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Abstract: COVID-19 was first discovered in December 2019 in Wuhan. There have been reports of
thousands of illnesses and hundreds of deaths in almost every region of the world. Medical images,
when combined with cutting-edge technology such as artificial intelligence, have the potential to
improve the efficiency of the public health system and deliver faster and more reliable findings in
the detection of COVID-19. The process of developing the COVID-19 diagnostic system begins with
image accusation and proceeds via preprocessing, feature extraction, and classification. According
to literature review, several attempts to develop taxonomies for COVID-19 detection using image
processing methods have been introduced. However, most of these adhere to a standard category
that exclusively considers classification methods. Therefore, in this study a new taxonomy for the
early stages of COVID-19 detection is proposed. It attempts to offer a full grasp of image processing
in COVID-19 while considering all phases required prior to classification. The survey concludes with
a discussion of outstanding concerns and future directions.

Keywords: COVID-19; preprocessing; augmentation; segmentation; feature extraction; transfer
learning; X-ray; CT

1. Introduction

Throughout history mankind has experienced pandemics, of which several have been
extremely disastrous [1]. Over the past century, the COVID-19 pandemic is considered the
deadliest, even worse than the Spanish flu [2]. Beginning December 2019, the rapid spread
of COVID-19 has caused widespread concern throughout the world. Hundreds of deaths
and thousands of illnesses have been reported in practically every part of the world [1].
Therefore, early detection of COVID-19 is critical for limiting the virus from spreading and
to providing care to prevent complications. One of the most important diagnostic tools for
identifying and distinguishing infections in humans is reverse transcription-polymerase
chain reaction (RT-PCR).

X-ray images and computed tomography scans (CT scans) are additional diagnostic
tools used for identifying COVID-19 [3]. The most common radiological findings in
COVID-19 patients are bilateral and multifocal ground-glass opacities and consolidations,
especially in the basal and peripheral sites. Based on CT or X-ray of the images of the lungs,
doctors can observe and examine the signs associated with the COVID-19 deformations.
However, when examining the results of these imaging techniques, radiologists may
experience technical problems that lead to decreased sensitivity [4]. Therefore, utilizing
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modern technologies to combat COVID-19 can increase the performance of the public health
system [5]. Such supplementary technologies include artificial intelligence (AI), which
can be used to combat this virus through population screening, alerts, recommendations
for infection control, learning-prediction models, improved drug discovery, treatment
design, and outlining follow-ups for COVID-19 patients [3]. Additionally, AI can help in
the diagnosis of a variety of diseases, such as brain tumors from MR images, various types
of brain disorders from EEG, breast cancer from mammographic images, and pulmonary
diseases such as COVID-19 from ultrasound, X-rays, and CT-Scas [6]. These approaches
allow for the evaluation of specific segment regions and the acquisition of precise structures
in chest images for diagnostic purposes [7].

The development of the COVID-19 diagnostic system begins with image acquisition
and continues through the preprocessing, feature extraction, and classification phases [8].
Therefore, significant work must be committed to improving the preliminary phases of
these systems in order to improve the accuracy of COVID-19 diagnostic systems, including
preprocessing, augmentation, segmentation, and feature extraction, which is the subject
of this work. Preprocessing involves the removal of undesirable artifacts and distribution
associated with the image to obtain useful features [9]. While segmentation is the process
of identifying the region of interest (ROI) in an image to gather relevant information that is
necessary to enhance subsequent classification or object recognition tasks [10,11], augmen-
tation is the process of producing synthetic images using many transformation techniques.
In this phase, it is crucial to address the issues of insufficient data and unbalanced dis-
tribution [12]. Meanwhile, feature extraction is the process of learning significant image
representation while preserving original information [13].

All the components mentioned above are further discussed in detail in the following
sections. Specifically, the contributions of our work is listed as follows:

1. We analyze how various preprocessing techniques can be used to enhance feature
extraction in each of the investigated works.

2. We present a detailed discussion of the different segmentation approaches employed
in each reviewed paper, with the goal of delivering significant features that are reliable
for COVID-19 detection.

3. We provide a comprehensive analysis of the various augmentation methods employed
to address the issue of a lack of images available for COVID-19 detection.

4. We present a complete investigation of the various feature extraction techniques used
to distinguish COVID-19 images from normal images.

The study begins by introducing fundamental concepts related to COVID-19. Section 3
investigates many sources of information used by various authors in research on the
detection of COVID-19. Section 4 then compares several related surveys. Subsequently,
Section 5 introduces the proposed taxonomy of the earliest stages of COVID-19 detection.
Finally, Section 10 summarizes the discussion and points out future research directions.

2. Concept and Background

The COVID-19 index case was discovered in Wuhan, Hubei Province, People’s Re-
public of China (PRC). The acute respiratory syndrome coronavirus 2, or COVID-19, was
identified and categorized as an infectious virus (SARS CoV-2) [14]. According to inves-
tigations, COVID-19 most likely originated in Wuhan’s Huanan Seafood Market, and by
December 2019, the PRC government had officially declared an additional 27 cases [15].
The COVID-19 virus epidemic began during the PRC’s spring carnival, when many people
from all over the world traveled there. The massive influx of people from different countries
all over the world acted as a catalyst for the spread of the virus both within China and
across international borders to other countries [14]. The original SARS-CoV virus was
contracted from a cat, and the MERS-CoV virus is acquired from a dromedary; therefore,
COVID-19 is classified as a zoonotic disease because it is thought to have spread from
animals to humans through bats [16].
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Viral replication occurs in the lung cells after the virus enters them via the respiratory
system. COVID-19 is extremely difficult to diagnose and cure due to the RNA that composes
its mutational characteristics [6]. Furthermore, the rapid spread of COVID-19 is mainly
due to airborne and physical contact, such as hand contact with an infected person [6].
According to comparative studies, men are more likely to contract the infection than women
because they are more frequently exposed to it. Despite that, there have been no deaths
reported for children between the ages of 0 and 9. In contrast to healthy subjects, COVID-
19-induced pneumonia subjects suffer faster spread of respiratory problems [16]. Frequent
symptoms as a result of viral infection are fever and cough. The more severe effects of
the virus are highly associated with acute respiratory distress syndrome (ARDS), severe
interstitial pneumonia, and subsequent multi-organ failure, which have high mortality
rates [17]. As there is currently no cure for COVID-19, many infection-control measures
have been implemented. However, previous attempts in past years to deal with MERS-
CoV have resulted in considerable improvements in hospital infection control practices.
Multiple countries have used non-pharmaceutical interventions (NPIs) to inhibit the spread
of the virus [18]. Simultaneously, several vaccinations and anti-virals have been researched
and prioritized by scientists globally. Multiple vaccine programs have been effective in
clinical trials using recombinant DNA, mRNA, live attenuated virus, S-protein subunits,
virus-like particles, and viral vectors across multiple vaccine initiatives [19]. Most of these
efforts were inherited from SARS-CoV and MERS-related to create a vaccine against the
novel coronaviruses. SARS-CoV-2 utilizes the same receptor as SARS-CoV on the host cell,
specifically, human Angiotensin Converting Enzyme 2 (hACE2), and shares around 79%
genetic similarity with SARS-CoV [2].

3. Source of Information

The use of COVID-19 computer vision diagnostic tools from a number of imaging
modalities, including X-ray, ultrasound, and CT, can provide doctors with an automated
second reading, facilitating the diagnosis of COVID-19 patients [20]. Because image clas-
sification techniques are regarded as a low-cost and accurate diagnostic tool, a number
of datasets have been created to aid research in the field of COVID-19 diagnosis. These
datasets include images from X-rays, CT scans, and ultrasounds. The most common type
of published dataset are X-ray datasets, followed by CT scans, then ultrasounds. The
following sections discuss the most commonly used dataset types.

3.1. X-ray

X-rays are a form of electromagnetic wave radiation. They penetrate the body to
generate a two-dimensional image of the inside of the human body. X-ray images portray
various body parts in black and white. This occurs due to the differences in various tissues
with regard to absorbing different amounts of radiation. Therefore, bones appear as white
because the calcium in bones absorbs most X-rays. In addition, the color of hard films
appears grey because of the diminished light absorption of fat and other soft tissues. In
contrast, the lungs appear black because of the very X-ray low absorption of air [21]. X-ray
imaging is a low-cost method for detecting lung infections, and can be used to diagnose
COVID-19. In X-ray images of COVID-19 patients, patchy infiltrates or opacities that
resemble other viral pneumonia symptoms are commonly observed. Usually, there are no
abnormalities shown in X-ray images during the early stages of COVID-19; however, the
symptoms gradually appear as a characteristic unilateral patchy infiltration at the mid-zone
and upper or lower zone of the lungs, with indications of consolidation on occasion [20].
Despite this, there are many limitations of X-ray datasets, such as the limited number of
available X-ray scans labeled as positive COVID-19 infections. Furthermore, no unified
data, classes, or evaluation protocols have been presented. Regardless, numerous X-ray
datasets have been published to improve COVID-19 detection techniques. Table 1 lists and
briefly describes a number of COVID-19 related X-ray datasets.
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Table 1. COVID-19 X-ray Image Datasets.

Datasets Description Source References

COVID-19, SARS,
MERS X-ray Images
Dataset

Includes 423 COVID-19, 134 SARS,
and 144 MERS images with the
corresponding lung masks

Developed by researchers from
Qatar University and the University
of Dhaka

Yazan Qiblawey (2022)
Last updated: 12 January 2022
http://doi.org/10.34740/kaggle/dsv/
3034344

COVID-19
Pneumonia-Normal
Chest X-ray Images

Includes COVID-19, normal, and
pneumonia images

Collected from different sources
including GitHub, Radiopaedia,
The Cancer Imaging Archive
(TCIA), and the Italian Society of
Radiology (SIRM)

Sachin Kumar (2022)
Last updated: 14 June 2022
http://doi.org/10.17632/dvntn9yhd2.1

COVID-19 Digital
X-rays Forgery Dataset

Includes COVID-19, CM COVID-19,
S COVID-19, Normal images, CM
Normal, S Normal, Viral Pneumonia,
S Viral Pneumonia, and CM Viral
Pneumonia

Modified dataset from “COVID-19
Radiography Database”

Nour Eldeen Khalifa (2022)
Last updated: 17 March 2022
http://doi.org/10.17632/3bzv6t24ts.1

QaTa-COV19 Dataset

Contains two datasets: the
QaTa-COV19 Dataset (Extended)
includes 9258 COVID-19 chest X-ray
images, while the
Early-QaTa-COV19 Dataset includes
1065 chest X-rays

Developed by researchers from
Qatar university and Tampere
university

aysendegerli (2022)
Last updated: 22 February 2022
https://www.kaggle.com/
aysendegerli/qatacov19-dataset

Chest X-ray Dataset for
Respiratory Disease
Classification

Includes five classes from 32,687
chest X-ray radiography images
with reasonable resolution
(COVID-19, pneumonia,
tuberculosis, lung opacity, and
normal)

Combination of multiple different
datasets gathered from diverse
sources

Harvard Dataverse (2022)
Last updated: 10 February 2022
http://doi.org/10.7910/DVN/WNQ3GI

COVID Pneumonia
dataset

Includes 1950 X-ray images with
three classes (COVID, normal, and
pneumonia)

Italian Society of Medical,
Radiopaedia, and NIH Clinical
Center

Redwanul Islam (2022)
Last updated: 3 January 2022
https://www.kaggle.com/redwan101
0/covid-pneumonia-dataset

xray-binary-covid
Processed COVID-19 X-ray images
for DL models. Includes 2000
COVID and 2000 normal images

Information is not available

Aravind Lade (2022)
Last updated: 8 February 2022
https://www.kaggle.com/
aravindlade/xray-binary-covid

COVID-19 Chest X-ray
Image Repository

Includes 900 images. Several of the
images are of children or early-stage
patients for whom the radiologist
noticed no unique imaging findings

Gathered from a variety of online
sources

Arman Haghanifar; Mahdiyar
Molahasani Majdabadi; Seokbum
Ko (2022)
Last updated: 2 February 2022
http://doi.org/10.6084/m9.figshare.12
580328.v3

COVID-19
Radiography Database

Includes lung masks and 3616
COVID-19 chest X-ray pictures

Developed by researchers from
Qatar University, and the
University of Dhaka along with
their Pakistani and Malaysian
counterparts, and medical
practitioners conducted the study

Tawsifur Rahman (2022)
Last updated: 19 March 2022
https:
//www.kaggle.com/tawsifurrahman/
COVID19-radiography-database

X-ray Image Dataset
For COVID-19
Detection (A)

Includes 392 X-ray images (COVID
and normal)

Collected from
“COVID-chestxray-dataset” in
GitHub and
“chest-xray-pneumonia” in kaggle

Mohammed Ali-11 (2022)
Last updated: 22 March 2022
https://www.kaggle.com/datasets/
mohammedali11/xray-image-dataset-
for-covid19-detection-a

Curated COVID-19
Chest X-ray Dataset

Includes 9208 chest x-rays (normal,
COVID-19, and pneumonia)

Derived from the “Curated Dataset
for COVID-19 Posterior-Anterior
Chest Radiography Images
(X-rays)”

Francis Jesmar Montalbo (2022)
Last updated: 25 March 2022
https://www.kaggle.com/datasets/
francismon/curated-covid19-chest-
xray-dataset

COVID-19 Pakistani
Patients X-ray Image
Dataset

Includes 390 COVID-19 and 60
normal chest X-ray Images

Developed by researchers from
Edinburgh Napier University UK,
HITEC University Taxila, and
PNEC Karachi, Pakistan along with
their collaborators from Kingdom
of Saudi Arabia and in
collaboration with medical doctors

Muhammad Shahbaz Khan (2022)
Last updated: 21 May 2022
https://www.kaggle.com/datasets/
muhammadshahbazkhan/covid19-
pakistani-patients-xray-image-dataset

3.2. Computed Tomography (CT)

CT was the first non-invasive radiological approach to allow for the creation of to-
mographic images of all parts of the human body without superposition of nearby struc-

http://doi.org/10.34740/kaggle/dsv/3034344
http://doi.org/10.34740/kaggle/dsv/3034344
http://doi.org/10.17632/dvntn9yhd2.1
http://doi.org/10.17632/3bzv6t24ts.1
https://www.kaggle.com/aysendegerli/qatacov19-dataset
https://www.kaggle.com/aysendegerli/qatacov19-dataset
http://doi.org/10.7910/DVN/WNQ3GI
https://www.kaggle.com/redwan1010/covid-pneumonia-dataset
https://www.kaggle.com/redwan1010/covid-pneumonia-dataset
https://www.kaggle.com/aravindlade/xray-binary-covid
https://www.kaggle.com/aravindlade/xray-binary-covid
http://doi.org/10.6084/m9.figshare.12580328.v3
http://doi.org/10.6084/m9.figshare.12580328.v3
https://www.kaggle.com/tawsifurrahman/COVID19-radiography-database
https://www.kaggle.com/tawsifurrahman/COVID19-radiography-database
https://www.kaggle.com/tawsifurrahman/COVID19-radiography-database
https://www.kaggle.com/datasets/mohammedali11/xray-image-dataset-for-covid19-detection-a
https://www.kaggle.com/datasets/mohammedali11/xray-image-dataset-for-covid19-detection-a
https://www.kaggle.com/datasets/mohammedali11/xray-image-dataset-for-covid19-detection-a
https://www.kaggle.com/datasets/francismon/curated-covid19-chest-xray-dataset
https://www.kaggle.com/datasets/francismon/curated-covid19-chest-xray-dataset
https://www.kaggle.com/datasets/francismon/curated-covid19-chest-xray-dataset
https://www.kaggle.com/datasets/muhammadshahbazkhan/covid19-pakistani-patients-xray-image-dataset
https://www.kaggle.com/datasets/muhammadshahbazkhan/covid19-pakistani-patients-xray-image-dataset
https://www.kaggle.com/datasets/muhammadshahbazkhan/covid19-pakistani-patients-xray-image-dataset


Diagnostics 2022, 12, 3171 5 of 24

tures [22]. CT can be used to scan the body by using X-rays to obtain comprehensive
cross-sectional images. These various images are then combined to create 3D images.
During CT scanning, the patient lies on a table. Slowly, the table moves across the center of
a gigantic X-ray machine. CT scans can provide images of every parts of human anatomy,
including organs, bones, and blood vessels, which are in turn used by doctors to assist in
diagnosing and managing a wide range of medical issues [21]. CT scanning is the most
widely recommended screening tool for early COVID-19 detection, as it is a highly viable
technology for this purpose. However, there are obvious practical disadvantages to CT,
such as need for the patient to be exposed to excessive radiation, high cost, availability of
advanced equipment, the necessity for extensive sterilizing, and limitations with respect
to patient mobility [23]. CT scan datasets have been primarily used to segment specific
thoracic regions in order to diagnose COVID-19 patients. Table 2 summarizes relevant CT
image datasets.

Table 2. COVID-19 CT Image Datasets.

Datasets Description Source References

COVID-CTset: A Large
COVID-19 CT Scans
dataset

Includes 63,849 CT images of 377
patients (15,589 obtained from 95
COVID-19 patients and 48,260 CT
scan from 282 normal individuals).
One of the largest COVID-19 CT
scan datasets for AI researchers

Iran’s Negin medical center, located
in the city of Sari

Mohammad Rahimzadeh (2022)
Last updated: 7 March 2022
https://www.kaggle.com/
mohammadrahimzadeh/covidctset-a-
large-covid19-ct-scans-dataset

HRCTv1-COVID-19

Includes 181,106 images obtained
from 395 patients: GGO (288 cases),
Crazy Paving (57 cases), and Air
Space Consolidation (27 cases), as
well as 23 cases with a negative
diagnosis

Sfahan University of Technology,
Arak University of Medical
Sciences, Isfahan University of
Medical Sciences, Islamic Azad
University Science and Research
Branch

Iraj abedi (2022)
Last updated: 5 May 2022
http://doi.org/10.17632/nc5g3zs7g7.2

COVID-19 CT Dataset Includes 368 medical findings in
Chinese and 1104 chest CT scans

Constructed by Shenzhen Research
Institute of Big Data (SRIBD),
Future Network of Intelligence
Institute (FNii) and CUHKSZ-JD
Joint AI Lab

Chinese University of Hongkong,
Shenzhen, China (2022)
https://paperswithcode.com/dataset/
covid-dataset accessed on 7 December
2022

COVID-19 Omicron
and Delta Variant Lung
CT Scans

Includes 14,482 CT scans (12,231
positive for COVID-19 and 2251
negative); data are available as
512 × 512 px JPG images

Collected from patients in radiology
centers of teaching hospitals of
Tehran, Iran

M Amir Eshraghi (2022)
Last updated: 7 February 2022
https://www.kaggle.com/
mohammadamireshraghi/covid19-
omicron-and-delta-variant-ct-scan-
dataset

3.3. Ultrasound

Ultrasound, often known as sonography, is a type of imaging. Ultrasonic instruments
are commonly employed by healthcare professionals. The use of ultrasound imaging in
medical diagnosis is widely established due to its noninvasive nature, low cost, capacity
to produce real-time images, and ongoing improvement in image quality. It examines
internal bodily organs and structures using high-frequency sound waves [21]. Unlike
X-rays, ultrasound does not expose patients to radiation. The patient lies on a table for
an ultrasound test. Meanwhile, a transducer is moved across the body by a professional
technician or doctor. Sound waves are emitted by the transducer and bounce off the tissues
inside the body. The waves that bounce back are likewise recorded by the transducer. The
ultrasound equipment generates images based on the sound waves [21]. Depending on
how the ultrasonic scanner is configured, it can produce real-time tomographic images of ul-
trasound scattering, real-time images of blood and tissue mobility, elasticity, and tissue flow
(perfusion). All these images are constructed line by line by delivering ultrasonic pulses
into the tissue and capturing the reflected radiofrequency signals. When an infection occurs
in its early stages, ultrasound can detect pleural and interstitial thickening, subpleural
consolidation, and other physiological events associated with changes in the lung structure.
According to studies, the major criteria enabling COVID-19 detection are anomalies in
bilateral B-lines and recognizable lesions in the bilateral lower lobes [23]. There are various
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https://www.kaggle.com/mohammadamireshraghi/covid19-omicron-and-delta-variant-ct-scan-dataset
https://www.kaggle.com/mohammadamireshraghi/covid19-omicron-and-delta-variant-ct-scan-dataset
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limitations on ultrasound imaging that restrict its effectiveness for lesional detection and as
a guiding technique, including:

1. Image acquisition is user dependent.
2. The field of view is limited.
3. Ultrasound images are typically acquired off-plane compared to the true axial, sagittal,

or coronal planes, resulting in difficulty in correlating them with other cross-sectional
imaging methods.

4. Lesional identification can be difficult due to its echogenicity relative to the organ that
is scrutinized.

5. The quality of imaging can be affected by the physical characteristics of the patient [24].

Regardless of their benefits, ultrasound datasets are rarely used. Table 3 provides
descriptions of datasets from the literature.

Table 3. COVID-19 Ultrasound Image Datasets.

Datasets Description Source References

Data from: Use of lung
ultrasound in neonates during
the COVID-19 pandemic

Includes 27 ultrasound images of the
lungs of newborns with a suspected or
confirmed diagnosis of COVID-19,
differentiating between disease-related
and non-disease-related alterations

-

Marcia Wang Matsuoka (2021)
Last updated: 25 March 2021
http://doi.org/10.6084/m9.figshare.14
278767.v1

COVID-19 Dataset Includes ultrasound images grouped as
COVID, pneumonia, and regular Kafrelsheikh University

Ahmed sedik (2020)
Last updated: 9 May 2022
http://doi.org/10.17632/6rs5mnvktk.1

4. Related Surveys

The use of DL for COVID-19 detection has been covered in a number of studies, either
exclusively, such as in [25–28], or implicitly, such as in [6,14,29,30].

Shoeibi et al. [6] used DL networks to conduct a comprehensive review of completed
COVID-19 diagnosis studies. This study discussed the public datasets that can be used to
diagnose and predict COVID-19. In addition, the authors provided the most advanced DL
approaches used for COVID-19 diagnosis, segmentation, and forecasting. However, their
discussion of the datasets used was brief and superficial. Aside from not being exhaustive,
the DL algorithms for the detection stage have been covered in a number of other related
works, and the description of the segmentation phase is relatively brief.

Bhattacharya et al. [14] summarized the most recent research on DL applications
for COVID-19 medical image processing. The authors present an outline of DL and its
applications to healthcare that have been discovered in the recent decade. Following that,
they describe many of the obstacles and issues associated with DL implementations for
COVID-19 medical image processing. However, there is no comprehensive discussion of
the outlined state-of-the-art of the stages prior to detection. Moreover, the paper does not
include a comparative discussion of other closely related surveys.

Alghamdi et al. [26] presented a comprehensive review of the diverse DL methods
used to detect COVID-19 via X-ray images and CT scans. Additionally, the most preva-
lent pretrained CNN architectures were described. However, when compared to the DL
architecture modeling with the methodologies used to explain classification decisions,
which is provided in a separate section, their classification criterion lacks clarity and in-
terpretability. Furthermore, most of the papers examined concentrate solely on transfer
learning methodologies.

Chen et al. [29] investigated AI-based imaging analysis methods for COVID-19 as well
as chest imaging analysis of two common viral pneumonias that can serve as a reference
for COVID-19 analysis. In addition, methods for AI-assisted CXR imaging analysis for
COVID-19 were discussed. However, their survey categorization is complicated by its
combining of the image processing, image segmentation, and image extraction stages into
one section. Aside from the fact that it is not exhaustive, the segmentation and extraction
processes are duplicated in another section, which appears repetitive and inconsistent.

http://doi.org/10.6084/m9.figshare.14278767.v1
http://doi.org/10.6084/m9.figshare.14278767.v1
http://doi.org/10.17632/6rs5mnvktk.1
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Aishwarya et al. [31] investigated various COVID-19 detection techniques based on
ML and DL that can assist clinicians and doctors in swiftly identifying COVID-19 cases.
The authors reviewed several DL techniques, including 3D and 2D analysis of chest CT
images. Meanwhile, thet examined ML approaches using models such as RF, ARIMA,
SVR, CUBIST, and Gradient Boosting to make precise predictions. However, their survey
focused on the architecture of DL, which appears to have been replicated and addressed in
other survey studies, with no meaningful insights from the survey discussed.

Sufian et al. [27] tried to bring potentialities and challenges of deep transfer learning,
edge computing and their related issues to the topic if mitigating the COVID-19 pandemic.
They proposed a conceptual combined model and presented its scope and the future
challenges of working at critical sites and real data. However, the main aim of the study
was limited to DL implementation. This work does not specifically address the initial
phases prior to detection. Specifically, their investigation of related articles was insufficient.

Khan et al. [30] presented a comprehensive review of DL techniques based on image
and region-level analysis of COVID-19 infection. The taxonomy of the survey study
demonstrates the efficacy of classification, segmentation, and multi-stage techniques for
detecting and diagnosing COVID-19 infection from radiological images. They provide an
overview of each study by detailing the dataset, the number of classes, partitioning, model
structure, and the performance evaluation criteria. Nonetheless, there is no explanation of
the other aspects of the proposed taxonomy, such as the preprocessing phase. Furthermore,
several of their classification criteria may require clarification.

Subramanian et al. [28] investigated the existing DL methods for detecting COVID-19
from lung images by summarizing the datasets used by each method. They classified the
material into three categories: transfer learning and fine-tuning, innovative architecture,
and alternative techniques. The approaches used for each category are listed as well.
Finally, the challenges of using DL methods for COVID-19 detection are discussed, as well
as potential future trends in this research area. Most of their discussion of the surveyed
publications is limited to datasets. Furthermore, COVID-19 detection phases such as
preprocessing, segmentation, and augmentation are only briefly studied, and in a relatively
limited area.

Shyni and Chitra [32] assessed recent DL techniques for COVID-19 diagnosis, em-
phasizing the significance of preprocessing medical images, transfer learning, and data
augmentation techniques to address data scarcity issues. Furthermore, the use of pre-
trained models to reduce time was summarized, as well as the importance of medical
imaging in the automatic detection of COVID-19. This article discusses the potential of
developing highly effective CNN models using medical images for disease detection. How-
ever, these phases are only considered in a limited way, and the state-of-the-art in each
phase is not mentioned. Furthermore, the survey is focused on DL architecture, which
appears to have been replicated and addressed in other survey research.

In contrast, our work carefully investigates each stage from a variety of aspects, includ-
ing image preprocessing, augmentation, segmentation, and feature extraction. Additionally,
we look at different information sources pertinent to needs and difficulties. Modern pre-
trained algorithms that extract key features using transfer learning are examined as well.
The following Table 4 compares current surveys of COVID-19 detection approaches to our
study in key areas.
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Table 4. Comparison of existing related survey papers.

References
Preliminary Stages Before the Detection Process

Database Description
Preprocessing Augmentations Segmentation Feature Extraction

[6] no no yes no Brief (low)
[14] no no yes no Medium
[26] no no no no Detail (high)
[29] no no yes no Medium
[31] no no yes no Brief (low)
[27] no no no no Medium
[30] no yes yes no Detail (high)
[28] no no no no Detail (high)
[33] no no yes no Detail (high)
[32] yes yes yes no Brief (low)
Our Study yes yes yes yes Detail (high)

5. Taxonomy of the Preliminary Stages for COVID-19 Detection

A thorough analysis of the literature reveals several attempts to develop taxonomies
for COVID-19 detection using image processing techniques. Most of them use a categoriza-
tion criterion that is solely based on classification techniques. In this study, a brand-new
taxonomy for the early stages of COVID-19 detection is suggested, as shown in Figure 1.
It strives to present a thorough understanding of image processing in COVID-19 by con-
sidering all the stages required prior to the classification process. These early stages are
intended to provide strategic guidance on how to achieve high classification performance
for accurate COVID-19 detection. These preliminary stages can be broken down into four
categories: preprocessing, image augmentation, image segmentation, and feature extraction.
The breadth of all these aspects is described in the following sections.

Figure 1. Proposed taxonomy of the preliminary stages of COVID-19 detection.
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6. Preprocessing

Preprocessing stage is a key step for obtaining meaningful information in image
detection and classification [34]. Most preprocessing methods are used for such common
purposes as:

• Reducing or eliminating the impact of data variability on model performance, as
images are obtained from a variety of datasets with varied image sizes and acquisition
conditions [35].

• Improving the contrast of an image [12].
• Producing accurate and consistent findings when classifying COVID-19 from chest

images.
• Making the illness zone in the image more evident in comparison to the original image

[12].

According to the literature, the preprocessing stage includes many operations. The
following section provides a full explanation of each of them.

6.1. Image Resizing

Images must be resized and scaled because they contain many letters, medical symbols,
and art craft, and as they come from diverse sources with varying sizes [36]. In Ismael et al. [37],
input chest X-ray images were first scaled to 224 × 224 pixels for compatibility with CNN
models. Furthermore, many other researchers [35,38–49] have resized CT and X-ray images
to the same 224 × 224 size. Meanwhile, other researchers, such as [50–53], have reduced all
the images to 512 × 512 pixels in size. In addition, Jain et al. [54] observed the images in
the dataset to determine the minimum height and width. After discovering the minimum
dimension, all the dataset images can be shrunk to this size.The minimum dimension
obtained in their research was 640 × 640 pixels. Similarly, the authors of [55] trained their
proposed model using a dataset consisting of 200 COVID-19 X-rays, 250 viral pneumonia
X-rays, and 250 normal X-rays, all of which were shrunk to 200 × 200 pixels in height and
width. Various further resizings have been carried out, including 60 × 60, 299 × 299, and
256 × 256 by [36,56,57], respectively.

6.2. Image Filtering

Filtering techniques preserve important information in an image while filtering out
any noise. Median filtering is a nonlinear filtering approach, and is commonly employed
in digital image processing due to its excellent edge keeping properties and ability to
reduce impulse noise [58]. For example, Rajaraman et al. applied median filtering for noise
removal and edge preservation to preprocess lung images via cropping [59]. Furthermore,
Jamil et al. were able to eliminate any visible noise from X-ray images using 2D Gaussian
filtering [60], while Arias et al. [38] reduced unnecessary information from X-ray images for
lung segmentation by filtering the images according to frontal and lateral image projections.
A modified anisotropic diffusion filtering (MADF) approach was applied in [34] to preserve
delicate information while minimizing noise and distortion in the image.

6.3. Color Space Transformation

In the field of computer vision, color-based transformation methods are commonly
used for image enhancement [12]. In [61,62], the authors shown that preprocessing using
fuzzy color image enhancement technique could increase classification performance greatly.
Ahsan et al. [34] converted X-ray images from RGB to grayscale and identified the region
of interest (ROI) by removing the unwanted regions. According to [62], data from X-ray
images can be reconstructed using the fuzzy color technique, followed by stacking of
the images in a structure with the original images. The fuzzy color method works by
dividing the supplied data into blurred windows. Each pixel in the image has a degree
of membership with respect to each window, which is determined based on the distance
between the pixel and the window. The membership degrees are used to calculate image
variance. In this stage, the weights of the images of each blurred window are added
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together, and the output image is produced using the average. The degree of membership
is used to indicate the weight value of each pixel. The color conversion method is applied
to convert RGB images to grayscale. In [56], all CT images of patients were converted
to grayscale.

6.4. Normalization and Rescaling

Normalization of data is an important step in the preprocessing stage, and is commonly
employed in DL models to preserve numerical stability. For example, a CNN model can
be trained faster and its gradient descent is more stable if the data are normalized [41].
ImageNet statistics have been used by several authors, including [53,54]. In Jain et al. [54],
each pixel of three channels in an image was normalized. For example, channel 1 has
a mean of 0.485 and a standard deviation of 0.229, channel 2 has a mean of 0.456 and a
standard deviation of 0.224, and channel 3 has a mean of 0.406 and a standard deviation of
0.225. Other researchers, such as [41,42], have rescaled the pixel value of the image to the
interval [0, 1]. In [51], the authors used min-max scaling to normalize the pixels to [0, 1],
then subtracted 0.5 from each pixel. As a result, the pixel values were adjusted to [0.5, 0.5].
Furthermore, [47,52,63] standardized all pixel values to a range of [0, 1] based on min–max
feature scaling.

6.5. Image Enhancement

In [64], contrast enhancement was conducted separately on each image in the original
dataset using the image contrast enhancement method throughout the process of construct-
ing the enhancement dataset. The noise in the original dataset was wholly eliminated in
this manner, resulting in the best contrast. The image contrast enhancement technique was
first developed as a solution for unclear X-ray images [64].

7. Data Augmentation

To achieve consistent results, classification models require a significant amount of
data, as they have been shown to perform better on larger datasets. On the other hand,
there are very few training samples available in medical imaging datasets, and obtaining
substantial amounts of medical data is challenging. This is a major concern when utilizing
DL algorithms to interpret medical images, as it can be very costly and time-consuming [65].
Therefore, data augmentation is used to address these issues [65]. Data augmentation is a
technique for increasing the number of samples by applying a series of transformations [12]
while maintaining class labels. Augmentation increases image variability [41] and helps to
avoid over-fitting [65]. Data augmentation can further enhance the performance of training
models, thereby producing more impactful results [66]. There are two categories of data
augmentation, namely, the traditional and DL approaches.

7.1. Traditional Data Augmentation Approach

Traditional data augmentation methods include geometric transformations and photo-
metric transformations.

7.1.1. Geometric Transformations

Several geometric transformation techniques have been used to improve DL models in
recent studies of COVID-19 detection from images. Examples of these techniques include
flipping, cropping, rotation, translation, zooming, shifting, scaling, and noise injection.
While most researchers use two or more techniques, others use only one technique. For
instance, in [67], flipping, zooming, and width shifting were used as data augmentation
techniques to reduce the bias caused by the properties of CXR images. Joshi et al. [66]
used image scaling and rotation to increase the original dataset CXR images by five. Their
findings indicate that augmentation leads to improved performance. Chowdhury et al. [68]
presented a collection of three recently published public X-ray datasets and achieved 98%
accuracy using rotation, scaling, and translation.
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Ibrahim et al. [42] used flipping, rotating, and skewing to increase the number of
training images at two points, first in dataset preparation and then in data preprocessing, in
order to attain efficient and reliable accuracy.Augmentations were applied twice to increase
dataset size, which in turn has an impact on system accuracy.

Ahuja et al. [69] proposed a novel data augmentation method on a CT image dataset
based on three levels of stationary wavelet transformation to solve overfitting problems.
Subsequently, images were randomly rotated, sheared, and translated. Their results showed
that this model’s accuracy outperforms alternatives even in the absence of the novel data
augmentation method.

Yoo et al. [70] used a variety of data augmentation techniques to improve CNN model
training and classification accuracy using a variety of chest X-ray datasets. The images were
rotated, translated, and flipped horizontally. In certain cases, translation and rotation were
used simultaneously. Similarly, Abbas et al. [71] employed the same techniques (flipping,
rotating, and translating). In [65], the authors used different augmentation methods to
prevent over-fitting in order to classify COVID-19-infected patients using chest X-rays.
These methods included rotation, zooming, and image sharing.

The images in [41] were enhanced using four techniques: rotation, scaling, horizontal
flipping, and addition of Gaussian noise. As a result, the training set was expanded to five
times the size of the initial training set.

Furthermore, other studies have applied augmentation to the same dataset more than
once in order to expand it and increase model accuracy. As an illustration, the number
of training images was increased in [42] using augmentation techniques such as flipping,
rotating, and skewing in two stages, first dataset preparation and then data preprocessing.
The results showed that the increase in accuracy was both efficient and consistent.

7.1.2. Photometric Transformations

Photometric transformations are used less frequently than the methods described
above. They include blurring, sharpening, and adjusting the brightness and contrast.
Images can be enhanced using these augmentation techniques to create a generalized model
by incorporating potential image variability caused by various imaging conditions [72].
Various random photometric transformations with random parameters, such as sharpening,
Gaussian blur, brightness, and contrast adjustment, have been used. In [68,73,74], data
augmentation techniques were used to avoid model overfitting, with different variants of
the source images generated by applying random photometric transformations such as
blurring, sharpening, and contrast adjustment. It can be observed that previous studies
sometimes combine the deployment of geometric transformation methods with photometric
transformations methods. For example, in [53], the authors used data augmentation
techniques to increase the number of training samples and improve generalizability. The
augmentation process they used included cropping, probability blur, adding a random
amount of Gaussian noise, changes in brightness and contrast, and random horizontal
flipping. In [75], the authors implemented augmentation techniques such as cropping,
blurring, adding a random amount of Gaussian noise, brightness and contrast changes, and
random horizontal flipping in order to effectively increase the number of training samples
for improved generalizability. However, it was reported that rotation and shearing had a
negative impact on performance, and thus these augmentation methods were avoided.

7.2. Deep Learning Data Augmentation Approach

The size and diversity of datasets used to train DL models should be increased to
better detect COVID-19. Another augmentation technique based on DL techniques that has
been implemented by a number of researchers involves Generative Adversarial Networks
(GAN). For example, in [76], the authors applied two data augmentation methods based
on basic image alterations and GANs to improve COVID-19 detection from X-ray and
CT images. Similarly, in [77], a GAN was used to overcome over-fitting problems and to
generate more images from a limited X-ray image dataset.
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Alternatively, other researchers have applied both traditional and DL augmentation
approaches. For example, Chowdhury et al. [68] applied two different augmentation
approaches to X-ray images, using both rotation and translation to generate a balanced
training set for CNN models. Sedik et al. [76] used a variety of traditional image transfor-
mation methods along with the data augmentation capability of GANs to multiply the size
of the dataset by ten. Their results showed improvements in detection accuracy, logarithmic
loss, and testing time compared to results obtained without the use of augmented data. In
a similar vein, Loey et al. [78] recommended combining traditional data augmentations
with CGAN to increase the number of CT images and improve classification performance.

Although data augmentation is widely used in detecting COVID-19 from images, it
should be noted that there are studies that do not use data augmentation to detect COVID-
19, raising debate concerning the use of data augmentation in general. However, none of
these studies explain why particular augmentation steps were included or excluded, and
most studies do not compare models before and after augmentation (Table 5).

Table 5. Summary of augmentation methods.

Augmentation Methods Purpose Augmentation Techniques Dataset Author

Reduce the bias caused by the properties
of CXR images flipping, zooming, shifting CXR images [67]

Increase dataset size rotating, scaling CXR images [66]
Propose a robust technique for automatic
detection of COVID-19 pneumonia rotating, scaling, translation X-ray images [68]

Increase dataset size to achieve efficient
and consistent accuracy flipping, rotating, skewing X-ray and CT

images [42]

Geometric
Transformations Solve overfitting problem rotating, shearing, translation, novel

data augmentation CT images [69]

Improve CNN model training and
classification accuracy flipping, rotating, translation X-ray images [70]

Generate more samples flipping, rotating, translation X-ray images [71]
Prevent overfitting rotating, zooming, shearing. X-ray images [65]

Increase training set size flipping, rotating, scaling, Gaussian
noise addition X-ray images [41]

Enhance images sharpening, blurring, brightness,
contrast adjustment X-ray images [72]

Photometric
Transformations Avoid model overfitting blurring, sharpening, contrast

adjustment CT images [73,74]

Avoid model overfitting blurring, sharpening, contrast
adjustment X-ray images [68]

Geometric and
Photometric
Transformations

Increase training samples and improve
generalization

cropping, blurring, Gaussian noise
addition, brightness and contrast
adjustment, flipping

CXR images [53]

Increase training samples and improved
generalization

cropping, blurring, Gaussian noise
addition, brightness and contrast
adjustment, flipping

CT images [75]

DL Augmentation
Improve COVID-19 detection Augmentation based on basic image

alteration and GANs
X-ray and CT
images [76]

Overcome overfitting problem and
generate more images GAN X-ray images [77]

Generate a balanced training set Rotation and translation (CNNs) X-ray images [68]

Traditional and DL
Augmentation

Assess data augmentation impact on the
accuracy of COVID-19 detection

Variety of traditional image
transformations and GANs

X-ray and CT
images [76]

Generate additional images and improve
classification performance.

Traditional data augmentations with
CGAN CT images [78]

8. Segmentation

The term “segmentation” refers to the division of an image into separate sections.
Segmentation is considered a second type of computer-aided diagnosis system that involves
splitting X-ray and CT scan images into meaningful areas. It delineates the regions of
interest (ROI), such as lung, lobes, bronchopulmonary segments, and infected regions [79].
In addition, segmented areas can be utilized to extract features for diagnosis and other
applications. In ROI, lung region-oriented methods (i.e., separate total lung and lung lobes
from other background regions in a CT or X-ray) are considered a prerequisite step in
COVID-19 detection [80,81]. The lesion lung region methods aim to separate the affected
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region from other lung regions [81,82]. Due to small variations in shape and texture of the
lesion region, it is necessary to locate the affected region, which is regarded as a difficult
detection challenge [79].

There are two types of segmentation: traditional segmentation and classification
segmentation.

8.1. Traditional Segmentation

In [37], Local Binary Patterns (LBP), Frequency Decoded LBP (FDLBP), Quaternionic
Local Ranking Binary Pattern (QLRBP), Binary Gabor Pattern (BGP), Local Phase Quan-
tization (LPQ), Binarized Statistical Image Features (BSIF), Census Transform Histogram
(CENTRIST), and Pyramid Histogram of Oriented Gradients (PHOG) were all considered
for comparison purposes. The BSIF with SVM classifier produced a 90.5% accuracy score
using the local texture descriptors. The use of temporal and spatial data in two-stage object
detection significantly improved the performance of micro-lesion detection.

8.2. Deep Learning Segmentation

Deep learning-based AI solutions have been developed to help radiologists with their
work and to enhance segmentation accuracy. CT scans produce high-quality 3D images; DL
is commonly used to segment ROIs in CT. Although, X-rays are more generally available
than CT images, the segmentation of rib projections onto soft tissues in 2D often confuses
the image contrast, making X-ray image segmentation more difficult. DL models such as
Fully Convolutional Network (FCN), SegNet, U-Net, UNet++, VB-Net, and Res2Net have
been used to segment the lung region of X-ray and CT images for COVID-19 detection, and
are briefly discussed below.

• The FCN architecture has been employed for lung segmentation in COVID-19 patients.
In this architecture, FC layers are replaced with convolutional layers to record the
output as a local map. These maps are up-sampled using the previously mentioned
method, which employs backward convolution learning with certain stride size. A 1
× 1 convolution layer at the network’s end produces the corresponding pixel label as
the output. The output detail quantity of this layer is constrained by the current stride
size in the deconvolution stage. Several skip connections have been introduced to the
network from the lower levels to the end layer to address this issue and improve the
quality of the results [83].

• The SegNet decoder is designed in such a way that an up-sampling layer is positioned
in the decoder for each down-sampling layer in the encoding section, unlike the
deconvolution layers in FCN networks. These layers are incapable of learning; when
the extraction values of the maximum pooling layer are located, and the remaining
output cells are set to zero [84].

• While the U-Net network has the same amount of pooling and up-sampling layers as
SegNet, it uses trainable deconvolution layers instead. In addition, the up-sampling
and down-sampling layers in this network have a matching skip connection [85]. For
COVID-19 diagnosis applications, U-Net is a widely utilized technique for segmenting
both lung regions generally and affected lung regions [82,86,87].

• The Res2Net module separates feature maps into numerous subsets and processes
them through a set of 3 × 3 filters after 1 × 1 convolution. The outputs are combined,
then 1 × 1 convolution is applied. The set of this process is residually structured, and
it is consequently called the Res2Net module. The scale dimension (the number of
feature groups in the Res2Net block) is a parameter included in this module; as the
scale increases, the model learns features with larger receptive field sizes. Res2Net can
be used in conjunction with current modules such as cardinality dimension, squeeze,
and excitation. In addition, it can be easily combined with several other models, such
as ResNeXt, ResNet, DLA, and Big Little Net [88].

• UNet++ is made up of an encoder and a decoder that are linked together by a sequence
of layered dense convolutional blocks. Prior to fusion, the semantic gap between the
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encoder and decoder feature maps are bridged. The encoder extracts feature by down-
sampling, while the decoder maps feature to the original image by up-sampling and
performs pixel classification to achieve the goal of segmentation. Zhou et al. [89]
developed UNet++, which is significantly more sophisticated than U-Net, as it inserts
a nested convolutional structure between the encoding and decoding paths. Clearly,
such a network can increase segmentation performance. Consequently, the training
process is more difficult.

• VB-Net is a modified three-dimensional convolutional neural network that integrates
V-Net 14 and the bottleneck structure of V-Net 15. VB-Net is divided into two path-
ways. The first is a contracting path that uses down-sampling and convolution to
extract global image features. The second is a broad approach that includes up-
sampling and operations to combine fine-grained image data. A bottleneck structure
is implemented into VB-Net 15, which makes it much faster than V-Net 14 in terms
of speed. A three-layer stack is used in the bottleneck design. The first layer, with a
1 × 1 × 1 kernel, reduces the number of channels and feeds the data for a conventional
3 × 3 × 3 kernel layer processing, then the channels of the feature maps are restored by
another 1 × 1 × 1 kernel layer. The three layers utilize 1 × 1 × 1, 3 × 3 × 3, and 1 × 1
× 1 convolution kernels. The model size and inference time are significantly decreased
by combining and minimizing the feature map channels and cross-channel features,
which are efficiently fused by convolution. As a result, VB-Net is more suitable for
handling huge amounts of 3D volumetric data than the classic V-Net.

Many papers have considered segmentation as a crucial step in diagnosing COVID-19
from medical images. However, there are currently only a few segmentation studies that
are directly related to COVID-19. In this study, DL segmentation strategies for COVID-19
detection from X-ray and CT images are summarized.

Arias-Garzón et al. [38] utilized three X-ray image datasets, namely, the Montgomery
dataset (138 images), JSTR dataset (240 images), and NIH dataset (100 images), to train
U-Net models for segmentation. Despite the seeming lack of data, the volume and variety
of images were sufficient to generate a useful segmentation model. For evaluating seg-
mentation tasks, the Dice coefficient and Interception Over Union (IoU) measures showed
0.96% and 94%, respectively. For the detection of COVID-19, the VGG19 classification
model was trained using transfer learning, and the results showed an accuracy of 97%.
Zheng et al. [86] proposed a weakly supervised 3D Deep Convolutional Neural Network
for recognizing COVID-19. U-Net was used to segment the lung areas in each CT vol-
ume. The DL algorithm obtained an accuracy of 90%. Wang et al. [90] proposed a lesion
segmentation method combining a Deep Supervised Classification Network (DeCoNet)
and unsupervised connected component activation regions. In [91], VB-Net was proposed
for segmenting and quantifying lesion regions in CT images, which is necessary in order
to evaluate disease development and examine COVID-19 longitude. A Dice similarity
coefficient of 91.6% was obtained using the suggested technique. Chen et al. [92] used
UNet++ to segment the appearance of impacted regions, achieving a per-patient accuracy
of 95.24%.

The authors of [68] provided a CT scan-based classification segmentation technique
for COVID-19 screening. Subsequently, the application of DL approaches without transfer
learning were introduced to tackle the problem of deficient and imbalanced quantity of
CXR images in the dataset. In [93], the NABLA-N network was used to segment regions
affected by the virus from CT and X-ray images. Rajinikanth et al. [94] suggested an
image processing approach for identifying COVID-19 lesions from CT images of the lungs.
Initially, the firefly method and Shannon entropy-based multi threshold were used to
improve the detection of pneumonia lesions, with Markov random field segmentation then
used to identify COVID-19 lesions.
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9. Feature Extraction

One of the most critical steps in learning rich and informative representations from
raw input data to produce accurate and reliable outcomes is the ensuring of effective feature
extraction [95,96]. During the feature extraction phase, various features are determined
and then extracted to support the learning process of ML and DL models [76]. Each image
can generate additional features containing useful information to aid in the classification
stage [76]. According to the literature review, authors have adopted both traditional and
DL techniques for extracting features.

9.1. Traditional Feature Extraction Method

In the context of traditional image processing methods, in [97] the authors applied
mathematical morphological approaches to refine and extract the acceptable contours for
chest region extraction. Ozturk et al. [98] used four types of feature extraction methods: the
Grey Level Co-occurrence Matrix (GLCM), local binary GLCM, GL run-length matrix, and
fractal-based texture analysis. Furthermore, the Grey Level Co-occurrence Matrix (GLCM),
Local Directional Pattern (LDP), Grey Level Run Length Matrix (GLRLM), Grey Level Size
Zone Matrix (GLSZM), and Discrete Wavelet Transform (DWT) algorithms were deployed
by Barstugan et al. [99], then classified using a Support Vector Machine (SVM). Tuncer et al.
[100] developed the Residual Exemplar Local Binary Pattern (ResExLBP) feature extraction
approach with Iterative Relief (IRF) feature selection to detect COVID-19. In [72], eight
first-order statistical features (FOSF), 88 grey level co-occurrence matrix (GLCM) features,
and 8100 histogram of oriented gradients (HOG) features were employed. Each CXR image
yielded a total of 8196 features (8 FOSF, 88 GLCM, and 8100 HOG). The FOSF approach uses
the mean, variance, roughness, smoothness, kurtosis, energy, and entropy, among others,
to describe the entire image. It is able to easily measure global texture patterns, although it
does not consider local neighborhood data. The GLCM and HOG feature descriptors can
be utilized to conduct an in-depth texture analysis to solve this issue. The GLCM feature
describes the spatial correlation between pixel intensities in radiographic texture patterns
based on four unique directions (i.e., 0, 45, 90, 135 degrees), whereas the HOG feature stores
local shape/texture information.

9.2. Deep Learning Feature Extraction Based on Transfer Learning

Transfer learning is the process of transferring knowledge from one context to another
in order to enhance the generalization of a new context [101]. It aims to tackle difficult
issues for which there are insufficient data or the data labeling technique for supervised
learning is expensive. The goal of transfer learning is to make use of information gained
by studying models that have been trained using huge datasets. The knowledge acquired
from these models is transformed into a set of features and weights that can be exploited by
subsequent models with specific goals. Learned low-level features such as edges, shapes,
corners, and intensity can be shared throughout tasks, enabling the transfer of information
between tasks. In contrast to single-task models, which require similar domains with the
same distribution, transfer learning can be implemented in situations in which the domains
are different. Transfer learning can be implemented in situations involving two comparable
domains with unique tasks, or for similar tasks with different domains [102]. In these
situations, single-task models fail due to problems with generalization and over-fitting
associated with dataset training. In the context of COVID-19 feature extraction, inductive
transfer learning can be utilized to discover and infer a mapping function between image
representation and class labels to learn significant features. This necessitates a thorough
understanding of information pertinent to the source domain in order to produce rules and
assumptions to appropriately represent the domain distribution. This set of assumptions
gained from a specific source task in a specific domain can be applied to a target task in a
different domain, as shown in Figure 2.
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Figure 2. Transfer Learning process.

Pre-trained models are a collection of models that have been trained on the ImageNet
dataset, which comprises around one million images, in order to classify images into one
thousand categories. Each layer of these hierarchical designs is intended to learn different
types of features that can be extracted from any layer. Transfer learning can be utilized for
feature extraction by freezing all the hidden layers and removing the last dense layer that
is allocated for classification, as presented in Figure 3.

Figure 3. Feature Extraction using Transfer Learning.

Most of the research on COVID-19 detection has centered on utilizing pre-trained
models for feature extraction and performing extensive comparative studies between differ-
ent pre-trained model types. To perform feature extraction, this branch of study focuses on
three types of images: X-rays, CT scans, and ultrasound images. As opposed to CT scans
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and ultrasound, X-ray images are the method of choice for COVID-19 identification in most
existing studies [34,41,53,65,103]. Valid et al. [53] utilized VGG19 CNN on a pre-trained
model as a feature extractor using X-ray images to classify COVID-19 images. Their model
achieved 95% accuracy. Basu et al. [103] applied AlexNet, VGGNet, and ResNet as feature
extractors to classify X-ray images into normal, pneumonia, other disease, and COVID-19.
They found that VGGNet achieved the best results, with 90.13% overall accuracy, with
accuracy of 82.98% ± 0.02 and 85.98% ± 0.07 for AlexNet and ResNet, respectively. Ah-
san et al. [34] applied feature fusion using histogram-oriented gradient (HOG) and CNN
(VGGNet) using fine-tuning to classify COVID-19 X-ray images into COVID-19 versus
non-COVID-19. Nayak et al. [41] studied the effectiveness of eight pre-trained models
as feature extractors, with only the final FC layer being retained. The models included
AlexNet, VGG16, GoogleNet, MobileNet-V2, SqueezeNet, ResNet-34, ResNet-50, and In-
ception V3. Based on their findings, the best results were obtained by ResNet-34, with
an overall accuracy of 98.33%. Jain et al. [65] compared the performance of Inception
V3, Xception, and ResNeXt as feature extractors for the classification of X-ray images into
COVID-19, normal, and pneumonia. The Xception model provided the highest accuracy at
97.97%. Brunese et al. [104] applied VGG16 as a feature extractor to classify X-ray images
as COVID-19 or non-COVID-19, achieving 97% accuracy. It can be observed that VGG19 is
commonly used as a pre-trained model for COVID-19 X-ray feature extraction to address the
COVID-19 classification issue. Other studies that utilized CT images include [56,74,105–109].
Ardakani et al. [56] performed a competitive study to investigate the effectiveness of a set
of pre-trained models as feature extractors. These pre-trained models included AlexNet,
VGG16, VGG19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-
101, and Xception. Among all networks, the best results were achieved by ResNet-101 and
Xception. ResNet-101 achieved an AUC of 0.99, sensitivity of 100%, specificity of 99.02%,
and accuracy of 99.51%, while Xception achieved an AUC of 99.4%, sensitivity of 98.04%,
specificity of 100%, and accuracy of 99.02%. Zhou et al. [105] applied transfer learning using
three pre-trained models, namely, AlexNet, GoogleNet, and ResNet, as feature extraction
methods. In addition, they applied ensemble learning using the EDL-COVID classifier
to improve the classification results. The proposed models achieved overall accuracies of
98.16%, 98.2%, and 98.56%, respectively. Meanwhile, when using ensemble EDL-COVID,
the model achieved 99.05% accuracy. He et al. [107] created a self-transfer learning model
for classifying CT-scan images as either COVID-19 or normal. The proposed model used
contrastive self-supervised learning in conjunction with transfer learning to discover ro-
bust and unbiased feature representations in order to reduce overfitting. The proposed
model obtained an F1-score of 85% and an AUC of 94%. Ko et al. [108] applied transfer
learning to construct a fast-track COVID-19 (FCONet) network for classifying CT scans as
COVID, pneumonia, or non-pneumonia disease. The model incorporated four cutting-edge
pre-trained DL models, namely, VGG16, ResNet-50, Inception-v3, and Xception. ResNet-50
outperformed the other three models, with an overall accuracy of 99.87%. Serte et al. [109]
developed a COVID-19 classification model based on ResNet-50 and majority voting. The
proposed model was then compared to various DL models and fusion techniques. Their
results indicated that the ResNet-50 model combined with majority voting beat all other
models and fusing procedures, with an AUC of 90% and overall accuracy of 96%. Below,
Table 6 presents a summary of the state-of-the-art with respect to pre-trained models.
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Table 6. Summary of the state-of-the-art of pre-trained models.

Pre-Trained CNN Models X-rays Studies CT-Scans Studies Advantages Disadvantages

VGG-family [110] [34,41,53,103,104] [41,108]
• Allows non-linearity

through implementation
of small kernels.

• The vanishing gradient
problem.

• Slower compared to other
models.

ResNet-family [111,112] [41,54,103] [56,89,108,109]

• ResNets are deeper than
VGGs, but “skip
connections” make them
faster.

• Avoids the problem of
vanishing gradients.

Increased overhead due to:
• Batch normalization layers

implementation.
• “Skip connections” involve

managing levels’
dimensions.

Inception- family [113,114] [41,54] [56,89,108]

• Inception uses 1 × 1
convolution to minimize
dimensions in the deep
CNN before using 3 × 3
and 5 × 5 convolutions.

• Utilize various
convolutional filter sizes
to extract features at
various scales.

• Appropriate for devices
with limited
computational capability.

• Appropriate for devices
with limited
computational capability.

• Some versions of Inception,
such as V1, are susceptible
to information loss due to
the use of relatively large
filters, such as 5 × 5 filters,
which reduces the input
dimensions by a significant
margin.

AlexNet [115] [41,103] [56,89]

• The first CNN model that
utilize GPUs for training.

• Deep architecture allows
to learn significant
features compared to
LeNet.

• Increased information
retention by utilizing the
ReLU activation function.

• This shallower model
struggles to learn image
features.

• In comparison to other
models, it takes longer to
acquire greater accuracy.

MobileNet [116] [41] [56]
• Lightweight deep neural

network.
• Small in size, low-latency,

and less parameters.

• Designed for specific
applications such as
mobile and embedded
vision applications.

• Focus on light computing
at the expense of accuracy.

• Less accurate than other
state-of-the-art networks.

SqueezeNet [117] [41] [56]

• Smaller and faster
compared to other models.

• Requires less parameters.
• Requires less bandwidth.
• Efficient for distributed

training.
• More suitable to on-chip

Field Programmable Gate
Arrays (FPGA)
implementations.

• Similar to a fully connected
layer with 1 × 1 filters;
therefore, it is incapable of
spatial abstraction.

• Squeezing might hinder
the flow of information.

10. Discussion and Future Research Directions

COVID-19 is a new pandemic caused by a novel coronavirus. The World Health
Organization (WHO) has classified COVID-19 as a viral outbreak with an extremely high
danger of harming millions of lives globally, particularly those with poorer health sys-
tems. Early COVID-19 detection is extremely crucial to prevent patients’ the condition
from worsening. Therefore, DL algorithms are trained to recognize and categorize lung
images for early detection and spread prevention. The COVID-19 diagnostic system is
built in stages, beginning with image acquisition and progressing through preprocessing,
augmentation, segmentation, feature extraction, and classification. Accordingly, effective
feature extraction is one of the most important phases in learning rich and informative
representations from raw input data in order to deliver accurate and reliable results. Many
of the features described in the literature have been handcrafted by humans with the
specific goal of addressing problems such as complex backgrounds, scale differences, and
illumination. Unlike deep learning-based features, which are learned from the data, hand-
crafted features are produced in advance by human experts to extract a predetermined set
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of features. However, the key issue with handcrafted features is that they are bound to
human-defined rules that necessitate domain-specific expertise. In addition, the low-level
nature of these types of features limits their applicability to more variedf datasets and clas-
sification tasks. Moreover, handcrafted features are computationally expensive due to their
high dimensionality, especially with big data. Generally, the design of handcrafted features
requires that an optimal balance between accuracy and computing efficiency be achieved.
In terms of COVID-19 classification, texture, edge contour, statistical, and color are the
most extracted features [118]. More advanced hand-crafted feature extraction techniques
include histogram-oriented gradient (HOG), invariant feature transform (SIFT), and bag
of words (BoW). On the other hand, deep learning-based features are high-level features
learned from image data using complex operations such as convolutional operations. CNN
is considered the state-of-the-art feature extraction method for image classification at both
the pixel level and image level. It is characterized by its excellent performance and ability
to extract hidden and complex patterns without the use of a traditional image processing
pipeline [119]. CNN layers serve as a set of feature extractors that are relatively generic and
independent of single classification tasks. This is because deep learning acquires a set of fea-
tures that are directly learned from input images [120]. This facilitates the identification of
several levels of representation that can aid in semantic representation by using higher-level
features to enhance robustness and generalization. Nevertheless, one of the downsides of
CNN-based feature extraction is that it requires the selection of massive training sets, which
necessitates human effort and substantial processing power. This is because the lower
layers of a CNN extract features that are highly dependent on the input images. Multiple
forms of deep learning-based features, including end-to-end CNNs and pre-trained models,
have been used to classify COVID-19. For future work, we recommend the development
of more end-to-end CNN models and the utilization of feature fusion based on several
pre-trained models, as well as on end-to-end models, to generate more generic features and
enhance classification accuracy. In addition, handcrafted and automated features can be
combined using deep learning.

Preprocessing is another necessary step, helping to restrict the search for anomalies in
the background that could affect outcomes [121]. It can be used for image normalization
and non-uniform intensity correction to eliminate artifacts and improve the accuracy of
the subsequent processes. However, in COVID-19 detection utilizing chest images, prepro-
cessing procedures are not emphasized. Therefore, the classification stage employing a DL
algorithm has received the most attention. With respect to this phase, future recommended
work is as follows:

• Determining how to automatically choose the best parameters for the preprocessing
methods discussed in the literature (resizing, rescaling, normalization).

• Evaluating the effectiveness of COVID-19 detection systems using various preprocess-
ing techniques.

Finally, data augmentation is widely used to achieve consistent results due to the
limited availability of medical image datasets for use as training samples in the detection of
COVID-19 from images [65]. However, there are studies that do not use data augmentation
for COVID-19 detection. In addition, none of the reviewed studies explain why particular
augmentation steps were included or excluded, and most studies do not compare models
before and after augmentation. Therefore, future works on this phase should focus on
discovering the best augmentation approaches discussed in the literature, as well as the best
technical combination of these approaches. At present, the efficacy of COVID-19 detection
systems is being evaluated using several augmentation approaches.

11. Conclusions

The rapid outbreak of the COVID-19 pandemic in December 2019 has led to alarm
all over the world. Thousands of illnesses and hundreds of deaths have been reported
in practically every part of the world. One of the most crucial diagnostic techniques for
classifying and diagnosing infections in humans is RT-PCR. Additional diagnostic methods
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for diagnosing COVID-19 include X-ray images and CT scans. AI can be utilized for popula-
tion screening, alarms, infection control advice, learning-prediction models, enhanced drug
development, treatment planning, and detailing follow-up for COVID-19 patients. The
COVID-19 diagnosis system is being developed through the preprocessing, augmentation,
picture segmentation, feature extraction, and classification phases. A thorough analysis
of the literature reveals several attempts to develop taxonomies for COVID-19 detection
using image processing techniques. Most of these employ categorization criteria based ex-
clusively on classification techniques that are often focused on small or otherwise restricted
images. Thus, our review proposes a novel taxonomy for early-stage COVID-19 detection
which aims to provide a comprehensive understanding of image processing procedures
in the COVID-19 diagnostic context, with consideration of all phases required prior to
classification.
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