
����������
�������

Citation: Wang, X.; Luo, P.; Du, H.;

Li, S.; Wang, Y.; Guo, X.; Wan, L.;

Zhao, B.; Ren, J. Ultrasound

Radiomics Nomogram Integrating

Three-Dimensional Features Based

on Carotid Plaques to Evaluate

Coronary Artery Disease. Diagnostics

2022, 12, 256. https://doi.org/

10.3390/diagnostics12020256

Academic Editors: Albert Comelli,

Cecilia Di Ruberto, Alessandro Stefano,

Lorenzo Putzu and Andrea Loddo

Received: 10 December 2021

Accepted: 17 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Ultrasound Radiomics Nomogram Integrating Three-Dimensional
Features Based on Carotid Plaques to Evaluate Coronary
Artery Disease
Xiaoting Wang 1,† , Peng Luo 1,† , Huaan Du 2, Shiyu Li 1, Yi Wang 1, Xun Guo 1, Li Wan 1, Binyi Zhao 2

and Jianli Ren 1,*

1 Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University,
Chongqing 400010, China; wxt19960511@163.com (X.W.); luopengjjyy@163.com (P.L.);
lishiyu20220101@163.com (S.L.); wangyiglory@163.com (Y.W.); gx961125@163.com (X.G.);
wanli13635359967@163.com (L.W.)

2 Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University,
Chongqing 400010, China; duhuaan20@126.com (H.D.); zby339444192@163.com (B.Z.)

* Correspondence: renjianli@cqmu.edu.cn
† These authors contributed equally to this work.

Abstract: This study aimed to explore the feasibility of ultrasound radiomics analysis before in-
vasive coronary angiography (ICA) for evaluating the severity of coronary artery disease (CAD)
quantified by the SYNTAX score (SS). This study included 105 carotid plaques from 105 patients (64
low-SS patients, 41 intermediate-high-SS patients). The clinical characteristics and three-dimensional
ultrasound (3D-US) features before ICA were assessed. Ultrasound images of carotid plaques
were used for radiomics analysis. Least absolute shrinkage and selection operator (LASSO) regres-
sion, which generated several nonzero coefficients, was used to select features that could predict
intermediate-high SS. Based on those coefficients, the radiomics score (Rad-score) was calculated.
The selected clinical characteristics, 3D-US features, and Rad-score were finally integrated into a ra-
diomics nomogram. Among the clinical characteristics and 3D-US features, high-density lipoprotein
(HDL), apolipoprotein B (Apo B), and plaque volume were identified as predictors for distinguish-
ing between low SS and intermediate-high SS. During the radiomics process, 8 optimal radiomics
features most capable of identifying intermediate-high SS were selected from 851 candidate ra-
diomics features. The differences in Rad-score between the training and the validation set were
significant (p = 0.016 and 0.006). The radiomics nomogram integrating HDL, Apo B, plaque volume,
and Rad-score showed excellent results in the training set (AUC, 0.741 (95% confidence interval
(CI): 0.646–0.835)) and validation set (AUC, 0.939 (95% CI: 0.860–1.000)), with good calibration (mean
absolute errors of 0.028 and 0.059 in training and validation sets, respectively). Decision curve analysis
showed that the radiomics nomogram could identify patients who could obtain the most benefit. We
concluded that the radiomics nomogram based on carotid plaque ultrasound has favorable value for
the noninvasive prediction of intermediate-high SS. This radiomics nomogram has potential value for
the risk stratification of CAD before ICA and provides clinicians with a noninvasive diagnostic tool.

Keywords: SYNTAX; radiomics; ultrasound image; carotid plaques; three-dimensional ultrasound

1. Introduction

As the main cause of death in developed and developing countries, coronary artery
disease (CAD), which is the narrowing or blocking of the lumen of vessels, has brought
considerable economic and health burdens to the global population. In the management
process of patients with CAD, identifying the severity of coronary artery narrowing and
consequently selecting the appropriate treatment measures are essential [1]. Invasive coro-
nary angiography (ICA) is currently the reference standard for the diagnosis of CAD in
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patients with suspected coronary artery dysfunction; it can not only clarify the presence
or absence of coronary artery stenosis but also determine the anatomy and characteris-
tics of the coronary lesion, such as the location, degree, and extent of stenosis [2]. This
invasive process, however, has many negative effects on patients, such as high radiation
exposure, considerable costs, and formation of pseudoaneurysms. In addition, ICA is not
suitable for some patients in special situations. ICA and subsequent intervention are not
routine processes for patients with acute coronary syndromes who suffer from chronic
kidney disease [3]. Although computed tomographic coronary angiography can eliminate
obstructive CAD before ICA and consequently reduce unnecessary ICAs [4], it can still
expose patients to a certain degree of radiation. Therefore, in clinical practice, there is a
lack of a completely noninvasive tool to assess CAD.

Atherosclerosis is a leading cause of CAD. Because atherosclerosis is a systemic disease,
there is a relationship between carotid artery atherosclerosis and coronary atherosclerosis [5].
Therefore, CAD may be assessed by evaluating carotid plaques. Radiomics, an emerging
medical image analysis tool, extracts a large number of quantitative features from regions
of interest (ROIs) in medical images for clinical analysis. Early radiomics studies showed
that it has great promise for tumor detection, diagnosis, and prognostic assessment [6–9].
Radiomics is currently used in carotid plaque studies focusing on the identification of
plaque vulnerability. Radiographic and ultrasound-based texture analyses have been used
to identify symptomatic carotid plaques with good results [10–12]. Radiomics is the extrac-
tion of internal information from ultrasound images of carotid plaques at the microscopic
level invisible to the naked eye. Current clinical studies on the correlation between carotid
plaque and coronary events mainly focus on the histopathological level. Therefore, this
study aimed to provide new information on the correlation between carotid plaque and
coronary events. Based on the theory that changes in gene expression due to gene mu-
tations lead to alterations in medical images of the corresponding sites, radiomics holds
promise. Since carotid plaque is formed by the gradual deposition of lipids in the intima,
it is assumed that lipid deposition leads to changes in the corresponding medical images.
Since atherosclerosis is general and systematic [5], it is assumed that radiomics based on
carotid plaque can be used to evaluate CAD. In addition, three-dimensional ultrasound
(3D-US) is now able to assess carotid plaque with considerable accuracy and reduce human
measurement error in continuous monitoring [13,14], so it can possibly be used in the
assessment of CAD.

Therefore, we sought to explore the feasibility of the noninvasive tool of 3D-US and
ultrasound radiomics based on carotid plaque to predict the risk of CAD.

2. Methods
2.1. Study Population

The study was approved by the Ethics Committee of the Second Affiliated Hospital of
Chongqing Medical University, which waived the requirement to obtain informed consent
from the patients because all data and images in this study were anonymous. All data
were obtained from the patients’ medical history. The inclusion criteria were as follows:

1© patients with angina who underwent ICA and were clinically diagnosed with CAD from
January 2021 to October 2021 and 2© patients who underwent two-dimensional ultrasound
(2D-US) and 3D-US examinations of the carotid artery and had a carotid plaque detected
within 24 h of ICA. A total of 120 patients with CAD were included. The exclusion criteria
were as follows: 1© patients whose identification of the internal structure of the plaque was
affected by the posterior acoustic shadow of the hyperechogenic plaques of the carotid
artery (N = 2); 2© patients whose 3D-US resolution of the extremely hypoechoic plaque
was insufficient to discern the boundary of the plaque, which affected the extraction of
the corresponding 3D-US features (N = 6); 3© patients whose outlines of the plaques were
affected by thick subcutaneous soft tissue in the neck, which affected the display of the
plaque (N = 5); 4© patients who underwent previous coronary artery stenting (N = 2).
Ultimately, this study included 105 carotid plaques from 105 patients all included in the
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training set (73 males, mean age 63.4 years, age range 39–82 years; 32 females, mean age
69.0 years, age range 48–88 years). The verification set consisted of 35 patients randomly
selected from these 105 patients (25 men, mean age 63.8 years, age range 45–82 years;
10 females, mean age 70.6 years, age range 48–81 years) (Figure 1).
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Figure 1. Flow chart of patient enrollment. CAD, coronary artery disease; ICA, invasive coro-
nary angiography; 2D-US, two-dimensional ultrasound; 3D-US, three-dimensional ultrasound; SS,
SYNTAX score.

Baseline clinical data were obtained from patient hospital records, including sex,
age, low-density lipoprotein (LDL), triglycerides (TG), total cholesterol (TC), high-density
lipoprotein (HDL), non-HDL, hypersensitive C-reactive protein (HS-CRP), hypertension
status, systolic blood pressure, diastolic blood pressure, smoking status, diabetes status,
body mass index (BMI), hemoglobin A1c (HbA1c), estimated glomerular filtration rate
(eGFR), apolipoprotein B (Apo B), lipoprotein(a) (Lp(a)), and blood glucose.

2.2. Coronary Atherosclerosis Risk Stratification

The gold standard in this study was the SYNTAX score (SS) of ICA [15], which was
calculated by two cardiovascular physicians with more than 3 years of experience in ICA,
who were blinded to the other records. Any differences were settled through discussion.
This score was a point system for risk stratification based on anatomical features and
lesion characteristics (lesion location, severity, bifurcation, calcification, etc.) dependent
on the coronary artery. It was used to target left main artery lesions and/or three-branch
lesions, assess their complexity, and provide a preliminary judgment for surgical modality
selection based on the level of the score, thus predicting major cardiovascular events in
patients undergoing percutaneous coronary intervention (PCI). The specific classification
and treatment principles were as follows: 1© patients with complex multivessel disease
and SS ≥ 33 points were more suitable for coronary artery bypass grafting (CABG) than
PCI; 2© patients with moderate left main artery disease (SS, 23–32) were recommended
to undergo PCI; 3© patients with low-risk left main artery and three-vessel lesions with
SS ≤ 22 were recommended to undergo PCI, which was comparable to CABG. In our study,
the low-risk group (SS ≤ 22) included 64 patients, and the intermediate-high-risk group
(SS > 22) contained 41 patients.
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2.3. Imaging Acquisition and Carotid Plaque 3D-US Feature Extraction

Carotid artery ultrasound was performed in all patients within 24 h of ICA. High-
resolution carotid plaque 3D-US imaging was performed by a carotid ultrasonographer
with more than 3 years of experience in carotid artery ultrasound examination who was
blinded to the ICA results, operating the PHILIPS EPIQ5 system (Philips Healthcare,
Eindhoven, The Netherlands) equipped with a VL13-5 probe of 5–13 MHz. To ensure
as much consistency as possible in the ultrasound images of each patient, we proposed
adopting the criterion that the ultrasound beam was perpendicular to the vessel wall,
adjusting the 2D gain and imaging when the carotid vessel lumen was echogenic. When
the patient had multiple carotid plaques at the same time, we proposed including and
analyzing the largest plaque. All images were imported into the offline VPQ mode of QLAB
software, and 3D-US features were extracted, including plaque volume, maximum area
reduction rate, normalized wall index, and grayscale median. We selected the keyframe
when lumen thinning was most obvious and calculated the keyframe plaque thickness,
plaque area, mean, median, and standard deviation.

2.4. Carotid Plaque Ultrasound Radiomics Feature Extraction, Dimension Reduction, and
Radiomics Score

The radiomics process was shown in Figure 2. The outlining of ROIs of carotid plaques
was performed manually. We imported the entire carotid plaque ultrasound DICOM data
into the open-source software 3D-Slicer (version 4.13.0, https://www.slicer.org/ (accessed
on 10 September 2021). The outlining of the carotid plaque border was performed by an
ultrasonographer with more than 5 years of experience in carotid artery ultrasonography
examination who was blinded to the ICA results, according to the border between the
carotid plaque and echogenic carotid blood flow. After completing ROIs outlining, we
extracted 851 features from each ROI. Least absolute shrinkage and selection operator
(LASSO) regression was used to select features that could distinguish between low and
intermediate-high SS. During LASSO, 10-fold cross-validation was used to select the tuning
parameter (λ), and several nonzero coefficients were generated and used to calculate the
radiomics score (Rad-score).
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2.5. Models

In this study, models for predicting the risk stratification of coronary lesions were
developed based on clinical characteristics (model A), 3D-US and ultrasound radiomics
(model B), and a combination of clinical characteristics, 3D-US and ultrasound radiomics
(model C). Binary logistic regression with backward stepwise selection was used to build
the models. The sensitivity, specificity, accuracy, Youden’s index, and area under the
receiver operating characteristic (ROC) curve (AUC) were used to quantify the performance
of the models.

Validation set data were used to validate the efficacy of the models. Decision curve
analysis (DCA) was performed to select the model that provided the most benefit to the
patient (optimal model). Finally, a nomogram was constructed based on the optimal model.

2.6. Statistical Analysis

All statistical analyses were performed with SPSS Statistics 25.0 (IBM, Armonk, NY, USA)
and R software (http://www.R-project.org (accessed on 10 October 2021)). Continuous
variables in accordance with normal distribution were expressed as mean ± standard devi-
ations, whereas continuous variables that were not normally distributed were expressed as
medians and quartiles. Differences in continuous variables that were normally distributed
between two groups were compared using t-tests, and continuous variables that were
not normally distributed were compared using Mann–Whitney U tests. Differences in
categorical variables were compared using chi-square tests. Univariate and multivariate
analyses were used to identify clinical characteristics and carotid plaque 3D-US features
that could predict intermediate-high SS. Variables with p < 0.05 in the univariate analysis
were entered into the multivariate analysis. DeLong’s test was used to test whether the dif-
ferences between different ROC curves were significant. A p < 0.05 indicated a statistically
significant difference.

3. Results
3.1. Patient Clinical Characteristics

The clinical characteristics of all patients were summarized in Table 1. This study
included 64 patients (61%) with low SSs and 41 patients (39%) with intermediate-high SSs.

3.2. Clinical Characteristic Selection

By using univariate and multivariate logistic regression analyses, we selected two
features (HDL and Apo B) from the clinical features that had the ability to predict the
characteristics of CAD risk stratification (Table 2).

3.3. Radiomics Score and 3D-US Characteristics
3.3.1. Screening for Ultrasound Radiomics Features and Radiomics Scores

The optimal λ.min (log) [value of λ that gave minimum mean cross-validated error] = 0.0914
(−2.3925) was selected with 10-fold cross-validation. From the 851 features, LASSO eventually
selected 8 features that were most capable of predicting intermediate-high risk of coronary
atherosclerosis (original-firstorder-Minimum, original-glszm-SizeZoneNonUniformity, wavelet-
LHL-firstorder-Skewness, wavelet-LHL-glszm-GrayLevelNonUniformity, wavelet-LHH-glszm-
GrayLevelNonUniformityNormalized, wavelet-HHL-firstorder-Median, wavelet-LLL-firstorder-
Skewness, and wavelet-LLL-glszm-SizeZoneNonUniformity) (Figure 3). The Rad-score was
calculated as follows:

Rad-score = 1.28112 × original-firstorder-Minimum + 0.00085 × original-
glszm-SizeZoneNonUniformity + 0.69417 × wavelet-LHL-firstorder-Skewness

+ 0.00393 × wavelet-LHL-glszm-GrayLevelNonUniformity + 0.21954 ×
wavelet-LHH-glszm-GrayLevelNonUniformityNormalized − 25.07312 ×

wavelet-HHL-firstorder-Median + 0.2944 × wavelet-LLL-firstorder-Skewness
+ 0.00088 × wavelet-LLL-glszm-SizeZoneNonUniformity.

http://www.R-project.org


Diagnostics 2022, 12, 256 6 of 13

Table 1. Clinical characteristics of all patients.

Clinical Features Low SSs (64) Intermediate-High SSs (41) p Value

Gender 0.051
Man 40 (38.1%) 33 (31.6%)

Female 24 (22.9%) 8 (7.4%)
Age (y) 64.9 ± 10.1 65.5 ± 10.7 0.776

LDL (mmol/L) 2.39 (1.56, 3.06) 2.31 (1.85, 3.17) 0.354
HDL (mmol/L) 1.19 (0.95, 1.36) 1.02 (0.93, 1.26) 0.047
TG (mmol/L) 1.38 (1.05, 1.86) 1.31 (1.01, 1.98) 0.963
TC (mmol/L) 4,45 (3.42, 5.25) 4.32 (3.75, 5.78) 0.524

non-HDL (mmol/L) 3.15 (2.19, 4.06) 3.24 (2.47, 4.61) 0.201
HS-CRP (mg/L) 2.66 (0.86, 5.00) 2.69 (1.20, 5.00) 0.687

BP status 0.080
0 28 (26.7%) 11 (10.5%)
1 36 (34.3%) 30 (28.5%)

Systolic BP (mmHg) 132 ± 16 132 ± 19 0.858
Diastolic BP (mmHg) 80 ± 11 81 ± 10 0.664

Smoking 0.080
0 28 (26.7%) 11 (10.5%)
1 36 (34.3%) 30 (28.5%)

Diabetes status 0.631
0 45 (42.9%) 27 (25.7%)
1 19 (18.1%) 14 (13.3%)

Height (cm) 162.5 (155.0, 168.0) 165.0 (160.0, 168.0) 0.240
Weight (kg) 62.7 ± 10.1 64.0 ± 10.1 0.524

BMI (kg/m2) 23.9 ± 2.6 23.9 ± 3.0 0.883
HbA1c (%) 5.90 (5.60, 6.95) 6.15 (5.60, 6.75) 0.585

eGFR (mL/min/1.73 m2) 90.85 (75.58, 99.33) 84.90 (63.70, 99.45) 0.231
Apo B (g/L) 0.8 ± 0.3 0.9 ± 0.3 0.039
Lp(a) (mg/L) 141.50 (73.00, 279.75) 254.00 (107.00, 490.00) 0.094

Blood glucose (mmol/L) 6.79 (5.41, 8.20) 5.93 (5.18, 9.41) 0.852
Plaque volume (mm3) 47.50 (23.25, 94.00) 74.00 (39.00, 159.50) 0.014

Wall area (mm2) 19.20 (15.88, 24.65) 19.10 (16.10, 28.30) 0.452
Median gray scale (dB) 54.50 (41.13, 66.75) 50.00 (40.00, 58.50) 0.404

Maximum area reduction
rate (%) 14.00 (8.00, 20.75) 15.00 (11.50, 29.50) 0.061

Normalized wall index 0.32 (0.28, 0.39) 0.35 (0.30, 0.46) 0.070
Plaque thickness (mm) 1.92 (1.58, 2.53) 2.20 (1.64, 2.96) 0.147

Plaque area (mm2) 5.95 (3.43, 10.18) 7.80 (4.20, 13.50) 0.179
Lumen area (mm2) 38.05 (27.23, 49.93) 34.40 (25.10, 46.15) 0.419

Mean (dB) 28.90 (21.00, 40.13) 24.60 (20.15, 40.40) 0.501
Median (dB) 17.65 (13.53, 20.00) 16.50 (13.15, 19.25) 0.389

Standard deviation (dB) 33.00 (23.25, 46.98) 29.10 (23.05, 48.65) 0.653
LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, triglycerides; TC, total cholesterol; HS-CRP,
hypersensitive C-reactive protein; BP, blood pressure; BMI, body mass index; HbA1c, hemoglobin A1c; eGFR,
estimated glomerular filtration rate; Apo B, apolipoprotein B; Lp(a), lipoprotein(a).

The difference in radiomics scores between low SS and intermediate-high SS patients
was significant (Mann–Whitney U test, p = 0.016). A similar result was also found for the
verification set (Mann–Whitney U test, p = 0.006).

3.3.2. 3D-US Feature Selection

Univariate logistic regression analysis indicated that only plaque volume was an
independent predictor for intermediate-high SS. After the process of feature selection, we
selected one feature (plaque volume) (p = 0.014, Table 3) that had the ability to distinguish
between low SS and intermediate-high SS.
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Table 2. Candidate clinical predictors after logistic regression analysis.

Clinical Features
Univariate Analysis Multivariate Analysis

OR (95% CI) p Value OR (95% CI) p Value

Gender 2.48 (0.98, 6.23) 0.054
Age 1.01 (0.97, 1.05) 0.774
LDL 1.32 (0.89, 1.94) 0.166
HDL 0.22 (0.05, 0.98) 0.047 0.21 (0.04, 0.96) 0.045
TG 1.29 (0.90, 1.84) 0.174
TC 1.23 (0.92, 1.66) 0.166

non-HDL 1.34 (0.98, 1.82) 0.062
HS-CRP 1.02 (0.97, 1.06) 0.443

BP 0.47 (0.20, 1.10) 0.082
Systolic BP 1.00 (0.98, 1.03) 0.856
Diastolic BP 1.01 (0.97, 1.05) 0.661

Smoking status 0.47 (0.20, 1.10) 0.083
Diabetes status 0.81 (0.35, 1.88) 0.631

Height 1.03 (0.98, 1.08) 0.217
Weight 1.01 (0.97, 1.05) 0.520

BMI 0.99 (0.86, 1.14) 0.881
HbA1c 0.95 (0.69, 1.30) 0.741
eGFR 0.99 (0.97, 1.01) 0.219
Apo B 4.37 (1.05, 18.19) 0.043 4.60 (1.07, 19.82) 0.041
Lp(a) 1.0012 (0.9997, 1.0027) 0.105

Blood glucose 1.04 (0.94, 1.15) 0.434
OR, odds ratio; 95% CI, 95% confidence interval; LDL, low-density lipoprotein; HDL, high-density lipoprotein;
TG, triglycerides; TC, total cholesterol; HS-CRP, hypersensitive C-reactive protein; BP, blood pressure; BMI, body
mass index; HbA1c, hemoglobin A1c; eGFR, estimated glomerular filtration rate; Apo B, apolipoprotein B; Lp(a),
lipoprotein(a)glomerular filtration rate; Apo B, apolipoprotein B; Lp(a), lipoprotein(a).
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Figure 3. Feature selection process of radiomics in predicting intermediate-high SS. (A,B) An optimal
tuning parameter (λ) value of 0.0914, with log(λ) = −2.3925 was determined by ten-fold cross-validation
via minimum mean cross-validated error in LASSO model. Eight features that were most capable of
predicting intermediate-high risk of coronary atherosclerosis were selected from 851 features. (C) The
coefficients of the 8 features.
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Table 3. Candidate predictors of three-dimensional ultrasound of carotid plaque after logistic regres-
sion analysis.

Three-Dimensional Ultrasonic Features
Univariate Analysis

OR (95% CI) p Value

Plaque volume 1.0046 (0.9998, 1.0093) 0.014
Wall area 1.02 (0.98, 1.06) 0.352

Median gray scale 0.99 (0.98, 1.01) 0.569
Maximum area reduction rate 1.02 (1.00, 1.05) 0.107

Normalized wall index 4.93 (0.25, 97.10) 0.294
Plaque thickness 1.37 (0.87, 2.16) 0.178

Plaque area 1.02 (0.98, 1.07) 0.303
Lumen area 0.99 (0.97, 1.02) 0.530

Mean 1.00 (0.97, 1.02) 0.758
Median 0.98 (0.93, 1.04) 0.507

Standard deviation 1.00 (0.97, 1.02) 0.845

3.4. Models Construction

We built three models. The first model was a clinical model (model A, HDL + Apo B)
with an AUC of 0.648 (95% confidence interval [CI], 0.543–0.753). The sensitivity, specificity,
accuracy, and Yorden index were 31.7%, 84.4%, 63.8%, and 0.161, respectively, in the training
set. In the validation set, an AUC of 0.667 (95% CI, 0.485–0.848), a sensitivity of 42.9%, a
specificity of 76.2%, an accuracy of 62.9%, and a Youden index of 0.191 were found. We
then combined the carotid plaque 3D-US feature (plaque volume) and the radiomics feature
(Rad-score), which were classified as ultrasound features, so the second model was an
ultrasound model (model B, plaque volume + Rad-score) which yielded an AUC of 0.723
(95% CI, 0.627–0.818), a sensitivity of 24.4%, a specificity of 93.8%, an accuracy of 66.7%,
and a Youden index of 0.182, which was validated in the validation set. The third model
was a combined model (model C, HDL + Apo B + plaque volume + Rad-score) whose AUC,
sensitivity, specificity, accuracy, and Youden index values were 0.741 (95% CI, 0.646–0.835)
and 0.939 (95% CI, 0.860–1.000), 41.5% and 85.7%, 85.9% and 85.7%, 68.6% and 85.7%, 0.274
and 0.714 in the training and validation sets, respectively (Table 4 and Figure 4). Therefore,
the predictive performance of Model C was significantly higher than that of Model A
(AUC, 0.714 vs. 0.648 and 0.939 vs. 0.667 in training and validation sets, respectively)
(DeLong’s test, p = 0.011 and 0.005 in the training and validation sets, respectively).

Table 4. Diagnostic performance of the models.

Training Set Verification Set

AUC SEN (%) SPE (%) ACC (%) Y AUC SEN (%) SPE (%) ACC (%) Y

Method A 0.648 31.7 84.4 63.8 0.161 0.667 42.9 76.2 62.9 0.191
Method B 0.723 24.4 93.8 66.7 0.182 0.922 78.6 90.5 85.7 0.691
Method C 0.741 41.5 85.9 68.6 0.274 0.939 85.7 85.7 85.7 0.714

SEN, sensitivity; SPE, specificity; ACC, accuracy; Y, Youden index. Method A, Method B, and Method C represent
the modeling methods of clinical features (HDL + Apo B), ultrasound features (plaque volume + Rad-score), and
the combined model (HDL + Apo B + plaque volume + Rad-score).

3.5. DCA

We performed DCA to evaluate the clinical usefulness of the models. The DCA curves
showed that the combined model (HDL + Apo B + plaque volume + Rad-score) could help
patients obtain the most benefit (Figure 5).
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(HDL + Apo B + plaque volume + Rad-score). (A) Training set: the AUCs in Model A, Model B, and
Model C were 0.648 (95% CI, 0.543–0.753), 0.723 (95% CI, 0.627–0.818) and 0.741 (95% CI, 0.646–0.835),
respectively. (B) Validation set: the AUCs in Model A, Model B, and Model C were 0.667 (95% CI,
0.485–0.848), 0.922 (95% CI, 0.833–1.000) and 0.939 (95% CI, 0.860–1.000), respectively.
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3.6. Development of a Nomogram

We integrated all the independent risk factors, including HDL, Apo B, plaque volume,
and Rad-score, for predicting intermediate-high SS into a nomogram. A calibration graph
showed favorable results, with mean absolute errors of 0.028 and 0.059 in the training and
validation sets, respectively (Figure 6).
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4. Discussions

In this study, we attempted to explore the relationship between carotid plaque and
coronary artery severity using a radiomics approach. Finally, combining carotid plaque
ultrasound-based radiomics, 3D-US, HDL, and Apo B, we developed a radiomics model
to predict the severity of CAD. This model initially demonstrated valuable discrimina-
tory ability, providing a noninvasive method to assess coronary severity before coronary
angiography and providing clinicians with an advanced prediction of prognosis.

Low or intermediate-high SS reflects the number, location, and extent of coronary
atherosclerosis [15]. Intermediate-high SS indicates that it is likely that the patient’s coro-
nary arteries are more severely atherosclerotic, which has a greater impact on the patient’s
life and quality of life, indicating a poor prognosis and a high likelihood of future cardio-
vascular events that may lead to life-threatening conditions. PCI will also treat CAD with
different levels of SSs differently. In reality, the positive impact of accurately identifying
such patients is enormous, both for clinical workup and for maximizing patient benefit.
The use of noninvasive methods to distinguish such patients is particularly important and
convenient when considering with the limitations of ICA.

Radiomics emerged from the study of tumors to evaluate the internal characteristics
of lesions and to find information to approach many medical problems, such as tumor
diagnosis, prognosis, and response to treatment [16]. Moreover, medical images contain a
large amount of information, both visible and invisible to the naked eye. We can assume that
as long as the lesion can be imaged medically, we can extract high-throughput data from it
and analyze it to solve clinical problems [17]. In recent years, excellent work in radiomics
has been performed in non-oncology research areas such as hemorrhage [18,19], infected
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stones [20], and liver fibrosis [21]. Given that atherosclerosis is a systemic change and
coronary atherosclerosis is homologous to carotid atherosclerosis, we hypothesized that as
carotid atherosclerosis progresses, the internal properties of carotid plaques change, which
could reflect the degree of coronary atherosclerosis. Changes in the internal characteristics
of carotid plaques bring about changes in the nature of ultrasound images, so ultrasound
imaging based on carotid plaques through radiomics analysis has potential for predicting
the degree of coronary atherosclerosis. Finally, as we expected, the results confirmed
this hypothesis. Our preliminary exploration will help advance the study of radiomics
in coronary atherosclerosis and provide a novel, noninvasive tool to clinically assess the
severity of CAD in patients with chest pain.

In the present study, we found that radiomics features extracted from carotid plaque
ultrasound images had the potential to predict coronary artery severity. We identified
eight ultrasound radiomics features with the most potential to predict coronary artery
severity: original-firstorder-Minimum, original-glszm-SizeZoneNonUniformity, wavelet-
LHL-firstorder-Skewness, wavelet-LHL-glszm-GrayLevelNonUniformity, wavelet-LHH-
glszm-GrayLevelNonUniformityNormalized, wavelet-HHL-firstorder-Median, wavelet-
LLL-firstorder-Skewness, and wavelet-LLL-glszm-SizeZoneNonUniformity. These features
were used to establish a radiomics score, which had excellent performance (AUC, 0.741).
In addition, we found that one of the 3D-US features of carotid plaques (plaque volume)
had the ability to identify patients with intermediate-high SSs. Previous studies had
found that there was a correlation between the ultrasonic features of carotid plaques
and SS. Studies have shown that plaque volume measurement is a screening tool for
cardiovascular risk stratification [5,22], and our study drew a similar conclusion that plaque
volume measurement is of great value in evaluating the prognosis of patients. Nobutaka
Ikeda et al. [23] found that ultrasound-based carotid plaque scores, which were external
measures of carotid plaques, had predictive value for SS. Unlike Nobutaka Ikeda’s study,
our present study took quantitative data extracted from the automated 3D-US of carotid
plaque without artificial measurements and found that plaque volume measurement might
be a potential predictor for intermediate-high SS, which complemented the findings of
the study on the association between ultrasound characteristics of carotid plaque and
SS content. In addition to the ultrasound features of carotid plaques, this study found
that HDL was a protective factor for coronary artery disease (OR, 0.21) and that Apo B
was an independent risk factor for intermediate-high SS (OR, 4.6). That is, patients with
angina pectoris with lower HDL and higher Apo B were more likely to have more severe
coronary atherosclerosis, which was similar to the findings of previous studies [24–27] that
abnormal lipid metabolism has a very important influence on the development of coronary
atherosclerosis [28]. Previous studies had shown that radiomics had good performance in
the assessment of coronary lesions, such as the identification of advanced atherosclerotic
lesions [29], the assessment of coronary inflammation [30], and the prediction of coronary
artery calcification and stenosis [31]. However, these studies had some limitations. They
were based on computed tomography, which undoubtedly exposed the patient to certain
radiation. In contrast, our study was based on ultrasound images of carotid plaques, which
were free of radiological hazards and had protective value for patients. As we expected,
the potential value of radiomics in predicting intermediate-high SS (AUC, 0.741; 95% CI:
0.646–0.835) in combination with clinical features (HDL and Apo B) and 3D-US features of
carotid plaques (plaque volume) enriched the study of the association of carotid plaque
with coronary atherosclerosis and provided a noninvasive method to assess coronary artery
severity before coronary angiography.

Of course, this study had several limitations. First, as a preliminary study exploring
the relation of carotid plaque radiomics and the severity of coronary atherosclerosis, the
number of patients included in this study was small, and the general applicability of its
findings need to be confirmed in real-world patients. Furthermore, all carotid plaque
ultrasound images used in this study were guaranteed by us to be generated when the
blood was echogenic, but because the tissue thickness and nature of the superficial carotid
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artery surface differed in each patient, the ultrasound beam energy reaching the carotid
plaque also differed, which seemed to lead to challenges in the consistency of the imaging
parameters. Therefore, imaging criteria such as CT and MRI are needed to determine the
homogeneity of the images.

5. Conclusions

In conclusion, we developed a carotid plaque-based ultrasound radiomics nomogram
for the noninvasive prediction of intermediate-high SS. This radiomics nomogram has
potential value for the risk stratification of CAD before ICA and provides clinicians with a
noninvasive diagnostic tool.

Author Contributions: Data curation, X.W., P.L., H.D., L.W. and B.Z.; Formal analysis, X.W.; Investi-
gation, S.L. and Y.W.; Methodology, X.W., P.L. and X.G.; Software, X.W.; Validation, X.W. and P.L.;
Writing—original draft, X.W.; Writing—review & editing, J.R. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number 81873901).

Institutional Review Board Statement: The study was approved by the Ethics Committee of the
Second Affiliated Hospital of Chongqing Medical University (protocol code 2021-699 and date of
approval 15 December 2021).

Informed Consent Statement: Which waived the requirement to obtain informed consent from the
patients because all data and images in this study were anonymous.

Data Availability Statement: Raw data can be shared from the first author if there is a reasonable request.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Knaapen, P. Computed Tomography to Replace Invasive Coronary Angiography? Circ. Cardiovasc. Imaging 2019, 12, e8710.

[CrossRef]
2. Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.;

Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41,
407–477. [CrossRef] [PubMed]

3. Novak, J.E.; Handa, R. Contrast Nephropathy Associated with Percutaneous Coronary Angiography and Intervention.
Cardiol. Clin. 2019, 37, 287–296. [CrossRef] [PubMed]

4. Danad, I.; Raijmaker, P.G.; Knaapen, P. Diagnosing coronary artery disease with hybrid PET/CT: It takes two to tango.
J. Nucl. Cardiol. 2013, 20, 874–890. [CrossRef] [PubMed]

5. Sillesen, H.; Muntendam, P.; Adourian, A.; Entrekin, R.; Garcia, M.; Falk, E.; Fuster, V. Carotid plaque burden as a measure of
subclinical atherosclerosis: Comparison with other tests for subclinical arterial disease in the High Risk Plaque BioImage study.
JACC Cardiovasc. Imaging 2012, 5, 681–689. [CrossRef]

6. Qi, L.; Chen, D.; Li, C.; Li, J.; Wang, J.; Zhang, C.; Li, X.; Qiao, G.; Wu, H.; Zhang, X.; et al. Diagnosis of Ovarian Neoplasms
Using Nomogram in Combination With Ultrasound Image-Based Radiomics Signature and Clinical Factors. Front. Genet. 2021,
12, 753948. [CrossRef]

7. Jiang, M.; Li, C.L.; Luo, X.M.; Chuan, Z.-R.; Lv, W.-Z.; Li, X.; Cui, X.-W.; Dietrich, C.F. Ultrasound-based deep learning radiomics in
the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer. Eur. J. Cancer
2021, 147, 95–105. [CrossRef]

8. Machicado, J.D.; Koay, E.J.; Krishna, S.G. Radiomics for the Diagnosis and Differentiation of Pancreatic Cystic Lesions. Diagnostics
2020, 10, 505. [CrossRef]

9. Luo, P.; Fang, Z.; Zhang, P.; Yang, Y.; Zhang, H.; Su, L.; Wang, Z.; Ren, J. Radiomics Score Combined with ACR TI-RADS in
Discriminating Benign and Malignant Thyroid Nodules Based on Ultrasound Images: A Retrospective Study. Diagnostics 2021,
11, 1011. [CrossRef]

10. Kakkos, S.K.; Stevens, J.M.; Nicolaides, A.N.; Kyriacou, E.; Pattichis, C.S.; Geroulakos, G.; Thomas, D. Texture analysis of
ultrasonic images of symptomatic carotid plaques can identify those plaques associated with ipsilateral embolic brain infarction.
Eur. J. Vasc. Endovasc. Surg. 2007, 33, 422–429. [CrossRef]

http://doi.org/10.1161/CIRCIMAGING.119.008710
http://doi.org/10.1093/eurheartj/ehz425
http://www.ncbi.nlm.nih.gov/pubmed/31504439
http://doi.org/10.1016/j.ccl.2019.04.004
http://www.ncbi.nlm.nih.gov/pubmed/31279422
http://doi.org/10.1007/s12350-013-9753-8
http://www.ncbi.nlm.nih.gov/pubmed/23842709
http://doi.org/10.1016/j.jcmg.2012.03.013
http://doi.org/10.3389/fgene.2021.753948
http://doi.org/10.1016/j.ejca.2021.01.028
http://doi.org/10.3390/diagnostics10070505
http://doi.org/10.3390/diagnostics11061011
http://doi.org/10.1016/j.ejvs.2006.10.018


Diagnostics 2022, 12, 256 13 of 13

11. Zhang, R.; Zhang, Q.; Ji, A.; Yang, Y.; Lv, P.; Zhang, J.; Fu, C.; Lin, J. Identification of high-risk carotid plaque with MRI-based
radiomics and machine learning. Eur. Radiol. 2021, 31, 3116–3126. [CrossRef]

12. Acharya, U.R.; Sree, S.V.; Mookiah, M.R.K.; Saba, L.; Gao, H.; Mallarini, G.; Suri, J.S. Computed tomography carotid wall plaque
characterization using a combination of discrete wavelet transform and texture features: A pilot study. Proc. Inst. Mech. Eng. Part
H J. Eng. Med. 2013, 227, 643–654. [CrossRef] [PubMed]

13. Kalashyan, H.; Shuaib, A.; Gibson, P.H.; Romanchuk, H.; Saqqur, M.; Khan, K.; Osborne, J.; Becher, H. Single sweep three-
dimensional carotid ultrasound: Reproducibility in plaque and artery volume measurements. Atherosclerosis 2014, 232, 397–402.
[CrossRef]

14. Song, S.; Heo, R.; Lee, S.E.; Park, J.; Lee, J.; Kim, S.; In Cho, J.; Chang, H.-J. Comparing the feasibility and accuracy of three-
dimensional ultrasound to two-dimensional ultrasound and computed tomography angiography in the assessment of carotid
atherosclerosis. Echocardiography 2019, 36, 2241–2250. [CrossRef]

15. Sianos, G.; Morel, M.A.; Kappetein, A.P.; Morice, M.-C.; Colombo, A.; Dawkins, K.; van den Brand, M.; Van Dyck, N.; Russell, M.E.;
Mohr, F.W.; et al. The SYNTAX Score: An angiographic tool grading the complexity of coronary artery disease. EuroIntervention
2005, 1, 219–227. [PubMed]

16. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.;
Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin.
Oncol. 2017, 14, 749–762. [CrossRef] [PubMed]

17. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577.
[CrossRef] [PubMed]

18. Song, Z.; Guo, D.; Tang, Z.; Liu, H.; Li, X.; Luo, S.; Yao, X.; Song, W.; Song, J.; Zhou, Z. Noncontrast Computed Tomography-Based
Radiomics Analysis in Discriminating Early Hematoma Expansion after Spontaneous Intracerebral Hemorrhage. Korean J. Radiol.
2021, 22, 415–424. [CrossRef]

19. Song, Z.; Tang, Z.; Liu, H.; Guo, D.; Cai, J.; Zhou, Z. A clinical-radiomics nomogram may provide a personalized 90-day functional
outcome assessment for spontaneous intracerebral hemorrhage. Eur. Radiol. 2021, 31, 4949–4959. [CrossRef]

20. Zheng, J.; Yu, H.; Batur, J.; Shi, Z.; Tuerxun, A.; Abulajiang, A.; Lu, S.; Kong, J.; Huang, L.; Wu, S.; et al. A multicenter study to
develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning. Kidney Int. 2021, 100,
870–880. [CrossRef]

21. Wang, K.; Lu, X.; Zhou, H.; Gao, Y.; Zheng, J.; Tong, M.; Wu, C.; Liu, C.; Huang, L.; Jiang, T.; et al. Deep learning Radiomics of
shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: A
prospective multicentre study. Gut 2019, 68, 729–741. [CrossRef] [PubMed]

22. Noflatscher, M.; Schreinlechner, M.; Sommer, P.; Kerschbaum, J.; Berggren, K.; Theurl, M.; Kirchmair, R.; Marschang, P. Influence
of Traditional Cardiovascular Risk Factors on Carotid and Femoral Atherosclerotic Plaque Volume as Measured by Three-
Dimensional Ultrasound. J. Clin. Med. 2018, 8, 32. [CrossRef] [PubMed]

23. Ikeda, N.; Kogame, N.; Iijima, R.; Nakamura, M.; Sugi, K. Carotid artery intima-media thickness and plaque score can predict the
SYNTAX score. Eur. Heart J. 2012, 33, 113–119. [CrossRef] [PubMed]

24. Xu, W.; Guan, H.; Da Gao, J.P.; Pan, J.; Wang, Z.; Alam, M.; Lian, J.; Zhou, J. Sex-specific association of monocyte count to
high-density lipoprotein ratio with SYNTAX score in patients with suspected stable coronary artery disease. Medicine 2019, 98,
e17536. [CrossRef]

25. Lin, T.; Wang, L.; Guo, J.; Liu, P.; Chen, L.; Wei, M.; Li, G. Association Between Serum LDL-C and ApoB and SYNTAX Score in
Patients with Stable Coronary Artery Disease. Angiology 2018, 69, 724–729. [CrossRef]

26. Li, J.J.; Zhang, Y.; Li, S.; Cui, C.-J.; Zhu, C.-G.; Guo, Y.-L.; Wu, N.-Q.; Xu, R.-X.; Liu, G.; Dong, Q.; et al. Large HDL Subfraction But
Not HDL-C Is Closely Linked With Risk Factors, Coronary Severity and Outcomes in a Cohort of Nontreated Patients With Stable
Coronary Artery Disease: A Prospective Observational Study. Medicine 2016, 95, e2600. [CrossRef]

27. Chen, B.D.; Chen, X.C.; Yang, Y.N.; Gao, X.-M.; Ma, X.; Huang, Y.; Li, X.-M.; Gai, M.-T.; Liu, F.; Pan, S.; et al. Apolipoprotein A1 is
associated with SYNTAX score in patients with a non-ST segment elevation myocardial infarction. Lipids Health Dis. 2019, 18, 159.
[CrossRef] [PubMed]

28. Wilson, P.W.F.; Polonsky, T.S.; Miedema, M.D.; Khera, A.; Kosinski, A.S.; Kuvin, J.T. Systematic Review for the 2018
AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood
Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice
Guidelines. J. Am. Coll. Cardiol. 2019, 73, 3210–3227. [CrossRef] [PubMed]

29. Kolossváry, M.; Karády, J.; Kikuchi, Y.; Ivanov, A.; Schlett, C.L.; Lu, M.T.; Foldyna, B.; Merkely, B.; Aerts, H.J.; Hoffmann, U.; et al.
Radiomics versus Visual and Histogram-based Assessment to Identify Atheromatous Lesions at Coronary CT Angiography: An
ex Vivo Study. Radiology 2019, 293, 89–96. [CrossRef]

30. Cheng, K.; Lin, A.; Yuvaraj, J.; Nicholls, S.; Wong, D. Cardiac Computed Tomography Radiomics for the Non-Invasive Assessment
of Coronary Inflammation. Cells 2021, 10, 879. [CrossRef]

31. Homayounieh, F.; Yan, P.; Digumarthy, S.R.; Kruger, U.; Wang, G.; Kalra, M.K. Prediction of Coronary Calcification and Stenosis:
Role of Radiomics from Low-Dose CT. Acad. Radiol. 2021, 28, 972–979. [CrossRef] [PubMed]

http://doi.org/10.1007/s00330-020-07361-z
http://doi.org/10.1177/0954411913480622
http://www.ncbi.nlm.nih.gov/pubmed/23636747
http://doi.org/10.1016/j.atherosclerosis.2013.11.079
http://doi.org/10.1111/echo.14543
http://www.ncbi.nlm.nih.gov/pubmed/19758907
http://doi.org/10.1038/nrclinonc.2017.141
http://www.ncbi.nlm.nih.gov/pubmed/28975929
http://doi.org/10.1148/radiol.2015151169
http://www.ncbi.nlm.nih.gov/pubmed/26579733
http://doi.org/10.3348/kjr.2020.0254
http://doi.org/10.1007/s00330-021-07828-7
http://doi.org/10.1016/j.kint.2021.05.031
http://doi.org/10.1136/gutjnl-2018-316204
http://www.ncbi.nlm.nih.gov/pubmed/29730602
http://doi.org/10.3390/jcm8010032
http://www.ncbi.nlm.nih.gov/pubmed/30602707
http://doi.org/10.1093/eurheartj/ehr399
http://www.ncbi.nlm.nih.gov/pubmed/22028386
http://doi.org/10.1097/MD.0000000000017536
http://doi.org/10.1177/0003319717748771
http://doi.org/10.1097/MD.0000000000002600
http://doi.org/10.1186/s12944-019-1101-9
http://www.ncbi.nlm.nih.gov/pubmed/31391051
http://doi.org/10.1016/j.jacc.2018.11.004
http://www.ncbi.nlm.nih.gov/pubmed/30423394
http://doi.org/10.1148/radiol.2019190407
http://doi.org/10.3390/cells10040879
http://doi.org/10.1016/j.acra.2020.09.021
http://www.ncbi.nlm.nih.gov/pubmed/34217490

	Introduction 
	Methods 
	Study Population 
	Coronary Atherosclerosis Risk Stratification 
	Imaging Acquisition and Carotid Plaque 3D-US Feature Extraction 
	Carotid Plaque Ultrasound Radiomics Feature Extraction, Dimension Reduction, and Radiomics Score 
	Models 
	Statistical Analysis 

	Results 
	Patient Clinical Characteristics 
	Clinical Characteristic Selection 
	Radiomics Score and 3D-US Characteristics 
	Screening for Ultrasound Radiomics Features and Radiomics Scores 
	3D-US Feature Selection 

	Models Construction 
	DCA 
	Development of a Nomogram 

	Discussions 
	Conclusions 
	References

