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Abstract: Background: The exact focus of computed tomography (CT)-based artificial intelligence
techniques when staging liver fibrosis is still not exactly known. This study aimed to determine
both the added value of splenic information to hepatic information, and the correlation between
important radiomic features and information exploited by deep learning models for liver fibrosis
staging by CT-based radiomics. Methods: The study design is retrospective. Radiomic features were
extracted from both liver and spleen on portal venous phase CT images of 252 consecutive patients
with histologically proven liver fibrosis stages between 2006 and 2018. The radiomics analyses for
liver fibrosis staging were done by hepatic and hepatic–splenic features, respectively. The most
predictive radiomic features were automatically selected by machine learning models. Results: When
using splenic–hepatic features in the CT-based radiomics analysis, the average accuracy rates for
significant fibrosis, advanced fibrosis, and cirrhosis were 88%, 82%, and 86%, and area under the
receiver operating characteristic curves (AUCs) were 0.92, 0.81, and 0.85. The AUC of hepatic–splenic-
based radiomics analysis with the ensemble classifier was 7% larger than that of hepatic-based
analysis (p < 0.05). The most important features selected by machine learning models included both
hepatic and splenic features, and they were consistent with the location maps indicating the focus of
deep learning when predicting liver fibrosis stage. Conclusions: Adding CT-based splenic radiomic
features to hepatic radiomic features increases radiomics analysis performance for liver fibrosis
staging. The most important features of the radiomics analysis were consistent with the information
exploited by deep learning.

Keywords: liver; artificial intelligence; machine learning; radiomics; multidetector computed
tomography

1. Introduction

Chronic liver disease prevalence is increasing globally [1]. Repetitive liver damage,
secondary to any cause of liver injury, results in progressive fibrosis, disrupted hepatic
architecture, and aberrant regeneration [2]. Cirrhosis is considered end-stage liver dis-
ease and puts patients at risk for the development of hepatocellular carcinoma, portal
hypertension, and liver failure. Currently, liver transplantation can be a lifesaving proce-
dure for cirrhotic patients; however, demand greatly outweighs donor organ supply [3].
To allow early intervention to avoid or delay clinical decompensation and the need for
liver transplantation, early diagnosis and adequate staging of liver fibrosis are of utmost
importance [4].
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Histopathology is currently considered the gold standard for liver fibrosis diagnosis
and staging. To enable histopathological examination of liver parenchyma, a percuta-
neous image-guided biopsy can be performed. However, up to 6% of patients experience
postprocedural complications, with a reported mortality rate of 1.6% [5].

To overcome these disadvantages, various radiology-based liver fibrosis staging meth-
ods have been explored to replace biopsy, with among them, radiomics analysis [6–8] and
deep learning techniques [9–11]. In a recent study, a convolutional neural network (CNN)
was used to stage liver fibrosis, and location maps were generated by gradient-weighted
class activation mapping (Grad-cam) [12], which indicated the focus of the CNN when pre-
dicting liver fibrosis stage [13]. These location maps illustrated that the CNN used not only
information from the liver but also the spleen. Compared with deep learning, radiomics
analysis uses manually designed features extracted from computed tomography (CT) scans
instead of the raw image and requires less data and computational power for training.
Furthermore, the model of radiomics analysis can indicate which kind of symptoms on
images are more important for the model by giving radiomic features importance. Until
now, radiomics analysis for liver fibrosis staging based on both hepatic and splenic features
has not yet been performed. Whether adding splenic features to hepatic features could
improve the radiomics analysis performance for liver fibrosis staging on CT images, and
whether radiomic analysis and deep learning use similar information from CT images to
predict liver fibrosis stages, is unclear.

Therefore, the primary aim of the current study was to determine whether adding
splenic information to hepatic information can improve the performance of liver fibrosis
staging by CT-based radiomics analysis and to identify the most important radiomic
features in this setting. The secondary aim was to explore the correlation between important
radiomic features and location maps generated by deep learning models.

2. Materials and Methods
2.1. Study Population

All consecutive patients who were diagnosed with liver fibrosis at our tertiary referral
center between 2006 and 2018, aged >16 years, and of whom both a contrast-enhanced portal
venous phase CT scan of the upper abdomen (image acquisition parameters: automatic
tube current modulation and tube voltage selection; slice thickness 1 mm; pitch 0.6) and
histopathological proof of liver fibrosis stage were available, with less than 6 months
between them, were included in the study (Figure 1). Patients with focal liver lesions were
excluded from the study.

Figure 1. Flowchart of the study population. Abbreviation: CT = computed tomography.

To improve the balance between patients with and without fibrosis (in whom generally
no histopathological examination of liver tissue is performed), patients who underwent a
contrast-enhanced abdominal CT scan in the portal venous phase (similar image acquisition
parameters as mentioned earlier) at the emergency department to rule out traumatic injuries



Diagnostics 2022, 12, 550 3 of 12

during the same inclusion period were added to our study population. Patients were only
included if no focal liver lesions, injuries, or other abnormalities of liver morphology were
present, as well as no history of liver disease or associated risk factors.

Patients were identified in our institutional database and retrospectively analyzed.
The study was approved by the local institutional review board, and the need for obtaining
informed consent was waived.

2.2. Reference Standard

The reference standard consisted of histopathological examination of liver parenchyma,
either through liver biopsy, liver resection, or after liver transplantation. Liver fibrosis
stage was determined by a specialized liver pathologist according to the METAVIR staging
system [14]. This system consists of five stages including no signs of liver fibrosis (F0),
fibrosis of portal area without septa (F1), portal fibrosis with few septa (F2), septal fibrosis
without cirrhosis (F3), and cirrhosis (F4).

2.3. Image Processing and Feature Extraction for Radiomics Analysis

The algorithm scheme is shown in Figure 2. The CT scans were first resampled to
the same thickness of 2.0 mm. A soft tissue window (Width: 400 Hounsfield Units, Level:
50 Hounsfield Units) was applied on the resampled CT image. The liver and spleen
parenchyma were first segmented by V-nets [15] pretrained by public datasets IRCADB
and Medical Segmentation Decathlon, respectively. The segmentation was checked for
correctness by a research fellow (Y.Y.) under the supervision of an abdominal radiologist
(R.J.d.H.; 8 years dedicated experience) and served as the region of interest used for the
radiomics analysis.

Figure 2. Overall algorithm scheme. First, the computed tomography (CT) volume was preprocessed;
then, the liver and spleen were segmented as the region of interest. The radiomic features were
extracted from the segmented liver and spleen. The machine learning classifiers were trained by
hepatic features and hepatic–splenic features, respectively, to predict the probability array of liver
fibrosis stages, namely F0–F4.

The radiomic features were then extracted from the original 3D images of the seg-
mented liver and spleen parenchyma, respectively. The images were resampled with
multiple spacing parameters by sitkBSpline interpolator provided by the pyradiomics
library [16], including [1.0 mm, 1.0 mm, 1.0 mm], [1.0 mm, 1.0 mm, 2.0 mm], and [1.0 mm,
1.0 mm, 5.0 mm]. The parameters [1.0 mm, 1.0 mm, 2.0 mm] were used as resampled
spacing for the following experiments because of the machine learning model performance.
The images were quantified by multiple fixed bin widths of 1, 10, and 25, and the bin
size of 10 was chosen for the subsequent experiments. We extracted 107 features from
different categories according to the Image Biomarker Standardization Initiative, including
18 first-order statistics, 14 3D shape-based features, 24 gray level co-occurrence matrix
features, 16 gray level size zone matrix features, 16 gray level run length matrix features,
5 neighboring gray tone difference matrix features, and 14 gray level dependence matrix fea-
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tures [17]. The feature extraction was executed using the open-source library Pyradiomics
3.0 [16].

To remove the features that did not show differences among liver fibrosis stages, we
performed univariate feature selection by the Kruskal–Wallis test. Features statistically
related to the liver fibrosis stage (p < 0.05) were included in the selected feature subset.

2.4. Radiomics Analysis for Liver Fibrosis Staging

Machine learning classifiers were trained by standardized hepatic features and hepatic–
splenic features with zero mean and unit variance. The hepatic features-based classifier and
hepatic–splenic feature-based classifier were tested by CT scans from the same group of pa-
tients and their performance was compared. To avoid bias toward machine learning model
selection, a variety of commonly used classifiers was chosen in the experiments, including
multinomial logistic regression with L1 and L2 penalty and tree-based ensemble classifiers
based on AdaBoosting [18], Gradient Boosting [19], and XGBoosting [20] methods.

To better understand the prediction made by machine learning classifiers, we evaluated
the top 5 most important features of the trained classifiers. For logistic regression, the
importance was decided by the weights of radiomic features, which represent the feature’s
relevance to fibrosis stage F0 and stage F4. For ensemble classifiers, the importance was
decided by Gini importance [21], which is commonly used to evaluate features in boosting
methods. More detailed information can be found in Appendix A.

2.5. Evaluation and Statistical Analysis

The liver fibrosis staging classifiers were trained by the fivefold cross-validation
method and tested on 20% of the study population. To make the radiomics analysis re-
sults comparable with recently reported artificial-intelligence-based liver fibrosis staging
projects [9–11,13], we grouped liver fibrosis stages into significant fibrosis (F2−4), advanced
fibrosis (F3−4), and cirrhosis (F4). The area under the receiver operating characteristic
(ROC) curves (AUC) and the accuracies of discriminating significant fibrosis (F0−1 vs.
F2−4), advanced fibrosis (F0−2 vs. F3−4), and cirrhosis (F0−3 vs. F4) were used to deter-
mine the performance of liver fibrosis staging classifiers on each class. The accuracy and
micro-average AUC were used to evaluate the liver fibrosis staging classifiers’ performance
as a multistage classification.

Furthermore, the microaveraged AUCs of classifiers based on hepatic–splenic features
and merely hepatic features were compared utilizing bootstrapping of 1000 repetitions;
statistical significance was set at p ≤ 0.05. The analysis was performed by Y.Y. with Python
3.7.9 and library scikit-learn 0.23.2 [22].

3. Results
3.1. Study Population

In total, 252 patients were included in the radiomics analysis for liver fibrosis staging
(Figure 1). Patient demographics are summarized in Table 1. The median age of the patients
was 59 years (interquartile range: 48−65 years), and 140 patients (55.6%) were men. One
hundred thirty-four patients (53.2%) had no signs of liver fibrosis (F0), 8 patients (3.2%)
had fibrosis stage F1, 10 patients (4.0%) had fibrosis stage F2, 18 patients (7.1%) had fibrosis
stage F3, and 82 patients (32.5%) had cirrhosis (F4). Two patients who underwent a liver
transplantation were included twice in the dataset, as the histopathology results were based
on different livers (i.e., the native liver before transplantation and the transplanted liver
after retransplantation).
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Table 1. Demographics of the study population.

Variable Total Cohort
Liver Fibrosis Stage

F0 F1 F2 F3 F4

Total number of patients 252 134 8 10 18 82

Median age (interquartile range) 59
(48−65)

63
(50-−74)

64
(38−71)

57
(43−64)

48
(43−62)

60
(54−65)

Gender
Male 140 (55.6%) 68 (50.7%) 3 (37.5%) 7 (70.0%) 11 (61.1%) 51 (62.2%)

Female 112 (44.4%) 66 (49.3%) 5 (62.5%) 3 (30.0%) 7 (38.9%) 31 (37.8%)

Etiology of
liver fibrosis

Alcoholic 26
(22.0%) - 0 0 1 25

Autoimmune hepatitis 5
(4.2%) - 0 1 1 3

HBV 3
(2.5%) - 0 0 0 3

HCV 10
(8.5%) - 0 0 1 9

PSC 3
(2.5%) - 0 2 1 0

Steato-hepatitis 8
(6.8%) - 0 0 0 8

Wilson disease 1
(0.8%) - 0 0 0 1

Other 17
(14.4%) - 1 0 7 9

Unknown 45
(38.1) - 7 7 7 24

Abbreviations: HBV = hepatitis B virus; HCV = hepatitis C virus; PSC = primary sclerosing cholangitis.

3.2. Radiomic Features

After extracting the radiomic features from both the liver and spleen, 77 features
from the liver and 65 features from the spleen were selected by the univariate feature
selection (p < 0.05). To visualize data distribution, principal component analysis and t-
distributed stochastic neighbor embedding (t-SNE) were combined to reduce the radiomic
features to two dimensions, represented by the axes in the plot of Figure 3. According
to the data visualization, a relatively clear clustering of F0 and F4 liver fibrosis stages
can be observed, indicating that CT scans of both groups can be differentiated based on
two-dimensional features after dimensionality reduction, which supported the utility of
the following experiments.

3.3. Performance of Liver Fibrosis Stage Classifiers

Table 2 shows the performance of logistic regression classifiers and tree-based ensem-
ble classifiers evaluated by the accuracy and micro-averaged AUC. The AUC and accuracy
of significant fibrosis (F0−1 vs. F2−4), advanced fibrosis (F0−2 vs. F3−4), and cirrhosis
(F0−3 vs. F4) can also be found in Table 2. The accuracy of L1 regulated logistic regression
classifiers increased by 8% after adding splenic features to hepatic features. Compared with
logistic regression classifiers, the AUC of ensemble classifiers improved more significantly
when adding splenic features. Especially for the XGBoosting classifier, the microaveraged
AUC increased by 7%. Bootstrapping with 1000 repetitions was used to compare the results
between hepatic and hepatic–splenic-based classifiers [23]. The microaveraged AUCs of
AdaBoosting, Gradient Boosting, and XGBoosting classifiers based on hepatic–splenic
features were significantly larger than when based on hepatic features alone (p = 0.025,
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p = 0.024, and p < 0.001, respectively), while the microaveraged AUCs of logistic regression
were not (p = 0.243 and p = 0.277). In addition, we used full feature sets without univariate
feature selection, which showed a similar result; the AUCs of hepatic–splenic classifiers
improved by 5% at most.

Figure 3. Data distribution based on radiomic features after dimension reduction using the t-
distributed stochastic neighbor embedding (t-SNE) method. Features are reduced to two dimensions
represented by the two axes. Each dot represents a computed tomography (CT) scan, and its color
represents the liver fibrosis stage as shown at the upper corner of the graph. A relative clustering of
different fibrosis stages is observed, which means that CT scans of different fibrosis stages can be
differentiated based on the two-dimensional features after dimension reduction.

3.4. Top 5 Weighted Features of the Trained Classifiers

The top 5 weighted features of logistic regression classifiers are shown in Table 3. Overall,
one first order, three shape-based, and five texture-based liver features, as well as four shape-
based and one texture-based splenic features were among the top five weighted features
used by the logistic regression classifiers to stage liver fibrosis. The shape-based features
concern the smallest axis length of liver-enclosing ellipsoid, the flatness of 3D liver, the second-
largest axis length of spleen-enclosing ellipsoid, the surface area of the spleen, and the largest
diameter in sagittal direction of both liver and spleen. The texture-based features include texture
heterogeneity, coarseness, variability of gray-level intensity, the concentration of low gray-level
values, the deviation of gray-level intensity to the mean gray-level in liver tissue, and the
asymmetry of the gray value distribution in the splenic tissue compared with the mean value.
Of note, all analyzed top five important features positively related to F0 liver fibrosis are only
liver features and 60% are shape-based hepatic features; however, the features positively related
to F4 liver fibrosis (i.e., cirrhosis) concern both liver and splenic features.
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Table 2. Performance of machine learning classifiers for liver fibrosis staging.

Machine Learning
Classifier Type Training Features

Accuracy
(%; 95% CI)

Microaveraged
AUC (95% CI)

AUC (95% CI) Accuracy (%; 95% CI)

Significant
Fibrosis

Advanced
Fibrosis Cirrhosis Significant

Fibrosis
Advanced
Fibrosis Cirrhosis

Logistic regression classifier
with L1 penalty

Selected liver features 76
(70,83)

0.94
(0.93,0.97)

0.95
(0.93,0.98)

0.92
(0.88,0.95)

0.91
(0.86,0.95)

86
(78,90)

80
(75,88)

82
(78,100)

Selected liver & spleen features 84
(80,90)

0.95 *
(0.93,0.98)

0.93
(0.90,0.98)

0.88
(0.84,0.94)

0.94
(0.90,0.99)

92
(83,95)

86
(83,95)

90
(88,100)

Logistic regression classifier
with L2 penalty

Selected liver features 78
(73,85)

0.95
(0.93,0.97)

0.96
(0.95,0.99)

0.91
(0.88,0.95)

0.93
(0.90,0.97)

88
(78,93)

82
(78,88)

84
(80,100)

Selected liver & spleen features 80
(75,85)

0.95 **
(0.93,0.97)

0.95
(0.93,0.98)

0.90
(0.86,0.95)

0.94
(0.91,0.97)

88
(78,93)

81
(78,90)

86
(83,100)

AdaBoosting

Selected liver features 74
(68,80)

0.82
(0.79,0.86)

0.74
(0.67,0.80)

0.72
(0.63,0.79)

0.82
(0.73,0.88)

76
(70,84)

80
(75,100)

74
(67,80)

Selected liver & spleen features 76
(70,83)

0.84 ***
(0.82,0.88)

0.57
(0.48,0.66)

0.61
(0.52,0.69)

0.84
(0.75,0.90)

78
(73,85)

82
(78,100)

57
(48,66)

Gradient Boosting

Selected liver features 76
(70,83)

0.88
(0.85,0.93)

0.85
(0.81,0.92)

0.83
(0.78,0.89)

0.88
(0.78,0.93)

80
(75,85)

80
(75,100)

85
(81,92)

Selected liver & spleen features 78
(73,85)

0.91 ****
(0.88,0.95)

0.84
(0.80,0.90)

0.88
(0.85,0.94)

0.86
(0.78,0.90)

80
(75,88)

84
(80,100)

84
(80,90)

XGBoosting

Selected liver features 80
(75,88)

0.86
(0.82,0.91)

0.78
(0.70,0.87)

0.79
(0.71,0.89)

0.90
(0.83,0.95)

84
(80,90)

86
(83,100)

78
(70,87)

Selected liver & spleen features 82
(78,88)

0.93 *****
(0.90,0.96)

0.86
(0.82,0.92)

0.90
(0.86,0.94)

0.90
(0.80,0.95)

84
(80,93)

88
(85,100)

86
(82,92)

* p = 0.243 when comparing liver features with liver and spleen features; ** p = 0.278 when comparing liver features with liver and spleen features; *** p = 0.025 when comparing liver
features with liver and spleen features; **** p = 0.024 when comparing liver features with liver and spleen features; ***** p < 0.001 when comparing liver features with liver and spleen
features. Abbreviations: AUC = area under the receiver operating characteristic curve; CI = confidence interval.
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Table 3. Top five weighted radiomic features of trained logistic regression classifiers. The feature
names are based on the Pyradiomics library used for research [16].

Weight
Ranking

Radiomic Feature Names

L1 Penalty and F0 L1 Penalty and F4 L2 Penalty and F0 L2 Penalty and F4

Feature
Category

Feature
Name

Feature
Category

Feature
Name

Feature
Category

Feature
Name

Feature
Category

Feature
Name

1st GLRLM *
Low Gray
Level Run
Emphasis *

First order
*

Robust Mean
Absolute

Deviation *
Shape * Flatness * NGTDM * Coarseness *

2nd Shape * Flatness * Shape # Maximum 2D
Diameter Slice # Shape * Least Axis

Length * Shape #
Maximum
2D Diame-
ter Slice #

3rd Shape *
Maximum

2D Diameter
Row *

GLRLM *
Run Length

Nonuniformity
Normalized *

Shape * Maximum 2D
Diameter Row * First order *

Robust Mean
Absolute

Deviation *

4th GLSZ * Zone
Entropy * NGTDM * Coarseness * GLRLM * Low Gray Level

Run Emphasis * Shape # Surface Area
#

5th Shape * Least Axis
Length * GLCM # Cluster Shade # GLRLM *

Short Run Low
Gray Level
Emphasis *

Shape # Minor Axis
Length #

* liver radiomic features; # splenic radiomic features. Abbreviations: GLRLM = gray level run length matrix;
NGTDM = neighboring gray tone difference matrix; GLSZM = gray level size zone matrix; GLCM = gray level
co-occurrence matrix.

The top five weighted features of tree-based ensemble classifiers for liver fibrosis
staging are shown in Table 4. Overall, one first order, three shape-based, and four texture-
based liver features, and one first order and four texture-based splenic features were
among the five most important features for ensemble classifiers. The shape-based features
include liver volume, the flatness of the 3D liver, and the largest liver diameter in the
sagittal direction. The liver texture features concern the variability and variance of size
zone volume with similar gray-level, the joint distribution of larger size zones with higher
gray-level values, the similarity of run lengths throughout liver tissue, and the visibility
of primitives in liver tissue. The splenic texture features reflect the concentration of low
gray-level, texture complexity, variance in gray-level runs, and joint distribution of larger
size zones with higher gray-level values.

Table 4. Top five weighted radiomic features of trained tree-based ensemble classifiers. The feature
names are based on the Pyradiomics library used for research [16].

Weight Ranking

Radiomic Feature Names

AdaBoosting Gradient Boosting XGBoosting

Feature Category Feature Name Feature Category Feature Name Feature Category Feature Name

1st First order * Total Energy * NGTDM * Strength * NGTDM * Strength *

2nd First order # Median # Shape * Maximum 2D
Diameter Row * GLSZM * Size Zone

Nonuniformity *

3rd GLRLM # Low Gray Level
Run Emphasis # GLCM # Imc2 # GLRLM # Gray Level

Variance #

4th GLSZM * Size Zone
Nonuniformity * Shape * Mesh Volume * GLRLM * Run Length

Nonuniformity *

5th Shape * Flatness * GLSZM * Zone Variance * GLSZM #
Large Area High

Gray Level
Emphasis #

* liver radiomic features; # splenic radiomic features. Abbreviations: NGTDM = neighboring gray tone difference
matrix; GLSZM = gray level size zone matrix; GLRLM = gray level run length matrix; GLCM = gray level
co-occurrence matrix.
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4. Discussion

This study aimed to determine the value of adding splenic information to liver infor-
mation in liver fibrosis staging by CT-based radiomics analysis, as well as investigate the
correlation between important features of radiomic analysis and the CT-based information
exploited by the deep learning model for liver fibrosis staging.

In the current study, the microaveraged AUC of best-performing radiomics analysis
based on hepatic–splenic features was significantly larger than based on merely hepatic
features, namely the XGBoosting classifier (p < 0.01). Interestingly, the logistic regression
classifiers demonstrated that hepatic radiomic features, especially shape-based hepatic
features that can be extracted from the liver surface, were most important for liver fibrosis
stage F0. The combination of hepatic and splenic texture features was much more important
when it concerned liver fibrosis stage F4. This is in accordance with a recent study in
which a deep learning model was trained for liver fibrosis staging and location maps
were generated by Grad-cam [12] to highlight the region on the CT scan that the model
exploited information from [13]. More specifically, the location maps indicated the deep
learning model focused more on the surface of the liver when giving the prediction of
fibrosis stage F0, while more attention was paid on the liver parenchyma and spleen when
giving the prediction of fibrosis stage F4 [13]. The information given by these location
maps was consistent with the most important features chosen by machine learning in the
current study.

From a clinical point of view, it seems logical that radiomic analysis and deep learning
models use both hepatic and splenic radiomic information to stage liver fibrosis. The liver
develops morphological changes when liver fibrosis progresses, meanwhile the spleen also
often increases in size and parenchymal changes can occur such as the development of
splenic siderotic nodules.

In a recent study by Nitsch et al., magnetic resonance imaging (MRI)-based radiomic
features and random forest classifier were used to predict the severity of liver cirrhosis,
with clinical decompensation and model for end-stage liver disease (MELD) scores as
reference standard. Nitsch et al. concluded that adding splenic MRI-based radiomic
features can increase the AUC for predicting a higher median MELD score or clinical
decompensation [24]. However, their study lacked an objective reference standard and was
only focused on patients with known cirrhosis. In our study, histopathology was used as
reference standard, which is still considered the most objective staging method of liver
fibrosis. In addition, our study not only focused on F4 liver fibrosis (i.e., cirrhosis), but also
other liver fibrosis stages were included, thereby offering the opportunity to determine
differences in types of radiomic features used for different liver fibrosis stages. In this way,
the added value of introducing splenic radiomic features becomes even more clear.

Our study found that the machine learning models based on splenic–hepatic features
could outperform the models only based on hepatic features. To generalize further, it might
be helpful to include information of multiple organs when developing computer-aided
diagnostic tools for systemic diseases such as liver fibrosis. In addition, as mentioned earlier,
the most important radiomic features selected by machine learning models in the current
study were consistent with the location maps generated by a recently reported liver fibrosis
staging network [13]. The results of the current radiomic analysis could further support the
location maps generated by Grad-cam, showing the focus of deep learning models when
predicting liver fibrosis stages. This might lead to wider acceptance of artificial intelligence
techniques in daily clinical practice. More specifically for liver fibrosis patients, our results
might be the first step toward increased acceptance of artificial intelligence techniques as
part of the decision-making process in the treatment of these patients, thereby ensuring
early intervention and perhaps reducing the need for liver transplantation.

Some limitations of our study have to be mentioned. First, our study is a retrospective
and single-center study, which might limit the utility of our results in broader clinical
practices. A prospective and multicenter study using the same research question could
be a possible improvement in the future. Second, the relatively small number of patients
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with F1, F2, and F3 liver fibrosis in the current study can be considered a limitation. This
renders the performance of machine learning models sensitive to the bias-variance tradeoff.
Unfortunately, because histopathological proof in patients with less severe liver fibrosis
stages is generally not available, it is difficult to prevent imbalances in the dataset. In
addition, the stability of texture features could be influenced by the parameters used during
CT image acquisition and reconstruction techniques could also influence the robustness
of radiomic features [25,26], which might further influence the radiomic analysis. These
factors should also be subject of future research.

5. Conclusions

Adding CT-based splenic radiomic features to hepatic radiomic features increases
radiomic analysis performance for liver fibrosis staging. In addition, the most important
features of the radiomic analysis were consistent with location maps generated by deep
learning, which could improve physicians’ confidence when using deep learning techniques
more regularly in daily practice.

Appendix A

Appendix A.1 Machine Learning Classifier for Liver Fibrosis Staging

To avoid bias toward machine learning model selection, we chose a variety of com-
monly used classifiers for radiomics analysis, including multinomial logistic regression
and tree-based ensemble classifiers.

To prevent overfitting on the training set, we used L1 (Lasso) and L2 (Ridge) reg-
ularization in the logistic regression classifier. Regularization can penalize high-valued
regression coefficients and improves the generalizability of trained classifiers.

The tree-based ensemble classifier is a machine learning method that combines multi-
ple decision trees to obtain the optimal classifier. In this study, classifiers were trained based
on three typical ensemble methods, namely AdaBoosting [17], Gradient Boosting [18], and
XGBoosting [19]. The classifiers were built by using Python 3.7.9 and library scikit-learn
0.23.2 [21].

Appendix A.2 Radiomic Features Used by Trained Classifiers

To better understand the prediction made by machine learning classifiers, we evaluated
the top 5 most important features of the trained classifiers.

As liver fibrosis has five stages ranging from F0 to F4, the multinomial logistic regres-
sion classifier consists of a set of formulae that calculate the probability (Pr) of each liver
fibrosis stage:

Pr(Fibrosis stage = 0) =
eβ0·Xi

∑4
i=0 eβi·Xi

Pr(Fibrosis stage = 1) =
eβ1·Xi

∑4
i=0 eβi·Xi

Pr(Fibrosis stage = 2) =
eβ2·Xi

∑4
i=0 eβi·Xi

Pr(Fibrosis stage = 3) =
eβ3·Xi

∑4
i=0 eβi·Xi

Pr(Fibrosis stage = 4) =
eβ4·Xi

∑4
i=0 eβi·Xi

Xi represents the radiomic features extracted from patient i, and β is the weight of
radiomic features learned from the training set. When βi > 0, the corresponding feature is
considered to be positively related to fibrosis stage i. As mentioned before, the top 5 most
important features being positively related to fibrosis stages 0 and 4 were analyzed.

Gini importance is one of the common parameters when evaluating feature importance
in tree-based ensemble classifiers [20]. The importance of each feature is computed as the
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total decrease in node impurity averaged over all decision trees in the ensemble classifier.
We analyzed five features with highest Gini importance.
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