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Abstract: Positron emission tomography (PET) provides important additional information when
applied in radiation therapy treatment planning. However, the optimal way to define tumors in PET
images is still undetermined. As radiomics features are gaining more and more importance in PET
image interpretation as well, we aimed to use textural features for an optimal differentiation between
tumoral tissue and surrounding tissue to segment-target lesions based on three textural parameters
found to be suitable in previous analysis (Kurtosis, Local Entropy and Long Zone Emphasis). Intended
for use in radiation therapy planning, this algorithm was combined with a previously described
motion-correction algorithm and validated in phantom data. In addition, feasibility was shown
in five patients. The algorithms provided sufficient results for phantom and patient data. The
stability of the results was analyzed in 20 consecutive measurements of phantom data. Results for
textural feature-based algorithms were slightly worse than those of the threshold-based reference
algorithm (mean standard deviation 1.2%—compared to 4.2% to 8.6%) However, the Entropy-based
algorithm came the closest to the real volume of the phantom sphere of 6 ccm with a mean measured
volume of 26.5 ccm. The threshold-based algorithm found a mean volume of 25.0 ccm. In conclusion,
we showed a novel, radiomics-based tumor segmentation algorithm in FDG-PET with promising
results in phantom studies concerning recovered lesion volume and reasonable results in stability
in consecutive measurements. Segmentation based on Entropy was the most precise in comparison
with sphere volume but showed the worst stability in consecutive measurements. Despite these
promising results, further studies with larger patient cohorts and histopathological standards need
to be performed for further validation of the presented algorithms and their applicability in clinical
routines. In addition, their application in other tumor entities needs to be studied.

Keywords: lung cancer; positron emission tomography (PET); radiomics; tumor volume segmenta-
tion; textural features; radiation therapy treatment planning

1. Introduction

Integration of positron emission tomography (PET) in radiation treatment planning
became an essential part for many tumor entities, such as head and neck cancer [1], brain
tumors [2] and many more [3]. In particular, in the case of non-small-cell lung cancer
(NSCLC), advantages of PET using [18F]F-fluorodeoxyglucose (FDG) have been shown, as
well as for the delineation of primary tumors [4] and in determining which lymph nodes
should be included in the treatment field [5].
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Besides the many reported advantages of using PET in treatment planning [3,6], the
method of how to delineate the clinical target volume based on FDG-PET images is still an
open question and the focus of many discussions [7,8]. While modern treatment systems
can deliver doses within a submillimeter of spatial error [9], the error made in delineation
may be much larger. Although manual delineation is still considered fine as long as
standardization in image viewing is kept at a high level, semiautomatic or even automatic
algorithms may be preferred. In general, they show a lower variability but are also faster in
processing the images. Several methods for such automatic or semiautomatic segmentation
of PET images have been proposed. Methods based on fixed uptake values have been
shown to be too inaccurate as these values vary strongly between different patients. The
variable threshold, based on the maximum uptake in the lesion itself, was proposed and
seemed to give better results [10], especially when including background activity [11].
Gradient-based algorithms have been suggested, as they may behave more similarly to
a human reviewer, who will look for changes in intensity rather than for the absolute
intensity itself, and have been applied successfully to PET data [12,13]. Recently, a high
number of more sophisticated algorithms have been presented, including fuzzy logic [14]
and deep learning [15].

At the same time, textural features became more and more important in the context
of PET image analysis [16–18]. In recent years, textural features representing tumor het-
erogeneity have been shown to be able to predict the treatment outcome of various tumor
entities and various kinds of treatment. Positive results have been reported for malignant
melanoma treated with immunotherapy [19] or neoadjuvant radiochemotherapy in colorec-
tal cancer [20]. In the context of stereotactic body radiotherapy, textural parameters have
been found to predict the risk of local recurrence and disease-specific overall survival [21].
In combination with machine learning approaches, textural features can also be used to
classify PET uptake as pathological or physiological with high precision [22] as well as for
therapy response prediction at a high level [23]. Therefore, we assumed textural features to
be an optimal base for tumor volume delineation as well. In a preliminary study it was
shown that textural features can differentiate between lung tumor tissue and healthy lung
tissue with high precision. In addition, some of the textural features showed good stability
against PET acquisition time, as shown in a study by Jouanjan et al. in multiple-time-point
PET examinations [24].

Although textural features have been used for segmentation purposes in medical
imaging before [25,26], to our knowledge the only study about their application in PET
was published by Markel and colleagues in 2013 [27]. In this study, textural features were
reported as a promising tool for differentiation between lung carcinoma and healthy tissue
in PET and CT data as well.

In addition, in the case of lung tumors, especially in the lower part of the lung,
respiratory motion can lead to severe artifacts in PET imaging. This can result in relevant
errors in tumor volume segmentation [28,29]. In particular, in the context of radiation
therapy planning, such artifacts may by of high relevance and can lead to overestimation
of the target volume. To overcome this issue, several methods have been proposed, starting
with respiratory gating [30] over different methods of motion correction [31–33]. Recently,
a method based on 4D-CT data, which are also often acquired in the context of radiation
therapy treatment planning for lung tumors, was presented with good results [34].

The aim of this study was to develop a new segmentation algorithm based on textural
features to improve PET target volume delineation in lung cancer patients based on the
previously presented ability of some textural features to differentiate between tumoral
tissue and healthy lung tissue. To reduce the effect of respiratory motion, the new algorithm
was applied to data corrected for motion with a method described previously [34].
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2. Materials and Methods
2.1. Segmentation Algorithm

All segmentation was performed in in-house-developed software (IDL, Version 8.5,
Harris Corporation, Broomfield, CO, USA). For comparison purposes, a standard segmen-
tation algorithm based on a variable threshold of 40% of the maximum uptake in a lesion
was implemented. This method is one of the most widely applied algorithms for PET
segmentation in the case of NSCLC [35].

For radiomics-based tumor volume segmentation, three textural parameters, Kurtosis
(KU), Local Entropy (LE) and Long-Zone Emphasis (LZE), were included. These parameters
have been found to be able to distinguish tumoral tissue from normal lung tissue in
a previous study [24]. For calculation of the parameter, the following equations were
implemented:

KU =
1
N

N

∑
i=1

(
xi − X
stdv

)

LE =
M

∑
i=1

N

∑
j=1

M1ij·lg(M1ij)

LZE =
∑M

i=1 ∑N
j=1 M4ij·j2

∑N
i=1 ∑M

j=1 M4ij

where n is the number of voxels of the volume for which the parameter needs to be
calculated, xi is the i-th voxel of this volume, X is the mean voxel value in this volume, stdv
is the standard deviation within this volume, M1 is the co-occurrence matrix, and M4 is the
gray–level–size–zone matrix or intensity size zone matrix of this volume as defined, e.g.,
in [36,37].

The proposed segmentation algorithm is based on a region grow algorithm. The basic
idea is that the growing of the region is ongoing till the stop criterion is reached. This
stop criterion is defined as a threshold of the parameters ZP, LZE and LE. The threshold
used for the three textural parameters is based on previous findings [24]. After each region
grow step, the parameter is calculated in the new region. For a start volume, 27 voxels
are used, defined around a point which is defined by manual interaction of the user (by
clicking the center of the lesion to be segmented). The size of 27 voxel as a start volume was
tested empirically as the best option. Smaller volumes do not allow adequate estimation
of the textural parameters within the volume. If the threshold in the initial volume is not
reached, then the first iteration step starts. Based on the start volume in each direction
as the region’s grow step of one voxel, starting from the existing voxels in the volume, is
performed separately in positive and negative directions. This is illustrated in Figure 1
in two dimensions. In three dimensions, this means that for each iteration step there are
6 separate region grow steps (positive x-direction, negative x-direction, positive y-direction,
negative y-direction, positive z-direction, negative z-direction). After each region grow
step, the textural parameter is assessed in the new volume. If this value is still lower the
threshold, the new volume is accepted; otherwise, the old volume is kept. Consequently, all
the volumes for each of the 6 regions grow steps are summed up to end up with the finale
volume of this first iteration step (s. also illustration Figure 1). If no changes have been
made in any of the 6 region grow steps, the volume is presented as the final segmented
volume; otherwise, the next iteration step is started with the new volume as the start
volume. The final segmented volume is presented for visual control; in addition, the
volume is presented as well as the maximal diameter of the lesion.



Diagnostics 2022, 12, 576 4 of 11

Figure 1. Scheme of the segmentation algorithms.

2.1.1. Phantom Study

For phantom studies, a commercial extended CT-motion phantom was used (Anzai
Medical Co, Ltd., Tokoy, Japan). Three fillable plastic spheres were attached to this phantom,
as already reported and shown previously [34]. The volume of the spheres was 3 ccm,
12 ccm and 26 ccm, respectively. In the experimental setting the spheres were filled
with watery FDG solution with an activity concentration of 1.2 MBq/ccm. During data
acquisition the phantom was set to move with a maximal amplitude of 15 mm and a
frequency of 12 per minute.

2.1.2. Patient Study

Data of 5 patients (mean age 69 years, range 56–79 years) with biopsy-proven early-
stage NSCLC were used for feasibility analysis of the algorithm. All patients were scheduled
for FDG-PET/CT for initial staging and consecutive treatment planning. None of the
patients had previous surgery or radiation treatment of the lung. All patients gave written
and informed consent for all imaging procedures and agreed to the use of their data in a
retrospective evaluation on an anonymized level.
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All procedures performed in studies involving human participants were in accordance
with the ethical standards of the institutional and/or national research committee and with
the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.
Due to the retrospective character of the data analysis, an ethical statement was waived by
the institutional review board.

2.1.3. Imaging

PET data were acquired for 4 min per bed position (in the case of phantom data for
just one bed position, 8–10 bed positions in case of patient studies, depending on the
size of the patient) and reconstructed into a 128 × 128 matrix with 5 mm slice thickness
using an iterative reconstruction algorithm (4 iterations, 8 subsets). A 5 mm Gaussian
post-reconstruction filter was applied to the images for smoothing. Patients fasted for at
least 6 h prior the intravenous injection of 301–365 MBq of FDG depending on the body
weight. Plasma blood glucose level before injection was between 86 and 121 mg/dL. In
patient cases, PET acquisition started between 61 and 76 min after the injection. In phantom
studies as well as in patient studies, a low-dose CT was acquired over the PET imaging
area for attenuation and scatter correction of PET data. In addition, a 4D-CT was acquired
centered on the primary lesion in the context of radiation therapy treatment planning.
Based on this information, motion correction was applied as described in [34]. In patient
scans, the images not corrected for motion were also evaluated for comparison with the
motion-corrected data.

2.1.4. Statistical Analysis

For the phantom data, 20 consecutive segmentation measurements were performed.
For results, mean, range and absolute and relative standard deviation are reported. In
addition, box-and-whisker plots were performed. Results of feasibility for patient data are
reported descriptively. All statistical analysis as well as generation of the plots was carried
out in MedCalc (version 12.3.0.0, MedCalc Mariakerke, Ostend, Belgium).

3. Results
3.1. Phantom Measurements

All four segmentation algorithms worked well in segmentation of the phantom data.
When performing 20 consecutive segmentation measurements using the four different
segmentation methods, we found a mean volume for the large sphere of 25.0 ccm, 10.8 ccm
for the medium sphere and 2.3 ccm for the small sphere using the threshold-based method.
When using the method based on Kurtosis, we found a mean volume of 27.0 ccm for the
large sphere, 13.5 ccm for the medium sphere and 2.3 ccm for the small sphere.

The mean volume estimated with Entropy-based measurements was 26.5 ccm for the
large sphere, 12.2 ccm for the medium sphere and 3.1 ccm for the small sphere. For the LZE-
based measurement this was 27.1 ccm, 13.4 ccm and 3.0 ccm, respectively. The range and
absolute and relative standard deviation for these measurements can be found in Table 1.
Box-and-whisker plots for the results of the large spheres are shown in Figure 2. The
absolute and relative standard deviation in consecutive measurements were the lowest in
threshold-based segmentation and consequently higher in all textural-based segmentation
algorithms, with the highest values found for the Entropy-based method. In general, it
was also found that all three textural-based segmentation algorithms showed on average a
larger volume compared to the threshold-based segmentation algorithm.
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Table 1. Results of the segmentation using the different algorithms of the phantom data (mean,
relative difference to true volume, range, absolute and relative standard deviation).

Segmentation
Method Sphere Mean

(ccm)
Difference

(%)
Range
(ccm)

Absolute Stdv
(ccm)

Relative Stdv
(%)

Threshold-based
Large (26 ccm) 25.0 3.9 24.4–25.4 0.3 1.2

Medium (12 ccm) 10.8 10.0 10.5–11.5 0.4 3.3
Small (3 ccm) 2.3 23.3 2.0–2.5 0.1 5.7

Kurtosis-based
Large (26 ccm) 27.0 3.9 25.6–30.1 1.2 4.3

Medium (12 ccm) 13.5 12.5 11.9–15.1 0.8 6.0
Small (3 ccm) 3.0 0.0 2.5–3.4 0.3 8.2

Entropy-based
Large (26 ccm) 26.5 1.9 21.9–30.4 2.3 8.6

Medium (12 ccm) 12.2 1.7 10.6–13.4 0.7 5.6
Small (3 ccm) 3.1 3.3 2.7–3.5 0.2 7.8

LZE-based
Large (26 ccm) 27.1 4.2 25.0–29.0 1.1 4.2

Medium (12 ccm) 13.4 11.7 12.0–14.9 0.7 4.9
Small (3 ccm) 3.1 3.3 2.6–3.6 0.3 8.4

Figure 2. Box-and-whisker plots of the segmentation of the large sphere using the four different
algorithms.

3.2. Patient Measurements

All four different segmentation methods showed the ability to segment the lung
lesion in patient data. The achieved volume was visually reasonable in all cases. Each
of the five patients had a single lung lesion located, as shown in Table 2. As in phantom
studies, volumes segmented based on textural features have a tendency to be larger than
the threshold-based segmented volumes. The largest volumes were obtained by LZE-based
segmentation, as already seen for the phantom measurements. An example of a segmented
tumor volume can be found in Figure 3, which shows images of the segmented volumes
for all four algorithms. Detailed results of the segmented volumes of all five patients as
well as the motion vector that was used for correction are shown in Table 2.

Table 2. Results of the segmentation using the different segmentation algorithms in five patients
after motion correction including motion amplitude in x (anterior–posterior), y (left–right), and z
(cranial–caudal) directions.

Patient.
No. Lesion Location

Motion x, y, z
(mm)

Segmented Lesion Volume (ccm)

thd-Based Kurtosis-Based Entropy-Based LZE-Based

1 Lower-right lobe 2, 1, 12 46.6 50.1 47.6 52.3
2 Lower-left lobe 3, 1, 9 8.2 8.9 9.3 9.0
3 Center-right lobe 2, 2, 8 6.4 12.5 7.9 8.6
4 Lower-right lobe 4, 0, 14 3.1 4.3 3.9 4.6
5 Lower-left lobe 3, 2, 12 32.2 36.7 34.6 34.9
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Figure 3. Example of patient 1 (MIP on the left) and segmented volume in transaxial slice for the
threshold-based (A), the Kurtosis-based (B), the Entropy-based (C) and the LZE-based (D) algorithms.

For comparison, patient data without motion correction were also used in the different
segmentation algorithms, and the results can be found in Table 3. As expected, segmented
volumes were larger when PET data were not corrected for motion in all but in two cases
(Kurtosis-based segmentation and LZE-based segmentation in patient 4). No relevant
differences were found concerning the threshold-based segmented volumes or textural
feature-based segmented volumes when comparing motion-corrected data and data not
corrected for respiratory movement.

Table 3. Results of the segmentation using the different segmentation algorithms in five patients
without previous application of the motion-correction algorithm as well as relative difference to the
motion-corrected values in parenthesis following the values.

Patient
No. Lesion Location

Segmented Lesion Volume (ccm)

thd-Based Kurtosis-Based Entropy-Based LZE-Based

1 Lower-right lobe 56.4 (17.4%) 63.1 (20.6%) 58.6 (18.8%) 64.8 (19.3%)
2 Lower-left lobe 8.7 (5.8%) 9.7 (8.3%) 9.5 (2.1%) 10.1 (10.9%)
3 Center-right lobe 7.1 (9.9%) 14.9 (16.1%) 9.6 (17.7%) 10.2 (15.7%)
4 Right-lower lobe 3.4 (8.8%) 4.3 (0.0%) 5.0 (22.0%) 4.3 (−7.0%)
5 Lower-left lobe 38.0 (15.3%) 40.1 (8.5%) 41.2 (16.0%) 39.6 (11.9%)

4. Discussion

We proposed a novel segmentation algorithm for lung tumors in FDG-PET based on
textural features. Based on previous analysis, we chose Kurtosis, Entropy and Long-Zone
Emphasis. These textural features, in a study by Jouanjan et al., showed the best ability
to differentiate between lung tumor tissue and surrounding lung tissue [24]. In the same
study, these parameters were identified to be stable in the time between tracer injection and
PET data acquisition, as determined through dual-time-point PET/CT examinations. Many
other textural parameters did not provide such as stability in the interval between injection
and acquisition and were therefore difficult to implement in algorithms that should be used
in clinical routine.

As in the case of lung tumors, respiratory motion is an important source of artifacts
in quantification of PET data, especially in target volume estimation [29]. Therefore, we
applied the segmentation algorithm on data corrected for respiratory movement by an
algorithm previously described by Thomas et al. [34]. However, the proposed algorithm
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was also applied to non-motion-corrected data for comparison; similar results for the
effect of motion correction on the segmented volume were found, as has been previously
reported [34]. However, no relevant difference was found between volumes segmented in
motion-corrected data and volumes segmented in uncorrected data when using threshold-
based algorithms compared to textural-feature-based algorithms.

In phantom studies, we found that segmentation based on Entropy showed the best
results with a mean value of 26.5 ccm over 20 measurements amongst the textural-feature-
based segmentation algorithms compared to the real sphere volume of 26 ccm. The
threshold-based segmentation performed slightly worse with a mean value of 25 ccm.
Interestingly, all textural-feature-based methods showed large volumes (mean 27.0 for
Kurtosis and 27.1 for LZE). The reason for this may be due to the algorithm itself, as a
region only finishes growing when a certain threshold of the textural feature is taken into
account. On the other hand, we found that stability between different measurements,
in the case of textural features, was worse than in the threshold-based algorithm. The
reason for this is that the value of textural features in the grown region is more dependent
on the start point than the pure uptake value in a region. Therefore, we found relative
standard deviations over 20 measurements for textural-feature-based algorithms ranging
between 4.2% and 8.4% compared to values between 1.2% and 5.7% for the threshold-based
algorithm. This seems to be a drawback of the presented method, and further steps should
be performed to overcome this issue, e.g., by using another definition of the start point
rather than manual interaction. One can think of, e.g., the hottest point in a lesion as
start point or similar methods to define the start area in a more standardized manner. All
segmentation algorithms shared a particular trait: in the case of smaller lesions, variability
between different measurements was higher than for larger lesions.

In patient data, we found that the algorithms did provide a sufficient volume in all
cases. As for the phantom data, the volumes based on textural feature segmentation were
larger than volumes based on threshold-based segmentation (see also Figure 3). However,
as no gold standard is available and we included patients scheduled for radiation treatment
and the topic is also beyond the scope of this feasibility study, we were unable to determine
if the textural parameter-based algorithms were more precise than the threshold-based
algorithm in phantom data for Entropy. Our next step will be further studies including
the histopathological gold standard as in [38] or [39]. However, these first results about
the novel segmentation algorithms are promising, and therefore such studies should be
implemented now. Furthermore, in this feasibility study, we focused on phantom data and
several first datasets for patients with lung cancer, as this is one of the tumor entities in
which PET is often used for radiation treatment. However, further studies should analyze
the applicability of the presented algorithms on other tumor entities, such as colorectal
carcinoma, breast cancer, brain tumors or osseous or lymph node metastases. In this context,
the presented method may be relying on a quite homogeneous background and therefore
is not be able to be transferred to all tumor entities easily. Additionally, in the case of
lymph nodes, metastases located in the mediastinum or the abdomen, it may be difficult to
differentiate between malignant tissue and the background by means of textural features.

Another point taken into account in further investigation is the stability of the pro-
posed algorithms compared to threshold-based algorithms in terms of different scanners,
acquisition protocols and reconstruction algorithms. However, this was beyond the scope
of this first feasibility study.

A further limitation of the work that needs to be discussed is that the phantom used
fillable spheres, so there was hardly any relevant heterogeneity in the activity distribution as
would be expected in real tumors. Nevertheless, it seems to be a good model for validation
of stability and to see if real lesion size may be reproduced. Additionally, it is important
that such a novel algorithm works for both lesions with homogeneous activity distribution
as well as inhomogeneous activity distribution if it is to be applied in clinical routines.
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5. Conclusions

Novel radiomics-based tumor segmentation in FDG-PET has been presented with
very good results in phantom studies concerning recovered lesion volume and stability in
consecutive measurements. Segmentation based on Entropy seems to be preferable in terms
of precision in phantom studies; however, the other algorithms also showed results that
are worth following up. Further studies with larger patient cohorts and histopathological
standards need to be performed for further validation of the presented algorithms.
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