the lowest or the highest cost of a given objective
function [39].

We aim to discover the best configuration of the supervised machine learning al-
gorithms in developing the COVID-19 prediction model using defined values of the hy-
perparameters, and with that, the grid search method was selected. We make use of
the GridSearchCV function from sklearn’s model_selection package. GridSearchCV will
traverse through the defined hyperparameter values and use those configurations to fit
the classifier onto the training set [40]. The hyperparameter optimization will begin by
creating a dictionary of the hyperparameters to be tuned including the desired values of it.
Then, the GridSearchCV function will execute all the combinations of the given values and
evaluate it using cross-validation. In this study, we used 10-fold cross-validation for all the
experiments.

Diagnostics 2022, 12, 821 13 of 30

The results of this process were the accuracy or loss of each combination, and from
there, we can choose the hyperparameter combination that will bring out the best possible
performance of the algorithm for both the training and testing dataset [40].

2.5. Comparative Analysis Serialization and COVID-19 Prediction Model

Accuracy alone is not enough to choose the best model to be used, and other per-
formance results of the model must be taken into consideration [41]. Moreover, accuracy
works best if the dataset is symmetric or has close or equal counts of samples per class [42].
In lieu of comparative analysis, the performance measures used in finding the model that
will serve as the most appropriate machine learning algorithm to be used in building a
COVID-19 prediction model are as follows.

2.5.1. Performance Criteria

We performed a comparative analysis of the performances of different supervised
machine learning algorithms using 10-fold cross-validation, and the important criteria used
in this phase are the following:

1. Accuracy

Accuracy is the measurement of all the correctly predicted instances over the total
predictions made by the model [3]. It computes the ratio of the correctly classified samples,
which are true positives (TP) and true negatives (TN), over the total number of predictions,
which includes the TP, TN, and misclassified predictions such as false positives (FP) and
false negatives (FN). The formula for accuracy can be seen in Equation (4).

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

2. Sensitivity

Sensitivity is the ratio of correctly classified COVID-19 positive samples to all of the
COVID-19 positive samples in the dataset. The sensitivity of the classifier is also known as
the True Positive Rate (TPR), which can be computed using Equation (5) [43].

Sensitivity =
TP

TP + FN
(5)

3. Specificity

Specificity is the proportion of the COVID-19 negative cases that were correctly clas-
sified as COVID-19 negative, which is also known as the True Negative Rate (TNR). The
specificity score can be computed using the following formula shown in Equation (6) [43].

Speci f icity =
TN

TN + FP
(6)

Specificity is the inverse of the False Positive Rate (FPR), which can be computed using
Equation (7) [44].

FPR = 1− Speci f icity =
FP

TN + FP
(7)

4. AUC

In computing the AUC, the Receiver Operating Characteristics (ROC) curve must
be devised first, which is a graphical representation of the model’s performance with
respect to various thresholds used in classifying the samples [44]. By analyzing the ROC
curve, the model’s capability to classify the samples will be determined. It is plotted using
the sensitivity or the TPR on the y-axis against the FPR, which is plotted on the x-axis. A
higher AUC means that the developed COVID-19 prediction model can successfully predict
COVID-19 positive samples as positive and COVID-19 negative samples as negative.

Diagnostics 2022, 12, 821 14 of 30

2.5.2. Hyperparameter Optimization, Comparative Analysis, and Serialization

This study aims to compare supervised machine learning algorithms to determine
which is the most appropriate algorithm to be used in developing a COVID-19 prediction
model; however, the optimal performance of an algorithm can be achieved if the best
configuration has been utilized in the modeling process. As a result of this, we performed
hyperparameter optimization to determine the values at which the algorithm will perform
best using the COVID-19 Presence and Symptoms dataset. We utilized the GridSearchCV
method using 10-fold cross validation. For the J48 DT algorithm, we tuned the criterion,
minimum samples of leaf, and maximum depth hyperparameters. The results are displayed
in Table 6.

Table 6. J48 DT algorithm hyperparameter optimization results.

No Criterion Min Samples in the Node Maximum Depth Accuracy Ranking

1 Gini 20 5 98.52 1
2 Gini 10 5 98.52 1
3 entropy 20 5 98.48 3
4 entropy 10 5 98.48 3
5 entropy 20 10 98.27 5
6 entropy 10 10 98.27 5
7 Gini 20 10 98.16 7
8 Gini 10 10 98.16 7
9 entropy 20 20 97.08 9
10 entropy 10 20 97.08 9

In Table 6, 10 experimental results for the hyperparameter optimization of J48 DT were
displayed, describing the values for the hyperparameters criterion, minimum samples in
the node, maximum depth hyperparameters, the attained accuracy for each combination,
and the ranking. Based on the results of J48 hyperparameter optimization, we found 2
hyperparameter combinations that attained the highest accuracy, which is 98.52. The first
combination is Gini criterion, a minimum of 20 samples in the node and a maximum depth
of 5. The next hyperparameter combination is Gini criterion, a minimum of 10 samples
in the node, and a maximum depth of 5 as well. The criterion entropy also yielded high
scores around 97–98. In this study, the configuration defined in the row in bold format was
utilized in building the COVID-19 prediction model. The same condition was applied for
the rest of the tables.

The next algorithm used was the RF algorithm; we tuned the criterion, max depth,
minimum samples in the node, number of estimators, and bootstrap hyperparameters. The
results of the hyperparameter optimization of the RF algorithm are displayed in Table 7.

Table 7. Random forest algorithm hyperparameter optimization results.

No Criterion Max Depth Min Samples in the
Node

No. of
Estimators Bootstrap Accuracy Ranking

1 Gini 20 5 200 False 98.75 1
2 entropy 20 5 300 True 98.73 2
3 Gini 20 5 300 True 98.71 3
4 entropy 20 5 300 False 98.71 4
5 entropy 20 5 200 True 98.70 5
6 entropy 20 5 100 True 98.70 5
7 Gini 20 5 100 False 98.70 7
8 Gini 10 5 300 False 98.70 7
9 Gini 20 5 100 True 98.70 9
10 Gini 10 5 200 False 98.70 9

Diagnostics 2022, 12, 821 15 of 30

In Table 7, 10 experimental results for hyperparameter optimization of RF are dis-
played, describing the values for the criterion, maximum depth, minimum samples in the
node, the number of estimators, and bootstrap hyperparameters. Table 7 also displays the
attained accuracy for each combination and the ranking. For RF, we found out that the
criterion Gini, maximum depth of 20, minimum of 5 samples in the node, 200 trees in the
forest, and no bootstrapping will attain the highest accuracy of 98.75. The RF accuracy is
0.23 higher than the J4 DT algorithm in this experiment.

The next algorithm tested was the SVM, and we tuned the regularization parameter C,
degree, gamma, and kernel hyperparameters. The results of hyperparameter optimization
for the SVM algorithm are shown in Table 8.

Table 8. Support Vector Machine algorithm hyperparameter optimization results.

No C Degree Gamma Kernel Accuracy Ranking

1 5 - 1 Radial Basis
Function 98.84 1

2 1 2 1 Polynomial 98.84 1
3 10 - 1 Radial Basis Function 98.84 1
4 2 - 1 Radial Basis Function 98.84 1
5 10 - 0.1 Radial Basis Function 98.84 1
6 5 - 0.1 Radial Basis Function 98.84 1
7 10 2 1 Polynomial 98.84 1
8 5 - 0.1 Radial Basis Function 98.84 1
9 10 - 1 Radial Basis Function 98.84 1

10 1 3 1 Polynomial 98.84 1

In Table 8, 10 experimental results for the hyperparameter optimization of SVM were
displayed, describing the values for the C, degree, gamma, kernel, the attained accuracy,
and the ranking. For SVM, we found out that the first 10 high-performing classifiers were
attained using various hyperparameter combinations, for the hyperparameter C, 1, 2, 5,
and 10, and for the degrees 2 and 3. For the kernels hyperparameter, the polynomial and
radial basis function yielded the best possible performance of the classifier. As reflected
in Table 8, all the accuracies attained were the same, having 98.84, all the hyperparameter
combinations presented were placed in the first ranking. The row in bold format was the
configuration utilized in training the prediction model.

For the k-NN, the distance functions used were Euclidean and Manhattan metrics,
and the neighbors and weights hyperparameters were also tuned. The results of the
hyperparameter optimization for k-NN are presented in Table 9.

Table 9. K-nearest neighbors algorithm hyperparameter optimization results.

No Metric Neighbors Weights Accuracy Ranking

1 Manhattan 9 distance 98.83 1
2 Manhattan 7 distance 98.83 1
3 Manhattan 5 distance 98.83 1
4 Manhattan 11 distance 98.79 4
5 Manhattan 3 distance 98.78 5
6 Manhattan 13 distance 98.76 6
7 Manhattan 3 uniform 98.75 7
8 Manhattan 5 uniform 98.58 8
9 Manhattan 7 uniform 98.39 9
10 Manhattan 9 uniform 98.14 10

In Table 9, 10 experimental results for the hyperparameter optimization of k-NN
were displayed, describing the values for the metric, neighbors, weights hyperparameters,
the attained accuracy for each combination, and the ranking. For k-NN, we found 3
hyperparameter combinations that obtained the highest score, which is 98.83. For the

Diagnostics 2022, 12, 821 16 of 30

hyperparameter metric, the Manhattan distance function was listed for all the top 10
results. The values 9, 7 and 5 for the neighbors and “distance” as the value for the weights
hyperparameter were the best configurations. For the weights hyperparameter, the value
“uniform” can also be used and will also obtain a good accuracy of 98.14 to 98.75.

For the naïve Bayes algorithm, we tuned the var smoothing hyperparameter; the
results are displayed in Table 10.

Table 10. Naïve Bayes algorithm hyperparameter optimization results.

No Variance Smoothing Accuracy Ranking

1 0.1 95.08 1
2 0.123 95.08 1
3 0.231 95.06 3
4 0.043 95.05 4
5 0.187 95.05 5
6 0.152 95.05 5
7 0.053 95.03 7
8 0.066 95.03 8
9 0.081 95.01 9
10 0.285 95.01 10

In Table 10, 10 experimental results for the hyperparameter optimization of NB were
displayed, describing the values for the variance smoothing hyperparameter, the attained
accuracy for each combination, and the ranking. Based on the results, we found that 2
variance smoothing alpha values of 0.1 and 0.123 obtained the highest score of 95.08.

We also examined the ANN regarding its performance in the experiment; the hyper-
parameters tuned were the number of hidden layers, activation function, solver, alpha, and
learning rate. The results for the hyperparameter optimization for the ANN were displayed
in Table 11.

Table 11. Artificial neural network algorithm hyperparameter optimization results.

No Hidden Layer Sizes Activation Solver Alpha Learning Rate Accuracy Ranking

1 (50, 100, 50) relu adam 0.0001 constant 98.84 1
2 (50, 100, 50) tanh adam 0.0001 constant 98.84 1
3 (50, 100, 50) relu adam 0.05 constant 98.84 1
4 (50, 100, 50) relu adam 0.0001 adaptive 98.84 1
5 (50, 50, 50) tanh adam 0.05 constant 98.84 1
6 (50, 50, 50) relu adam 0.0001 adaptive 98.83 6
7 (50, 50, 50) relu adam 0.05 adaptive 98.81 7
8 (50, 50, 50) tanh adam 0.05 adaptive 98.79 8
9 (50, 100, 50) tanh adam 0.05 constant 98.78 9
10 (50, 50, 50) relu adam 0.0001 constant 98.76 10

In Table 11, 10 experimental results for the hyperparameter optimization of ANN are
displayed, describing the values for the size of hidden layers, activation function, solver,
alpha, and learning rate. For comparison, Table 11 displays the attained accuracy for each
combination and the ranking. For ANN, we found 5 hyperparameter combinations that
obtained the highest accuracy, which is 98.84. Hidden layers sizes of (50, 100, 50) and (50,
50, 50), activation function of relu and tanh, adam solver, alpha values of 0.0001 and 0.05,
and the constant and adaptive learning rate were the most appropriate hyperparameter
combinations to attain the highest possible accuracy of the ANN algorithm.

After the hyperparameter optimization process, we used the results in deciding what
is the best configuration for each algorithm that will yield the highest possible accuracy.
For the comparative analysis, the supervised machine learning algorithms using the best
configurations were utilized in building a model that will predict the presence of COVID-19

Diagnostics 2022, 12, 821 17 of 30

in person. The developed models were evaluated using the training and testing dataset
wherein the results were discussed in Section 3, which is the Results and Discussion section.
Then, we used the serialization function to transform the developed model into a file that
can be transmitted to other platforms. The joblib serializing package was installed, having
the dump() and load() functions; this package has the capability of compiling a model
into a file object, which is compatible and can be integrated in the next phase of this study,
which is the development of a machine learning-based web application.

2.6. Machine Learning-Based Web Application Development

To utilize the benefits of the developed COVID-19 prediction model, a web-based
application must be developed to allow the users to input a new set of data to be predicted,
which will be deployed later to be accessible for public use. The overall process of the web
application development can be seen in Figure 6.

Diagnostics 2022, 12, x FOR PEER REVIEW 18 of 31

Figure 6. The overall process of the web application development phase.

In Figure 6, the processes used to develop the web-based application using the
Django Python-based framework were presented. The COVID-19 prediction model was
used to predict the requests from the users which were collected and processed using
Django’s Uniform Resource Locator (URL) patterns, views, models and templates. The
results or the application’s response will be given back to the user containing the notifica-
tion of being COVID-19 positive or negative.

2.6.1. Django Python-Based Web Framework
Django is a Python based high level framework used in web development, which is

simple, robust, and flexible [45]. Django can be described as a powerful tool to create ap-
plications that can be used easily by writing with less codes and provides a free adminis-
trator interface that allows authenticated users to add, update, and delete data. As pre-
sented in Figure 6, the Django application has four important modules to design: the
URLs, views, models, and templates.
1. URLs

Django promotes a good URL design without displaying long lines of URL and file
extensions such as .php or .asp [45]. To design URLs for an app, a Python module called
“URLconf” needs to be created, which serves as a table of contents for the web application
where the users can call for a particular page and returns error code 404 if the requested
page was not found.
2. Views

A Django view is capable of returning a response, raising an exception such as error
code 404, and giving the result of the functions or computations defined in the program.
A Django view can collect data according to the defined parameters, load a web-page
template, and display the web page according to the template together with the collected
data. In views, the web-applications processes were defined such as the reloading of the
COVID-19 prediction model, displaying of the dashboard, predicting COVID-19, predic-
tion results notification, and the updating of the database. The COVID-19 prediction
model discussed in Section 2 was also loaded in the views module using the joblib load()
function. This process integrates the capability of the model to predict COVID-19 positive

Figure 6. The overall process of the web application development phase.

In Figure 6, the processes used to develop the web-based application using the Django
Python-based framework were presented. The COVID-19 prediction model was used to
predict the requests from the users which were collected and processed using Django’s
Uniform Resource Locator (URL) patterns, views, models and templates. The results or the
application’s response will be given back to the user containing the notification of being
COVID-19 positive or negative.

2.6.1. Django Python-Based Web Framework

Django is a Python based high level framework used in web development, which is
simple, robust, and flexible [45]. Django can be described as a powerful tool to create appli-
cations that can be used easily by writing with less codes and provides a free administrator
interface that allows authenticated users to add, update, and delete data. As presented in
Figure 6, the Django application has four important modules to design: the URLs, views,
models, and templates.

1. URLs

Django promotes a good URL design without displaying long lines of URL and file
extensions such as .php or .asp [45]. To design URLs for an app, a Python module called
“URLconf” needs to be created, which serves as a table of contents for the web application

Diagnostics 2022, 12, 821 18 of 30

where the users can call for a particular page and returns error code 404 if the requested
page was not found.

2. Views

A Django view is capable of returning a response, raising an exception such as error
code 404, and giving the result of the functions or computations defined in the program.
A Django view can collect data according to the defined parameters, load a web-page
template, and display the web page according to the template together with the collected
data. In views, the web-applications processes were defined such as the reloading of the
COVID-19 prediction model, displaying of the dashboard, predicting COVID-19, prediction
results notification, and the updating of the database. The COVID-19 prediction model
discussed in Section 2 was also loaded in the views module using the joblib load() function.
This process integrates the capability of the model to predict COVID-19 positive and
COVID-19 negative samples by reconstructing a Python object from the serialized COVID-
19 prediction model file.

3. Models

Django can be used with or without using a database, though it provides an object-
relational mapper for systems that require a database layout, which can be described in
Python codes [45]. We used the SQLite database, which is a lightweight disk-based database
used in storing the data from the users, which can be used in the future as additional
training samples to further improve the prediction rate of the COVID-19 prediction model.

4. Templates

The templates module is where the designed web-pages were located, which can
be seen by the end users. Django has a good mechanism in handling the templates than
can minimize the redundancy among the templates by using the benefits of “template
inheritance”, where a base model can be developed that can be inherited by the rest of
the templates [45]. In this way, the updating of the information and the design of the
website can be done by just updating a single file. In the templates, Django also provides
static file management to serve additional files used in web designing such as images,
JavaScript (JS), or Cascading Style Sheets (CSS). Moreover, we make use of the Bootstrap to
obtain professional-looking templates; currently, it is the world’s most popular front-end
open-source toolkit used to quickly design and customize web and mobile responsive web
pages [46].

From the user’s browser, a request of predicting the inputted data will then be sent
to the web server, and the web server will give inputted data to the Django application
for processing. The above-mentioned modules will work hand in hand to collect, process,
and predict the submitted data using the COVID-19 prediction model loaded in the views
module. The collected data together with the predicted result, either COVID-19 positive or
negative, will be stored in the SQLite database. Then, a response will be made available to
be transmitted to the user.

2.6.2. Web-Based Application Workflow and the Developed System

The workflow of the developed web-based application can be seen in Figure 7.
In Figure 7, the process starts from the user inputting the symptoms currently being

experienced; then, the system will process the data to be ready for the prediction process,
and then, the predicted results will be displayed in the user’s browser. The user of the
application can access the application using a browser, in a desktop, mobile phone, or any
device.

Diagnostics 2022, 12, 821 19 of 30

Diagnostics 2022, 12, x FOR PEER REVIEW 19 of 31

and COVID-19 negative samples by reconstructing a Python object from the serialized
COVID-19 prediction model file.
3. Models

Django can be used with or without using a database, though it provides an object-
relational mapper for systems that require a database layout, which can be described in
Python codes [45]. We used the SQLite database, which is a lightweight disk-based data-
base used in storing the data from the users, which can be used in the future as additional
training samples to further improve the prediction rate of the COVID-19 prediction
model.
4. Templates

The templates module is where the designed web-pages were located, which can be
seen by the end users. Django has a good mechanism in handling the templates than can
minimize the redundancy among the templates by using the benefits of “template inher-
itance”, where a base model can be developed that can be inherited by the rest of the
templates [45]. In this way, the updating of the information and the design of the website
can be done by just updating a single file. In the templates, Django also provides static file
management to serve additional files used in web designing such as images, JavaScript
(JS), or Cascading Style Sheets (CSS). Moreover, we make use of the Bootstrap to obtain
professional-looking templates; currently, it is the world’s most popular front-end open-
source toolkit used to quickly design and customize web and mobile responsive web
pages [46].

From the user’s browser, a request of predicting the inputted data will then be sent
to the web server, and the web server will give inputted data to the Django application
for processing. The above-mentioned modules will work hand in hand to collect, process,
and predict the submitted data using the COVID-19 prediction model loaded in the views
module. The collected data together with the predicted result, either COVID-19 positive
or negative, will be stored in the SQLite database. Then, a response will be made available
to be transmitted to the user.

2.6.2. Web-Based Application Workflow and the Developed System
The workflow of the developed web-based application can be seen in Figure 7.

Figure 7. The workflow of the developed web-based application.

In Figure 7, the process starts from the user inputting the symptoms currently being
experienced; then, the system will process the data to be ready for the prediction process,
and then, the predicted results will be displayed in the user’s browser. The user of the
application can access the application using a browser, in a desktop, mobile phone, or any
device.

Figure 7. The workflow of the developed web-based application.

2.7. Deploying Django Services to Microsoft Azure Web Applications

After the development of the machine learning-based web application, it is now ready
for the deployment to make it available for public use. To deploy the web application,
we used the GitHub Repository and Microsoft Azure. The process of deploying the web
application is described in Figure 8.

Diagnostics 2022, 12, x FOR PEER REVIEW 20 of 31

2.7. Deploying Django Services to Microsoft Azure Web Applications
After the development of the machine learning-based web application, it is now

ready for the deployment to make it available for public use. To deploy the web applica-
tion, we used the GitHub Repository and Microsoft Azure. The process of deploying the
web application is described in Figure 8.

Figure 8. The process of deploying the web application in GitHub Repository and Microsoft Azure.

In Figure 8, the process of deploying the web application in GitHub Repository and
Microsoft Azure was displayed. PyCharm is an Integrated Development Environment
(IDE) for Python programming language; it makes the coding easier, for it comes with
smart code completion, code inspections, automatic error highlighting, debugging sug-
gestions, and deployment capabilities. Moreover, PyCharm has first-class support for var-
ious web development technologies such as JavaScript, HTML/CSS, AngularJS, Node.js,
and more, and it supports a number of web development frameworks such as Django [47].
We make use of the features of PyCharm IDE from the development of the web applica-
tion using the Django framework, integration of the machine learning model, up to the
deployment to GitHub Repository using the commit and push functionalities.

GitHub is popular, and it is considered as the world’s largest software development
platform that hosts millions of repositories by providing cloud storage for source codes,
and it supports all popular programming languages [48]. GitHub also provides a collab-
oration platform for its users to make code sharing, working with the same files, and
merging projects easier. We utilized the commit and push features of GitHub, which is
also available in PyCharm Professional to upload the prediction model and the source
codes to the GitHub repository. The prediction model and the source codes are publicly
accessible using the link provided in the Supplementary Materials section.

Microsoft developed Microsoft Azure, which is a cloud computing platform used
specifically for building, deploying, and managing intelligent applications and services
[49]. Upon logging in to Microsoft Azure, we created a web app resource and used covid-
ai-predictor as the web application name and used Python as the runtime stack. To deploy
and build code from GitHub, we logged into the GitHub account, chose to create a repos-
itory for the COVID-19 prediction application, and connected to the master branch. Dur-
ing the building and deployment, the requirements.txt file created using the “pip freeze”
command was used in installing the dependencies of the project to allow the application
to run smoothly.

Figure 8. The process of deploying the web application in GitHub Repository and Microsoft Azure.

In Figure 8, the process of deploying the web application in GitHub Repository and
Microsoft Azure was displayed. PyCharm is an Integrated Development Environment
(IDE) for Python programming language; it makes the coding easier, for it comes with smart
code completion, code inspections, automatic error highlighting, debugging suggestions,
and deployment capabilities. Moreover, PyCharm has first-class support for various web
development technologies such as JavaScript, HTML/CSS, AngularJS, Node.js, and more,
and it supports a number of web development frameworks such as Django [47]. We make
use of the features of PyCharm IDE from the development of the web application using the
Django framework, integration of the machine learning model, up to the deployment to
GitHub Repository using the commit and push functionalities.

GitHub is popular, and it is considered as the world’s largest software development
platform that hosts millions of repositories by providing cloud storage for source codes, and
it supports all popular programming languages [48]. GitHub also provides a collaboration

Diagnostics 2022, 12, 821 20 of 30

platform for its users to make code sharing, working with the same files, and merging
projects easier. We utilized the commit and push features of GitHub, which is also available
in PyCharm Professional to upload the prediction model and the source codes to the
GitHub repository. The prediction model and the source codes are publicly accessible using
the link provided in the Supplementary Materials section.

Microsoft developed Microsoft Azure, which is a cloud computing platform used
specifically for building, deploying, and managing intelligent applications and services [49].
Upon logging in to Microsoft Azure, we created a web app resource and used covid-ai-
predictor as the web application name and used Python as the runtime stack. To deploy and
build code from GitHub, we logged into the GitHub account, chose to create a repository
for the COVID-19 prediction application, and connected to the master branch. During the
building and deployment, the requirements.txt file created using the “pip freeze” command
was used in installing the dependencies of the project to allow the application to run
smoothly.

3. Results and Discussion

The results of this study include two main subdivisions. The first one is the results of
the comparative analysis for the developed prediction model presented in Section 3.1. The
best prediction model was utilized in building a machine learning-based web application.
The user interface screenshots of the developed web application can be seen in Section 3.2.

3.1. Results for Comparative Analysis

We used the hyperparameter optimization results shown in Tables 6–11 to perform a
comparative analysis to determine which supervised machine learning algorithm to use
and its best hyperparameter configuration for training and testing the COVID-19 prediction
model.

These results were indispensable in the comparative analysis process; we used these
values as deciding factors in determining the most appropriate algorithm to be utilized in
building a COVID-19 prediction model. The developed model’s performance evaluation
result during the training process is summarized in Table 12.

Table 12. Developed model’s performance evaluation result (training).

Algorithm Accuracy Sensitivity Specificity AUC

J48 DT 98.60 100.00 97.20 98.60
RF 98.84 100.00 97.69 98.84

SVM 98.84 100.00 97.69 98.84
k-NN 98.84 100.00 97.69 98.84

NB 95.05 96.71 93.38 95.05
ANN 98.84 100.00 97.69 98.84

In Table 12, the developed model’s performance evaluation results in the training
dataset were displayed. Based on the results, the RF, SVM, k-NN, and ANN using tuned
hyperparameters were the most appropriate supervised machine learning algorithms to be
utilized in developing the COVID-19 prediction model. These three algorithms obtained
the score of 98.84% accuracy, 100% sensitivity, 97.69% specificity, and 98.84% AUC applied
in the COVID-19 Symptoms and Presence dataset. The confusion matrix results for the
experiments performed during the model training are presented in Tables 13–15.

Table 13. Confusion matrix for J48 DT model (training).

Actual Predicted Negative Predicted Positive

Negative 3068 0
Positive 86 2982

Diagnostics 2022, 12, 821 21 of 30

Table 14. Confusion matrix for RF, SVM, k-NN, and ANN models (training).

Actual Predicted Negative Predicted Positive

Negative 3068 0
Positive 71 2997

Table 15. Confusion matrix for NB model (training).

Actual Predicted Negative Predicted Positive

Negative 2967 101
Positive 203 2865

In Table 13, the confusion matrix result in the training dataset of the model using J48
DT was presented. Based on the prediction results, the 3068 samples that belong to the
Negative class were successfully predicted. Whereas for the Positive class, among 3068
samples, the developed model successfully predicted 2982 samples, and the remaining 86
samples were classified as Negative.

In Table 14, the confusion matrix results of the models in the training dataset using
RF, SVM, and k-NN algorithms are presented for these three algorithms, and the results
obtained were the same. The 3068 samples that belong to Negative class were successfully
predicted. Whereas for the Positive class, among 3068 samples, the developed model
successfully predicted 2997 samples, and the remaining 71 samples were classified as
Negative.

In Table 15, the confusion matrix result in the training dataset of the model using
J48 DT was presented. For the 3068 samples that belong to the Negative class, 2967 were
successfully predicted, but 101 samples were predicted as positive, which is the only
algorithm that had misclassifications on the Negative class. For the Positive class, among
3068 samples, the developed model successfully predicted 2865 samples, but the remaining
203 were classified as Negative, which is the highest misclassification compared to the
performance of the other algorithms.

After the training, the developed models were also evaluated using the test dataset,
and the results of the model’s accuracy performance, sensitivity, specificity, and AUC are
displayed in Table 16.

Table 16. Developed model’s performance evaluation result (training).

Algorithm Accuracy Sensitivity Specificity AUC

J48 DT 98.40 100.00 96.81 98.40
RF 98.75 100.00 97.49 98.75

SVM 98.75 100.00 97.49 98.75
K-NN 98.75 100.00 97.49 98.75

NB 94.94 96.12 93.76 94.94
ANN 98.75 100.00 97.49 98.75

In Table 16, the developed model’s performance evaluation results in the test dataset
were displayed. Based on the results, the RF, SVM, k-NN, and ANN using tuned hy-
perparameters were the most appropriate supervised machine learning algorithms to be
utilized in developing the COVID-19 prediction model, using the same intuition as what
we drew from the training dataset. These algorithms obtained the score of 98.75% accuracy,
100% sensitivity, 97.49% specificity, and 98.75% AUC applied in the devised testing dataset.
The confusion matrix results for the experiments performed during the model testing are
presented in Tables 17–19.

Diagnostics 2022, 12, 821 22 of 30

Table 17. Confusion matrix for J48 DT model (testing).

Actual Predicted Negative Predicted Positive

Negative 1315 0
Positive 42 1273

Table 18. Confusion matrix for RF, SVM, k-NN, and ANN models (testing).

Actual Predicted Negative Predicted Positive

Negative 1315 0
Positive 33 1282

Table 19. Confusion matrix for NB model (testing).

Actual Predicted Negative Predicted Positive

Negative 1264 51
Positive 82 1233

In Table 17, the confusion matrix results of the model using J48 DT in the test dataset
are presented. The 1315 samples that belong to the Negative class were successfully
predicted as Negative. Whereas for the Positive class, among 1315 samples, the developed
model successfully predicted 1273 samples, and the remaining 42 samples were classified
as Negative.

In Table 18, the confusion matrix results of the models using RF, SVM, k-NN, and
ANN algorithms are presented. The 1315 samples that belong to the Negative class were
successfully predicted as Negative. Whereas for the Positive class, among 1315 samples,
the developed model successfully predicted 1282 samples as Positive, only 33 samples were
classified as Negative.

In Table 19, the confusion matrix results in the training dataset of the model using
J48 DT are presented. For the 1315 samples that belong to the Negative class, 1264 were
successfully predicted, but 51 samples were predicted as positive. For the Positive class,
among 3068 samples, the developed model successfully predicted 1233 samples, but the
remaining 82 were classified as Negative.

Based on the results of the comparative analysis, it can be drawn that RF, SVM, k-
NN, and ANN were the most appropriate algorithms to be considered in developing the
COVID-19 prediction model outweighing the performance of the J48 DT and NB algorithms.
The best configuration of the algorithms was also determined using the hyperparameter
optimization grid search method and 10-fold cross-validation. The results obtained were
used to achieve the highest possible performance of the models. For the hyperparameter
optimization, RF, SVM, and ANN yielded the best score, 98.84%, while the k-NN obtained
98.83%. In using the training dataset, the RF, SVM, k-NN, and ANN algorithms yielded
98.84% accuracy, 100% sensitivity, 97.69%, specificity, and 98.84% AUC.

3.2. The Developed Machine Learning-Based Web Application

The dashboard of the web application is presented in Figure 9.
In Figure 9, the email address, contact number, location, and social media links of the

researcher were displayed for communication purposes. There were several links that the
user could choose: Home, About, Prediction, Statistics, Contact, and Get Predictions. The
About portion displays information about the COVID-19 prediction model and informative
links that redirect to the WHO’s website, which can be accessed by clicking the “Read
More”, including a list of COVID-19 symptoms, the WHO’s advice to the public, and the
WHO’s COVID-19 website’s dashboard. The WHO’s dashboard consists of an interactive
map in a color-coded scheme regarding the number of cases, a country can be selected in
the map, and information such as confirmed cases, deaths, and vaccine doses’ administered

Diagnostics 2022, 12, 821 23 of 30

statistics will be presented. Moreover, bar charts of confirmed cases and deaths were
presented that offer convenience of data analysis through time.

Diagnostics 2022, 12, x FOR PEER REVIEW 24 of 31

Figure 9. The dashboard, home, or the landing page when a user accessed the web-based application
using a browser.

In Figure 9, the email address, contact number, location, and social media links of the
researcher were displayed for communication purposes. There were several links that the
user could choose: Home, About, Prediction, Statistics, Contact, and Get Predictions. The
About portion displays information about the COVID-19 prediction model and informa-
tive links that redirect to the WHO’s website, which can be accessed by clicking the “Read
More”, including a list of COVID-19 symptoms, the WHO’s advice to the public, and the
WHO’s COVID-19 website’s dashboard. The WHO’s dashboard consists of an interactive
map in a color-coded scheme regarding the number of cases, a country can be selected in
the map, and information such as confirmed cases, deaths, and vaccine doses’ adminis-
tered statistics will be presented. Moreover, bar charts of confirmed cases and deaths were
presented that offer convenience of data analysis through time.

The next section is the main part of the web application, which is the COVID-19 Pre-
diction; it can be accessed by clicking the Get Predictions button on the navigation bar and
the home page and by scrolling down the web page. The COVID-19 Prediction section can
be seen in Figure 10.

Figure 9. The dashboard, home, or the landing page when a user accessed the web-based application
using a browser.

The next section is the main part of the web application, which is the COVID-19
Prediction; it can be accessed by clicking the Get Predictions button on the navigation bar
and the home page and by scrolling down the web page. The COVID-19 Prediction section
can be seen in Figure 10.

In Figure 10, the COVID-19 Prediction section is presented, and there were 16 symp-
toms presented, including breathing problems, fever, dry cough, sore throat, runny nose,
asthma, headache, heart disease, diabetes, hypertension, fatigue, abroad travel, contact with
COVID-19 patient, attended a large gathering, visited public areas, and family working in
public. This application is capable of allowing the user to choose the symptoms currently
being experienced by clicking on it, and the user can click more than one symptom. When a
user clicks on a symptom, the respective checkbox for it will be activated, and the selected
symptoms representation is displayed in Figure 11.

In Figure 11, the user can select multiple symptoms, all of the symptoms, or none at all;
in case the user accidentally clicked on an inappropriate symptom, the user can deselect it
by simply clicking on the symptom again, and the checkbox will go back to its original state.
After selecting all of the applicable symptoms or the symptoms currently being experienced
by the user, the predict button can be clicked, which is an indication that the application
will now process the inputted data, which will be loaded into the machine learning model
for prediction. Afterwards, when the result is ready, one of the following notifications will
be presented on the user’s device. The COVID-19 Negative result notification can be seen
in Figure 12.

Diagnostics 2022, 12, 821 24 of 30Diagnostics 2022, 12, x FOR PEER REVIEW 25 of 31

Figure 10. The COVID-19 Prediction section.

In Figure 10, the COVID-19 Prediction section is presented, and there were 16 symp-
toms presented, including breathing problems, fever, dry cough, sore throat, runny nose,
asthma, headache, heart disease, diabetes, hypertension, fatigue, abroad travel, contact
with COVID-19 patient, attended a large gathering, visited public areas, and family work-
ing in public. This application is capable of allowing the user to choose the symptoms
currently being experienced by clicking on it, and the user can click more than one symp-
tom. When a user clicks on a symptom, the respective checkbox for it will be activated,
and the selected symptoms representation is displayed in Figure 11.

Figure 11. The activated checkbox of the selected symptoms.

Figure 10. The COVID-19 Prediction section.

Diagnostics 2022, 12, x FOR PEER REVIEW 25 of 31

Figure 10. The COVID-19 Prediction section.

In Figure 10, the COVID-19 Prediction section is presented, and there were 16 symp-
toms presented, including breathing problems, fever, dry cough, sore throat, runny nose,
asthma, headache, heart disease, diabetes, hypertension, fatigue, abroad travel, contact
with COVID-19 patient, attended a large gathering, visited public areas, and family work-
ing in public. This application is capable of allowing the user to choose the symptoms
currently being experienced by clicking on it, and the user can click more than one symp-
tom. When a user clicks on a symptom, the respective checkbox for it will be activated,
and the selected symptoms representation is displayed in Figure 11.

Figure 11. The activated checkbox of the selected symptoms.
Figure 11. The activated checkbox of the selected symptoms.

Diagnostics 2022, 12, 821 25 of 30

Diagnostics 2022, 12, x FOR PEER REVIEW 26 of 31

In Figure 11, the user can select multiple symptoms, all of the symptoms, or none at
all; in case the user accidentally clicked on an inappropriate symptom, the user can dese-
lect it by simply clicking on the symptom again, and the checkbox will go back to its orig-
inal state. After selecting all of the applicable symptoms or the symptoms currently being
experienced by the user, the predict button can be clicked, which is an indication that the
application will now process the inputted data, which will be loaded into the machine
learning model for prediction. Afterwards, when the result is ready, one of the following
notifications will be presented on the user’s device. The COVID-19 Negative result notifi-
cation can be seen in Figure 12.

Figure 12. The notification for the COVID-19 Negative result.

In Figure 12, we used the phrase “You seem fine and COVID-19 Negative”, which
indicates that the developed COVID-19 classifier’s prediction regarding the inputted
symptoms by the user is COVID-19 Negative. Even though the result is negative, the user
is still expected to observe safety precautions against the virus and be informed about the
WHO’s advice to the public. It is also indicated that the COVID-19 prediction results are
unofficial, and to obtain the official PCR test certification, it is suggested to follow the
usual process and undergo PCR testing. Another notification that the user may possible
receive is the COVID-19 positive notification, and the message can be seen in Figure 13.

Figure 13. The notification for the COVID-19 Positive result.

In Figure 13, we opted to use a gentle phrase “It seems like you need help as you are
potentially COVID-19 Positive” which indicates that the classifier’s prediction with re-
spect to the selected symptoms by the user is COVID-19 Positive. The notification highly
suggests to call a medical provider immediately to seek proper medical attention; this re-
sult is unofficial, and it is necessary to undergo PCR testing as soon as possible to obtain
official results and to promote the safety of the user and other people. Lastly, a predict-
again hyperlink was provided to enable users who wish to use the COVID-19 prediction
again.

A contact section was also provided in the last portion of the web application; it dis-
plays the researcher’s email, and the university contact number. Moreover, a contact form

Figure 12. The notification for the COVID-19 Negative result.

In Figure 12, we used the phrase “You seem fine and COVID-19 Negative”, which
indicates that the developed COVID-19 classifier’s prediction regarding the inputted symp-
toms by the user is COVID-19 Negative. Even though the result is negative, the user is still
expected to observe safety precautions against the virus and be informed about the WHO’s
advice to the public. It is also indicated that the COVID-19 prediction results are unofficial,
and to obtain the official PCR test certification, it is suggested to follow the usual process
and undergo PCR testing. Another notification that the user may possible receive is the
COVID-19 positive notification, and the message can be seen in Figure 13.

Diagnostics 2022, 12, x FOR PEER REVIEW 26 of 31

In Figure 11, the user can select multiple symptoms, all of the symptoms, or none at
all; in case the user accidentally clicked on an inappropriate symptom, the user can dese-
lect it by simply clicking on the symptom again, and the checkbox will go back to its orig-
inal state. After selecting all of the applicable symptoms or the symptoms currently being
experienced by the user, the predict button can be clicked, which is an indication that the
application will now process the inputted data, which will be loaded into the machine
learning model for prediction. Afterwards, when the result is ready, one of the following
notifications will be presented on the user’s device. The COVID-19 Negative result notifi-
cation can be seen in Figure 12.

Figure 12. The notification for the COVID-19 Negative result.

In Figure 12, we used the phrase “You seem fine and COVID-19 Negative”, which
indicates that the developed COVID-19 classifier’s prediction regarding the inputted
symptoms by the user is COVID-19 Negative. Even though the result is negative, the user
is still expected to observe safety precautions against the virus and be informed about the
WHO’s advice to the public. It is also indicated that the COVID-19 prediction results are
unofficial, and to obtain the official PCR test certification, it is suggested to follow the
usual process and undergo PCR testing. Another notification that the user may possible
receive is the COVID-19 positive notification, and the message can be seen in Figure 13.

Figure 13. The notification for the COVID-19 Positive result.

In Figure 13, we opted to use a gentle phrase “It seems like you need help as you are
potentially COVID-19 Positive” which indicates that the classifier’s prediction with re-
spect to the selected symptoms by the user is COVID-19 Positive. The notification highly
suggests to call a medical provider immediately to seek proper medical attention; this re-
sult is unofficial, and it is necessary to undergo PCR testing as soon as possible to obtain
official results and to promote the safety of the user and other people. Lastly, a predict-
again hyperlink was provided to enable users who wish to use the COVID-19 prediction
again.

A contact section was also provided in the last portion of the web application; it dis-
plays the researcher’s email, and the university contact number. Moreover, a contact form

Figure 13. The notification for the COVID-19 Positive result.

In Figure 13, we opted to use a gentle phrase “It seems like you need help as you
are potentially COVID-19 Positive” which indicates that the classifier’s prediction with
respect to the selected symptoms by the user is COVID-19 Positive. The notification highly
suggests to call a medical provider immediately to seek proper medical attention; this result
is unofficial, and it is necessary to undergo PCR testing as soon as possible to obtain official
results and to promote the safety of the user and other people. Lastly, a predict-again
hyperlink was provided to enable users who wish to use the COVID-19 prediction again.

A contact section was also provided in the last portion of the web application; it
displays the researcher’s email, and the university contact number. Moreover, a contact
form was made available that can be used to contact the researcher and improve the
application by sharing messages, comments, suggestions, or report bugs encountered in
the system. The contact section can be seen in Figure 14.

Diagnostics 2022, 12, 821 26 of 30

Diagnostics 2022, 12, x FOR PEER REVIEW 27 of 31

was made available that can be used to contact the researcher and improve the application
by sharing messages, comments, suggestions, or report bugs encountered in the system.
The contact section can be seen in Figure 14.

Figure 14. The contact form of the website.

In Figure 14, the contact form is presented, email address of the developer, and uni-
versity contact number. The web application was made responsive to any devices; hence,
the mobile screenshots can be seen in Figures 15–17.

Figure 15. This is the dashboard, home, and about viewed in a mobile browser.

Figure 14. The contact form of the website.

In Figure 14, the contact form is presented, email address of the developer, and
university contact number. The web application was made responsive to any devices;
hence, the mobile screenshots can be seen in Figures 15–17.

In Figure 16, the COVID-19 prediction section viewed in a mobile device was presented;
this time, the users can just tap on the appropriate symptoms currently being experienced
and tap on the Predict button to start the prediction. Multiple selection is allowed in case
the user is experiencing a combination of symptoms.

These notifications will be given to the user. The message indicates that the results
were unofficial, and the user needs to follow the usual process to undergo PCR or swab
testing to obtain official results and certification.

Diagnostics 2022, 12, x FOR PEER REVIEW 27 of 31

was made available that can be used to contact the researcher and improve the application
by sharing messages, comments, suggestions, or report bugs encountered in the system.
The contact section can be seen in Figure 14.

Figure 14. The contact form of the website.

In Figure 14, the contact form is presented, email address of the developer, and uni-
versity contact number. The web application was made responsive to any devices; hence,
the mobile screenshots can be seen in Figures 15–17.

Figure 15. This is the dashboard, home, and about viewed in a mobile browser. Figure 15. This is the dashboard, home, and about viewed in a mobile browser.

Diagnostics 2022, 12, 821 27 of 30Diagnostics 2022, 12, x FOR PEER REVIEW 28 of 31

Figure 16. The COVID-19 prediction section responsive view section using a mobile device.

Figure 17. The COVID-19 negative and positive notifications viewed in a mobile device.

In Figure 16, the COVID-19 prediction section viewed in a mobile device was pre-
sented; this time, the users can just tap on the appropriate symptoms currently being ex-
perienced and tap on the Predict button to start the prediction. Multiple selection is al-
lowed in case the user is experiencing a combination of symptoms.

These notifications will be given to the user. The message indicates that the results
were unofficial, and the user needs to follow the usual process to undergo PCR or swab
testing to obtain official results and certification.

4. Conclusions
This study aimed to build a COVID-19 prediction model by applying supervised ma-

chine learning algorithms. J48 decision tree, random forest, support vector machine, k-
nearest neighbors, naïve Bayes, and artificial neural network were the algorithms used in
this study. The most appropriate configurations were successfully determined through

Figure 16. The COVID-19 prediction section responsive view section using a mobile device.

Diagnostics 2022, 12, x FOR PEER REVIEW 28 of 31

Figure 16. The COVID-19 prediction section responsive view section using a mobile device.

Figure 17. The COVID-19 negative and positive notifications viewed in a mobile device.

In Figure 16, the COVID-19 prediction section viewed in a mobile device was pre-
sented; this time, the users can just tap on the appropriate symptoms currently being ex-
perienced and tap on the Predict button to start the prediction. Multiple selection is al-
lowed in case the user is experiencing a combination of symptoms.

These notifications will be given to the user. The message indicates that the results
were unofficial, and the user needs to follow the usual process to undergo PCR or swab
testing to obtain official results and certification.

4. Conclusions
This study aimed to build a COVID-19 prediction model by applying supervised ma-

chine learning algorithms. J48 decision tree, random forest, support vector machine, k-
nearest neighbors, naïve Bayes, and artificial neural network were the algorithms used in
this study. The most appropriate configurations were successfully determined through

Figure 17. The COVID-19 negative and positive notifications viewed in a mobile device.

4. Conclusions

This study aimed to build a COVID-19 prediction model by applying supervised
machine learning algorithms. J48 decision tree, random forest, support vector machine,
k-nearest neighbors, naïve Bayes, and artificial neural network were the algorithms used
in this study. The most appropriate configurations were successfully determined through
hyperparameter optimization and 10-fold cross-validation. A comparative analysis was
conducted by evaluating each model’s performance in terms of its accuracy, sensitivity,
specificity, and area under ROC curve, using the Google colab research. The results
show that random forest, support vector machine, k-nearest neighbor, and artificial neural
network were the best algorithms to be utilized in building the COVID-19 prediction model.
These algorithms yielded 98.84% accuracy, 100% sensitivity, 97.69% specificity, and 98.84%
area under the ROC curve score. The developed models were successfully integrated in the

Diagnostics 2022, 12, 821 28 of 30

development of a machine learning based web application using the Django Framework,
which was written in Python programming language using the PyCharm professional IDE.
The source codes were deployed in the GitHub repository, and Microsoft Azure Web App
service features were used to make the web application accessible online. The output of
this study is a COVID-19 prediction application that allows the user to input appropriate
symptoms currently being experienced and automatically receive a notification indicating
the result of the classifier: either COVID-19 positive or negative. This study can serve as an
additional tool for people who wish to manage their health status with regard to COVID-19
in a real-time manner without the need for laboratory tests.

Supplementary Materials: The prediction model and the source codes used to develop the machine
learning-based web application can be downloaded at https://github.com/dearcharlyn/covid_
predictor (accessed on 23 March 2022).

Author Contributions: Conceptualization, C.N.V. and J.J.M.; methodology, C.N.V. and J.J.M.; valida-
tion, J.J.M. and X.A.I.; formal analysis, C.N.V. and J.J.M.; writing—original draft preparation, C.N.V.;
writing—review and editing, J.J.M., X.A.I. and J.-H.J.; visualization, C.N.V.; supervision, J.-H.J. and
J.-G.H.; project administration, J.-H.J. and J.-G.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Ethical review and approval were waived for this study,
because the aim of this study is to analyze symptoms available in a public dataset to determine
if there is a possibility of the presence COVID-19 or not. The authors do not have access to any
information concerning the identities of the subjects in this study.

Informed Consent Statement: Patient consent was waived due to the anonymity of their identities,
and the dataset used in this study is open for public use.

Data Availability Statement: The dataset utilized in this study is available at https://www.kaggle.
com/hemanthhari/symptoms-and-covid-presence (accessed on 30 June 2021). The prediction model
and the source codes used to develop the machine learning-based web application is publicly accessi-
ble through this GitHub repository https://github.com/dearcharlyn/covid_predictor (accessed on
30 June 2021).

Acknowledgments: This work was supported in part by Ministry of Science and Technology, Taiwan,
under grant MOST 110-2221-E-214-019.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Coronavirus Disease by World Health Organizations. Available online: https://www.who.int/health-topics/coronavirus

(accessed on 16 February 2022).
2. COVID Live Update Worldometers Info. Available online: https://www.worldometers.info/coronavirus/ (accessed on 16

February 2022).
3. Villavicencio, C.N.; Macrohon, J.J.E.; Inbaraj, X.A.; Jeng, J.-H.; Hsieh, J.-G. COVID-19 Prediction Applying Supervised Machine

Learning Algorithms with Comparative Analysis Using WEKA. Algorithms 2021, 14, 201. [CrossRef]
4. SARS-CoV-2 Variant Classifications and Definitions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/

variant-info.html (accessed on 16 February 2022).
5. Turabieh, H.; Karaa, W.B.A. Predicting the Existence of COVID-19 using Machine Learning Based on Laboratory Findings. In

Proceedings of the WiDSTaif 2021, Taif, Saudi Arabia, 30 March 2021.
6. Luo, J.; Zhou, L.; Feng, Y.; Bo, L.; Guo, S. The selection of indicators from initial blood routine test results to improve the accuracy

of early prediction of COVID-19 severity. PLoS ONE 2021, 16, e0253329. [CrossRef] [PubMed]
7. Rangarajan, A.; Krishnaswamy, R.; Krishnan, H. A preliminary analysis of AI based smartphone application for diagnosis of

COVID-19 using chest X-ray images. Expert Syst. Appl. 2021, 183, 115401. [CrossRef] [PubMed]
8. Yan, L.; Zhang, H.-T.; Goncalves, J.; Xiao, Y.; Wang, M.; Guo, Y.; Sun, C.; Tang, X.; Jing, L.; Zhang, M.; et al. An interpretable

mortality prediction model for COVID-19 patients. Nat. Mach. Intell. 2020, 2, 283–288. [CrossRef]
9. Qiblawey, Y.; Tahir, A.; Chowdhury, M.E.; Khandakar, A.; Kiranyaz, S.; Rahman, T.; Ibtehaz, N.; Mahmud, S.; Al Maadeed, S.;

Musharavati, F.; et al. Detection and Severity Classification of COVID-19 in CT Images Using Deep Learning. Diagnostics 2021, 11,
893. [CrossRef] [PubMed]

https://github.com/dearcharlyn/covid_predictor
https://github.com/dearcharlyn/covid_predictor
https://www.kaggle.com/hemanthhari/symptoms-and-covid-presence
https://www.kaggle.com/hemanthhari/symptoms-and-covid-presence
https://github.com/dearcharlyn/covid_predictor
https://www.who.int/health-topics/coronavirus
https://www.worldometers.info/coronavirus/
http://doi.org/10.3390/a14070201
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
http://doi.org/10.1371/journal.pone.0253329
http://www.ncbi.nlm.nih.gov/pubmed/34129653
http://doi.org/10.1016/j.eswa.2021.115401
http://www.ncbi.nlm.nih.gov/pubmed/34149202
http://doi.org/10.1038/s42256-020-0180-7
http://doi.org/10.3390/diagnostics11050893
http://www.ncbi.nlm.nih.gov/pubmed/34067937

Diagnostics 2022, 12, 821 29 of 30

10. Mangal, A.; Kalia, S.; Rajgopal, H.; Rangarajan, K.; Namboodiri, V.; Banerjee, S.; Arora, C. CovidAID: COVID-19 Detection Using
Chest X-ray. arXiv 2020, arXiv:2004.09803.

11. Purgato, V.P. Google Colab and Why You Should Use It. Available online: https://medium.com/mlearning-ai/google-colab-
and-why-you-should-use-it-28bf64a04717 (accessed on 23 September 2021).

12. Shubhan, R. Python Pandas Dataframe.corr(). Available online: https://www.geeksforgeeks.org/python-pandas-dataframe-
corr/ (accessed on 23 September 2021).

13. Mahto, P. NumPy for Machine Learning. Available online: https://medium.com/mlpoint/numpy-for-machine-learning-211a3
e58b574 (accessed on 23 September 2021).

14. Hunter, J.; Dale, D.; Firing, E.; Droettboom, M. Matplotlib Pyplot. Available online: https://matplotlib.org/stable/api/_as_gen/
matplotlib.pyplot.html (accessed on 23 September 2021).

15. Waskom, M. Seaborn: Statistical Data Visualization. Available online: https://seaborn.pydata.org/ (accessed on 23 September
2021).

16. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830.

17. Seaborn Distplot: A Comprehensive Guide. Available online: https://www.journaldev.com/39993/seaborn-distplot (accessed
on 23 September 2021).

18. Variance Threshold. Available online: https://php-ml.readthedocs.io/en/latest/machine-learning/feature-selection/variance-
threshold/ (accessed on 23 September 2021).

19. Patil, A. Beginner’s Guide to Pearson’s Correlation Coefficient. Available online: https://www.analyticsvidhya.com/blog/2021
/01/beginners-guide-to-pearsons-correlation-coefficient/ (accessed on 23 September 2021).

20. Naik, K. Statistics—What is Pearson Correlation Coefficient? Difference between Correlation and Covariance. Available online:
https://www.youtube.com/watch?v=6fUYt1alA1U&list=LL (accessed on 23 September 2021).

21. Lee, W.-M. Statistics in Python—Collinearity and Multicollinearity. Available online: https://towardsdatascience.com/statistics-
in-python-collinearity-and-multicollinearity-4cc4dcd82b3f (accessed on 9 February 2022).

22. Coronavirus Disease (COVID-19) by World Health Organization. Available online: https://www.who.int/health-topics/
coronavirus#tab=tab_3 (accessed on 24 September 2021).

23. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. JAIR 2002, 16,
321–357. [CrossRef]

24. Imbalanced Learn by Python Software Foundation. Available online: https://pypi.org/project/imbalanced-learn/ (accessed on
24 September 2021).

25. Breiman, L. Random Forests. Mach. Learn. 2020, 45, 5–32. [CrossRef]
26. Koehrsen, W. An Implementation and Explanation of the Random Forest in Python. Available online: https://towardsdatascience.

com/an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76 (accessed on 12 February 2022).
27. Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.
28. Patle, A.; Chouhan, D.S. SVM kernel functions for classification. In Proceedings of the ICATE 2013, Mumbai, India, 23 January

2013.
29. Ben-Hur, A.; Ong, C.S.; Sonnenburg, S.; Rätsch, G.; Schölkopf, B. Support Vector Machines and Kernels for Computational Biology.

PLoS Comput. Biol. 2008, 4, e1000173. [CrossRef] [PubMed]
30. Support Vector Machines. Available online: https://scikit-learn.org/stable/modules/svm.html (accessed on 12 February 2022).
31. Sun, S.; Huang, R. An Adaptive k-Nearest Neighbor Algorithm. In Proceedings of the Seventh International Conference on Fuzzy

Systems and Knowledge Discovery, Yantai, China, 10–12 August 2010.
32. Sharma, N. Importance of Distance Metrics in Machine Learning Modelling. Available online: https://towardsdatascience.com/

importance-of-distance-metrics-in-machine-learning-modelling-e51395ffe60d (accessed on 3 October 2021).
33. Sci-kit Learn K Neighbors Classifier. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsClassifier.html (accessed on 12 February 2022).
34. Routledge, R. Bayes’s Theorem. Available online: https://www.britannica.com/topic/Bayess-theorem (accessed on 13 June

2021).
35. Villavicencio, C.N.; Macrohon, J.J.E.; Inbaraj, X.; Jeng, J.-H.; Hsieh, J.-G. Twitter Sentiment Analysis towards COVID-19 Vaccines

using Naive Bayes. Information 2021, 12, 204. [CrossRef]
36. Jayaswal, V. Laplace Smoothing in Naïve Bayes Algorithm. Available online: https://towardsdatascience.com/laplace-

smoothing-in-na%C3%AFve-bayes-algorithm-9c237a8bdece (accessed on 15 February 2022).
37. Itano, F.; de Abreu de Sousa, M.A.; Del-Moral-Hernandez, E. Extending MLP ANN hyper-parameters Optimization. In

Proceedings of the IJCNN 2018, Rio de Janeiro, Brazil, 8–13 July 2018.
38. Brownlee, J. Hyperparameter Optimization with Random Search and Grid Search. Available online: https://machinelearningmastery.

com/hyperparameter-optimization-with-random-search-and-grid-search (accessed on 27 August 2021).
39. Brownlee, J. How to Implement Bayesian Optimization from Scratch in Python. Available online: https://machinelearningmastery.

com/what-is-bayesian-optimization/ (accessed on 27 August 2021).
40. Mujtaba, H. Hyperparameter Tuning with GridSearchCV. Available online: https://www.mygreatlearning.com/blog/

gridsearchcv/ (accessed on 29 September 2021).

https://medium.com/mlearning-ai/google-colab-and-why-you-should-use-it-28bf64a04717
https://medium.com/mlearning-ai/google-colab-and-why-you-should-use-it-28bf64a04717
https://www.geeksforgeeks.org/python-pandas-dataframe-corr/
https://www.geeksforgeeks.org/python-pandas-dataframe-corr/
https://medium.com/mlpoint/numpy-for-machine-learning-211a3e58b574
https://medium.com/mlpoint/numpy-for-machine-learning-211a3e58b574
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html
https://seaborn.pydata.org/
https://www.journaldev.com/39993/seaborn-distplot
https://php-ml.readthedocs.io/en/latest/machine-learning/feature-selection/variance-threshold/
https://php-ml.readthedocs.io/en/latest/machine-learning/feature-selection/variance-threshold/
https://www.analyticsvidhya.com/blog/2021/01/beginners-guide-to-pearsons-correlation-coefficient/
https://www.analyticsvidhya.com/blog/2021/01/beginners-guide-to-pearsons-correlation-coefficient/
https://www.youtube.com/watch?v=6fUYt1alA1U&list=LL
https://towardsdatascience.com/statistics-in-python-collinearity-and-multicollinearity-4cc4dcd82b3f
https://towardsdatascience.com/statistics-in-python-collinearity-and-multicollinearity-4cc4dcd82b3f
https://www.who.int/health-topics/coronavirus#tab=tab_3
https://www.who.int/health-topics/coronavirus#tab=tab_3
http://doi.org/10.1613/jair.953
https://pypi.org/project/imbalanced-learn/
http://doi.org/10.1023/A:1010933404324
https://towardsdatascience.com/an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76
https://towardsdatascience.com/an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76
http://doi.org/10.1371/journal.pcbi.1000173
http://www.ncbi.nlm.nih.gov/pubmed/18974822
https://scikit-learn.org/stable/modules/svm.html
https://towardsdatascience.com/importance-of-distance-metrics-in-machine-learning-modelling-e51395ffe60d
https://towardsdatascience.com/importance-of-distance-metrics-in-machine-learning-modelling-e51395ffe60d
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://www.britannica.com/topic/Bayess-theorem
http://doi.org/10.3390/info12050204
https://towardsdatascience.com/laplace-smoothing-in-na%C3%AFve-bayes-algorithm-9c237a8bdece
https://towardsdatascience.com/laplace-smoothing-in-na%C3%AFve-bayes-algorithm-9c237a8bdece
https://machinelearningmastery.com/hyperparameter-optimization-with-random-search-and-grid-search
https://machinelearningmastery.com/hyperparameter-optimization-with-random-search-and-grid-search
https://machinelearningmastery.com/what-is-bayesian-optimization/
https://machinelearningmastery.com/what-is-bayesian-optimization/
https://www.mygreatlearning.com/blog/gridsearchcv/
https://www.mygreatlearning.com/blog/gridsearchcv/

Diagnostics 2022, 12, 821 30 of 30

41. Brownlee, J. Classification Accuracy Is Not Enough: More Performance Measures You Can Use. Available online: https:
//machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/ (accessed on
27 May 2021).

42. Ghoneim, S. Accuracy, Recall, Precision, F-Score & Specificity, Which to Optimize on? 2 April 2019. Available online: https:
//towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124 (accessed on 25 May
2021).

43. Ul Haq, A.; Li, J.P.; Memon, M.H.; Khan, J.; Malik, A.; Ahmad, T.; Ali, A.; Nazir, S.; Ahad, I.; Shahid, M. Feature Selection Based
on L1-Norm Support Vector Machine and Effective Recognition System for Parkinson’s Disease Using Voice Recordings. IEEE
Access 2019, 7, 37718–37734. [CrossRef]

44. Narkhede, S. Understanding AUC-ROC Curve. Available online: https://towardsdatascience.com/understanding-auc-roc-
curve-68b2303cc9c5 (accessed on 25 September 2021).

45. Forcier, J.; Bissex, P.; Chun, W.J. Python Web Development with Django; Addison-Wesley: Boston, MA, USA, 2009.
46. Bootstrap: The Most Popular CSS, and JS Library in the World. Available online: https://getbootstrap.com/ (accessed on 25

September 2021).
47. PyCharm Features. Available online: https://www.jetbrains.com/pycharm/features/ (accessed on 26 September 2021).
48. Kachur, L. 5 Reasons Why Devs Love GitHub (and Microsoft Buys It). Available online: https://dzone.com/articles/5-reasons-

why-devs-love-github-and-microsoft-buys (accessed on 26 September 2021).
49. What Is Azure? Available online: https://azure.microsoft.com/en-us/overview/what-is-azure/ (accessed on 26 September

2021).

https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/
https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/
https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124
https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124
http://doi.org/10.1109/ACCESS.2019.2906350
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://getbootstrap.com/
https://www.jetbrains.com/pycharm/features/
https://dzone.com/articles/5-reasons-why-devs-love-github-and-microsoft-buys
https://dzone.com/articles/5-reasons-why-devs-love-github-and-microsoft-buys
https://azure.microsoft.com/en-us/overview/what-is-azure/

	Introduction
	Materials and Methods
	Importing Dependencies and Loading the Dataset
	Data Analysis and Feature Selection
	Data Balancing and Dataset Splitting
	Modeling of the COVID-19 Prediction Model Using Supervised Machine Learning Algorithms
	Comparative Analysis Serialization and COVID-19 Prediction Model
	Performance Criteria
	Hyperparameter Optimization, Comparative Analysis, and Serialization

	Machine Learning-Based Web Application Development
	Django Python-Based Web Framework
	Web-Based Application Workflow and the Developed System

	Deploying Django Services to Microsoft Azure Web Applications

	Results and Discussion
	Results for Comparative Analysis
	The Developed Machine Learning-Based Web Application

	Conclusions
	References

