Classification of Systemic Lupus Erythematosus Using Raman Spectroscopy of Blood and Automated Computational Detection Methods: A Novel Tool for Future Diagnostic Testing
Abstract
:1. Introduction
1.1. Current Laboratory Testing for SLE-Associated Autoantibodies
1.2. Novel Testing Platforms for Clinical Laboratories
2. Materials and Methods
2.1. Raman Spectroscopy Study
Sample Collection and Preparation
2.2. Ethics Statement
2.3. Spectral Acquisition
2.4. Spectral Pre-Processing
2.5. Multivariate Analysis and Model Validation
2.6. Retrospective Clinical Audit of Anti-dsDNA Antibody Results in SLE Patients
2.7. Detection of Anti-dsDNA Antibodies
2.8. Data Analysis
3. Results
3.1. PCA and PCA-LDA Clustering of Raman Spectra for Discrimination of SLE Patients from Healthy Controls
3.2. Key Discriminating Wavenumbers between SLE Patients and HC
3.3. SLE Patients Successfully Segregate from HC Using PCA-LDA and PLS-DA Classification Models
3.4. PCA and PCA-LDA Clustering of Raman Spectra from Three SLE Subgroups and HCs
3.5. SLE Patient Subgroups and HC Successfully Segregate Using PCA-LDA and PLS-DA Classification Models
3.6. Retrospective Clinical Audit of Anti-dsDNA Antibody Results in SLE Patients
3.6.1. Individual Sample Relationship between Results by ELIA dsDNA and CLIFT
3.6.2. Clinical Diagnoses of Patients with Positive Anti-dsDNA Antibody Results
3.6.3. Sensitivity, Specificity, Positive Predictive Value and Negative Predictive Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1400–1412. [Google Scholar] [CrossRef][Green Version]
- Petri, M.; Orbai, A.-M.; Alarcón, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.; McLean-Tooke, A.; Loh, R.K.S. Antinuclear antibody test. Aust. Fam. Physician 2013, 42, 718–721. [Google Scholar] [PubMed]
- Rekvig, O.P. Anti-dsDNA antibodies as a classification criterion and a diagnostic marker for systemic lupus erythematosus: Critical remarks. Clin. Exp. Immunol. 2015, 179, 5–10. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Morgan, C.; Bland, A.R.; Maker, C.; Dunnage, J.; Bruce, I.N. Individuals living with lupus: Findings from the LUPUS UK Members Survey 2014. Lupus 2018, 27, 681–687. [Google Scholar] [CrossRef]
- American College of Rheumatology Guidelines for immunologic laboratory testing in the rheumatic diseases: An introduction. Arthritis Rheum. 2002, 47, 429–433. [CrossRef]
- Mahler, M.; Fritzler, M.J. Anti-dsDNA antibody testing in the clinic: Farr or ELISA? Nat. Clin. Pract. Rheumatol. 2007, 3, 72–73. [Google Scholar] [CrossRef]
- Agmon-Levin, N.; Damoiseaux, J.; Kallenberg, C.; Sack, U.; Witte, T.; Herold, M.; Bossuyt, X.; Musset, L.; Cervera, R.; Plaza-Lopez, A.; et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann. Rheum. Dis. 2014, 73, 17–23. [Google Scholar] [CrossRef][Green Version]
- Vasquez-Canizares, N.; Wahezi, D.; Putterman, C. Diagnostic and Prognostic Tests in Systemic Lupus Erythematosus. Best Pract. Res. Clin. Rheumatol. 2017, 31, 351–363. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Aboul-Enein, H.Y.; Fleschin, Ş. Vibrational Spectroscopy in Clinical Analysis. Appl. Spectrosc. Rev. 2015, 50, 176–191. [Google Scholar] [CrossRef]
- Naumann, D. Vibrational Spectroscopy in Microbiology and Medical Diagnostics. In Biomedical Vibrational Spectroscopy; Lasch, P., Kneipp, J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 1–8. ISBN 978-0-470-28317-2. [Google Scholar]
- Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch, P.L.; et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Movasaghi, Z.; Rehman, S.; Rehman, D.I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Jones, R.R.; Hooper, D.C.; Zhang, L.; Wolverson, D.; Valev, V.K. Raman Techniques: Fundamentals and Frontiers. Nanoscale Res. Lett. 2019, 14, 231. [Google Scholar] [CrossRef][Green Version]
- Byrne, H.J.; Sockalingum, G.D.; Stone, N. Chapter 4:Raman Microscopy: Complement or Competitor? In Biomedical Applications of Synchrotron Infrared Microspectroscopy; Cambridge: Royal, Japan, 2010; pp. 105–143. [Google Scholar]
- Paraskevaidi, M.; Morais, C.L.M.; Lima, K.M.G.; Snowden, J.S.; Saxon, J.A.; Richardson, A.M.T.; Jones, M.; Mann, D.M.A.; Allsop, D.; Martin-Hirsch, P.L.; et al. Differential diagnosis of Alzheimer’s disease using spectrochemical analysis of blood. Proc. Natl. Acad. Sci. USA 2017, 114, E7929–E7938. [Google Scholar] [CrossRef][Green Version]
- Peuchant, E.; Richard-Harston, S.; Bourdel-Marchasson, I.; Dartigues, J.-F.; Letenneur, L.; Barberger-Gateau, P.; Arnaud-Dabernat, S.; Daniel, J.-Y. Infrared spectroscopy: A reagent-free method to distinguish Alzheimer’s disease patients from normal-aging subjects. Transl. Res. 2008, 152, 103–112. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yonar, D.; Ocek, L.; Tiftikcioglu, B.I.; Zorlu, Y.; Severcan, F. Relapsing-Remitting Multiple Sclerosis diagnosis from cerebrospinal fluids via Fourier transform infrared spectroscopy coupled with multivariate analysis. Sci. Rep. 2018, 8, 1025. [Google Scholar] [CrossRef][Green Version]
- Callery, E.L.; Morais, C.L.M.; Paraskevaidi, M.; Brusic, V.; Vijayadurai, P.; Anantharachagan, A.; Martin, F.L.; Rowbottom, A.W. New approach to investigate Common Variable Immunodeficiency patients using spectrochemical analysis of blood. Sci. Rep. 2019, 9, 7239. [Google Scholar] [CrossRef]
- Morris, A.D.; Morais, C.L.M.; Lima, K.M.G.; Freitas, D.L.D.; Brady, M.E.; Dhaygude, A.P.; Rowbottom, A.W.; Martin, F.L. Distinguishing active from quiescent disease in ANCA-associated vasculitis using attenuated total reflection Fourier-transform infrared spectroscopy. Sci. Rep. 2021, 11, 9981. [Google Scholar] [CrossRef]
- Morris, A.D.; Rowbottom, A.W.; Martin, F.L.; Woywodt, A.; Dhaygude, A.P. Biomarkers in ANCA-Associated Vasculitis: Potential Pitfalls and Future Prospects. Kidney360 2021, 2, 586–597. [Google Scholar] [CrossRef]
- Sitole, L.; Steffens, F.; Krüger, T.P.J.; Meyer, D. Mid-ATR-FTIR Spectroscopic Profiling of HIV/AIDS Sera for Novel Systems Diagnostics in Global Health. OMICS 2014, 18, 513–523. [Google Scholar] [CrossRef]
- Firdous, S.; Nawaz, M.; Ahmed, M.; Anwar, S.; Rehman, A.; Rashid, R.; Mahmood, A. Measurement of diabetic sugar concentration in human blood using Raman spectroscopy. Laser Phys. 2012, 22, 1090–1094. [Google Scholar] [CrossRef]
- Backhaus, J.; Mueller, R.; Formanski, N.; Szlama, N.; Meerpohl, H.-G.; Eidt, M.; Bugert, P. Diagnosis of breast cancer with infrared spectroscopy from serum samples. Vib. Spectrosc. 2010, 52, 173–177. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Hoang, V.D.; Aboul-Enein, H.Y. Applications of FT-IR Spectrophotometry in Cancer Diagnostics. Crit. Rev. Anal. Chem. 2015, 45, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Paraskevaidi, M.; Morais, C.L.M.; Lima, K.M.G.; Ashton, K.M.; Stringfellow, H.F.; Martin-Hirsch, P.L.; Martin, F.L. Potential of mid-infrared spectroscopy as a non-invasive diagnostic test in urine for endometrial or ovarian cancer. Analyst 2018, 143, 3156–3163. [Google Scholar] [CrossRef]
- Wang, X.; Shen, X.; Sheng, D.; Chen, X.; Liu, X. FTIR spectroscopic comparison of serum from lung cancer patients and healthy persons. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 122, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Simsek Ozek, N.; Emri, S.; Koksal, D.; Severcan, M.; Severcan, F. Diagnosis of malignant pleural mesothelioma from pleural fluid by Fourier transform-infrared spectroscopy coupled with chemometrics. J. Biomed. Opt. 2018, 23, 105003. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Baker, M.J.; Hussain, S.R.; Lovergne, L.; Untereiner, V.; Hughes, C.; Lukaszewski, R.A.; Thiéfin, G.; Sockalingum, G.D. Developing and understanding biofluid vibrational spectroscopy: A critical review. Chem. Soc. Rev. 2016, 45, 1803–1818. [Google Scholar] [CrossRef][Green Version]
- Hands, J.R.; Clemens, G.; Stables, R.; Ashton, K.; Brodbelt, A.; Davis, C.; Dawson, T.P.; Jenkinson, M.D.; Lea, R.W.; Walker, C.; et al. Brain tumour differentiation: Rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy. J. Neurooncol. 2016, 127, 463–472. [Google Scholar] [CrossRef][Green Version]
- Khanmohammadi, M.; Garmarudi, A.B. Infrared spectroscopy provides a green analytical chemistry tool for direct diagnosis of cancer. TrAC Trends Anal. Chem. 2011, 30, 864–874. [Google Scholar] [CrossRef]
- Martin, F.L.; Kelly, J.G.; Llabjani, V.; Martin-Hirsch, P.L.; Patel, I.I.; Trevisan, J.; Fullwood, N.J.; Walsh, M.J. Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat. Protoc. 2010, 5, 1748–1760. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Martinez, M.A.G.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2017, 52, 456–506. [Google Scholar] [CrossRef]
- Theophilou, G.; Lima, G.K.M.; Martin-Hirsch, L.P.; Stringfellow, F.H.; Martin, L.F. ATR-FTIR spectroscopy coupled with chemometric analysis discriminates normal, borderline and malignant ovarian tissue: Classifying subtypes of human cancer. Analyst 2016, 141, 585–594. [Google Scholar] [CrossRef][Green Version]
- Morris, A.D.; Morais, C.L.M.; Lima, K.M.G.; Freitas, D.L.D.; Brady, M.E.; Dhaygude, A.P.; Rowbottom, A.W.; Martin, F.L. A comparative analysis of different biofluids using Raman spectroscopy to determine disease activity in ANCA-associated vasculitis. J. Biophotonics 2021, 14, e202000426. [Google Scholar] [CrossRef]
- Carvalho, C.S.; Martin, A.A.; Santo, A.M.E.; Andrade, L.E.C.; Pinheiro, M.M.; Cardoso, M.A.G.; Raniero, L. A Rheumatoid arthritis study using Raman spectroscopy. Theor. Chem. Acc. 2011, 130, 1211–1220. [Google Scholar] [CrossRef]
- Hackshaw, K.V.; Aykas, D.P.; Sigurdson, G.T.; Plans, M.; Madiai, F.; Yu, L.; Buffington, C.A.T.; Giusti, M.M.; Rodriguez-Saona, L. Metabolic fingerprinting for diagnosis of fibromyalgia and other rheumatologic disorders. J. Biol. Chem. 2019, 294, 2555–2568. [Google Scholar] [CrossRef][Green Version]
- Morais, C.L.M.; Lima, K.M.G.; Morais, C.L.M.; Lima, K.M.G. Principal Component Analysis with Linear and Quadratic Discriminant Analysis for Identification of Cancer Samples Based on Mass Spectrometry. J. Braz. Chem. Soc. 2018, 29, 472–481. [Google Scholar] [CrossRef]
- Brereton, R.G.; Lloyd, G.R. Partial least squares discriminant analysis: Taking the magic away. J. Chemom. 2014, 28, 213–225. [Google Scholar] [CrossRef]
- De Jong, S. SIMPLS: An alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993, 18, 251–263. [Google Scholar] [CrossRef]
- Martin, F.L.; German, M.J.; Wit, E.; Fearn, T.; Ragavan, N.; Pollock, H.M. Identifying Variables Responsible for Clustering in Discriminant Analysis of Data from Infrared Microspectroscopy of a Biological Sample. J. Comput. Biol. 2007, 14, 1176–1184. [Google Scholar] [CrossRef]
- Xu, Q.-S.; Liang, Y.-Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2001, 56, 1–11. [Google Scholar] [CrossRef]
- Morais, C.L.M.; Lima, K.M.G.; Singh, M.; Martin, F.L. Tutorial: Multivariate classification for vibrational spectroscopy in biological samples. Nature Protocols 2020, 15, 2143–2162. [Google Scholar] [CrossRef] [PubMed]
- Cameron, J.M.; Bruno, C.; Parachalil, D.R.; Baker, M.J.; Bonnier, F.; Butler, H.J.; Byrne, H.J. Chapter 10—Vibrational spectroscopic analysis and quantification of proteins in human blood plasma and serum. In Vibrational Spectroscopy in Protein Research; Ozaki, Y., Baranska, M., Lednev, I.K., Wood, B.R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 269–314. ISBN 978-0-12-818610-7. [Google Scholar]
- Trevisan, J.; Angelov, P.P.; Scott, A.D.; Carmichael, P.L.; Martin, F.L. IRootLab: A free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis. Bioinformatics 2013, 29, 1095–1097. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cheng, W.-T.; Liu, M.-T.; Liu, H.-N.; Lin, S.-Y. Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma. Microsc. Res. Tech. 2005, 68, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Malini, R.; Venkatakrishna, K.; Kurien, J.; Pai, K.M.; Rao, L.; Kartha, V.B.; Krishna, C.M. Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: A Raman spectroscopy study. Biopolymers 2006, 81, 179–193. [Google Scholar] [CrossRef]
- Chiriboga, L.; Xie, P.; Yee, H.; Vigorita, V.; Zarou, D.; Zakim, D.; Diem, M. Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix. Biospectroscopy 1998, 4, 47–53. [Google Scholar] [CrossRef]
- Silveira, L.; Sathaiah, S.; Zângaro, R.A.; Pacheco, M.T.T.; Chavantes, M.C.; Pasqualucci, C.A.G. Correlation between near-infrared Raman spectroscopy and the histopathological analysis of atherosclerosis in human coronary arteries. Lasers Surg Med. 2002, 30, 290–297. [Google Scholar] [CrossRef]
- Jyothi Lakshmi, R.; Kartha, V.B.; Murali Krishna, C.; Solomon, R.J.G.; Ullas, G.; Uma Devi, P. Tissue Raman spectroscopy for the study of radiation damage: Brain irradiation of mice. Radiat Res. 2002, 157, 175–182. [Google Scholar] [CrossRef]
- Dukor, R.K. Vibrational Spectroscopy in the Detection of Cancer. In Handbook of Vibrational Spectroscopy; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; ISBN 978-0-470-02732-5. [Google Scholar]
- Keller, B.; Cseresnyes, Z.; Stumpf, I.; Wehr, C.; Fliegauf, M.; Bulashevska, A.; Usadel, S.; Grimbacher, B.; Rizzi, M.; Eibel, H.; et al. Disturbed canonical nuclear factor of κ light chain signaling in B cells of patients with common variable immunodeficiency. J. Allergy Clin. Immunol. 2017, 139, 220–231.e8. [Google Scholar] [CrossRef][Green Version]
- Ronen, S.M.; Stier, A.; Degani, H. NMR studies of the lipid metabolism of T47D human breast cancer spheroids. FEBS Lett. 1990, 266, 147–149. [Google Scholar] [CrossRef][Green Version]
- Stone, N.; Kendall, C.; Shepherd, N.; Crow, P.; Barr, H. Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers. J. Raman Spectrosc. 2002, 33, 564–573. [Google Scholar] [CrossRef]
- Gniadecka, M.; Wulf, H.C.; Nymark Mortensen, N.; Faurskov Nielsen, O.; Christensen, D.H. Diagnosis of Basal Cell Carcinoma by Raman Spectroscopy. J. Raman Spectrosc. 1997, 28, 125–129. [Google Scholar] [CrossRef]
- Shetty, G.; Kendall, C.; Shepherd, N.; Stone, N.; Barr, H. Raman spectroscopy: Elucidation of biochemical changes in carcinogenesis of oesophagus. Br. J. Cancer 2006, 94, 1460–1464. [Google Scholar] [CrossRef][Green Version]
- Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 1410–1415. [Google Scholar] [CrossRef] [PubMed][Green Version]
- González-Solís, J.L.; Rodríguez-López, J.; Martínez-Espinosa, J.C.; Frausto-Reyes, C.; Jave-Suárez, L.F.; Aguilar-Lemarroy, A.C.; Vargas-Rodríguez, H.; Martínez-Cano, E. Detection of Cervical Cancer Analyzing Blood Samples with Raman Spectroscopy and Multivariate Analysis. AIP Conf. Proc. 2010, 1226, 91–95. [Google Scholar] [CrossRef]
- Stone, N.; Kendall, C.; Smith, J.; Crow, P.; Barr, H. Raman spectroscopy for identification of epithelial cancers. Faraday Discuss. 2004, 126, 141–157. [Google Scholar] [CrossRef]
- Shaw, R.A.; Mantsch, H.H. Vibrational biospectroscopy: From plants to animals to humans. A historical perspective. J. Mol. Struct. 1999, 480–481, 1–13. [Google Scholar] [CrossRef]
- Chan, J.W.; Taylor, D.S.; Zwerdling, T.; Lane, S.M.; Ihara, K.; Huser, T. Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys. J. 2006, 90, 648–656. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sigurdsson, S.; Philipsen, P.A.; Hansen, L.K.; Larsen, J.; Gniadecka, M.; Wulf, H.C. Detection of skin cancer by classification of Raman spectra. IEEE Trans. Biomed. Eng. 2004, 51, 1784–1793. [Google Scholar] [CrossRef][Green Version]
- Krafft, C.; Neudert, L.; Simat, T.; Salzer, R. Near infrared Raman spectra of human brain lipids. Spectrochim Acta A Mol. Biomol. Spectrosc. 2005, 61, 1529–1535. [Google Scholar] [CrossRef]
- Morais, C.L.M.; Lima, K.M.G. Comparing unfolded and two-dimensional discriminant analysis and support vector machines for classification of EEM data. Chemom. Intell. Lab. Syst. 2017, 170, 1–12. [Google Scholar] [CrossRef]
- Isenberg, D.A.; Manson, J.J.; Ehrenstein, M.R.; Rahman, A. Fifty years of anti-ds DNA antibodies: Are we approaching journey’s end? Rheumatology 2007, 46, 1052–1056. [Google Scholar] [CrossRef][Green Version]
- Tsokos, G.C.; Lo, M.S.; Reis, P.C.; Sullivan, K.E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 2016, 12, 716–730. [Google Scholar] [CrossRef] [PubMed]
- Talari, A.C.S.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2015, 50, 46–111. [Google Scholar] [CrossRef]
- Alghamdi, M.; Alasmari, D.; Assiri, A.; Mattar, E.; Aljaddawi, A.A.; Alattas, S.G.; Redwan, E.M. An Overview of the Intrinsic Role of Citrullination in Autoimmune Disorders. J. Immunol. Res. 2019, 2019, 7592851. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Monahan, R.C.; van den Beukel, M.D.; Borggreven, N.V.; Fronczek, R.; Huizinga, T.W.J.; Kloppenburg, M.; Steup-Beekman, G.M.; Trouw, L.A. Autoantibodies against specific post-translationally modified proteins are present in patients with lupus and associate with major neuropsychiatric manifestations. RMD Open 2022, 8, e002079. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, M.; Tan, L.; Lu, Q. The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation. Autoimmun. Rev. 2016, 15, 684–689. [Google Scholar] [CrossRef]
- Navarro Quiroz, E.; Chavez-Estrada, V.; Macias-Ochoa, K.; Ayala-Navarro, M.F.; Flores-Aguilar, A.S.; Morales-Navarrete, F.; de la Cruz Lopez, F.; Gomez Escorcia, L.; Musso, C.G.; Aroca Martinez, G.; et al. Epigenetic Mechanisms and Posttranslational Modifications in Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2019, 20, 5679. [Google Scholar] [CrossRef][Green Version]
- Coit, P.; Jeffries, M.; Altorok, N.; Dozmorov, M.G.; Koelsch, K.A.; Wren, J.D.; Merrill, J.T.; McCune, W.J.; Sawalha, A.H. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naïve CD4+ T cells from lupus patients. J. Autoimmun. 2013, 43, 78–84. [Google Scholar] [CrossRef][Green Version]
- Pieterse, E.; Hofstra, J.; Berden, J.; Herrmann, M.; Dieker, J.; van der Vlag, J. Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin. Exp. Immunol. 2015, 179, 68–74. [Google Scholar] [CrossRef][Green Version]
- Munoz, L.E.; Gaipl, U.S.; Franz, S.; Sheriff, A.; Voll, R.E.; Kalden, J.R.; Herrmann, M. SLE—A disease of clearance deficiency? Rheumatology 2005, 44, 1101–1107. [Google Scholar] [CrossRef]
- Hakkim, A.; Fürnrohr, B.G.; Amann, K.; Laube, B.; Abed, U.A.; Brinkmann, V.; Herrmann, M.; Voll, R.E.; Zychlinsky, A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA 2010, 107, 9813–9818. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hendy, O.M.; Motalib, T.A.; El Shafie, M.A.; Khalaf, F.A.; Kotb, S.E.; Khalil, A.; Ali, S.R. Circulating cell free DNA as a predictor of systemic lupus erythematosus severity and monitoring of therapy. Egypt. J. Med. Hum. Genet. 2016, 17, 79–85. [Google Scholar] [CrossRef]
Group | ANA | ELIA dsDNA | CLIFT | Number of Samples | Total Number of Spectra |
---|---|---|---|---|---|
Healthy Controls—0 | - | - | - | 4 | 80 |
SLE—1 | + | - | N/A | 2 | 40 |
SLE—2 | + | + | - | 2 | 37 |
SLE—3 | + | + | + | 4 | 77 |
Peaks (Waves/cm) | Molecular Assignment (Irootlab) | Molecular Assignment (Literature Review) | Increased/Decreased in SLE | Significance | Reference |
---|---|---|---|---|---|
1002 | Protein Phosphorylation | (Stretching vibration) ring-breathing Phenylalanine (collagen assignment), protein | ↑ | ** | [46,47] |
1070 | Protein Phosphorylation | Triglycerides (fatty acids) (1070–1090) Symmetric PO2—stretching of DNA (represents more DNA in cell) | ↑ | ** | [48,49] |
1113 | Protein Phosphorylation | Several bands of moderate intensity, belonging to amide III and other groups (proteins) (1100–1375 cm−1) | ↑ | ** | [50] |
1155 | Protein Phosphorylation | C-C (and C-N) stretching of proteins (also Carotenoids) Glycogen | ↓ | ** | [51,52,53,54] |
1286 | Protein Phosphorylation | Amide III (arising from coupling of C-N stretching and N-H bonding; can be mixed with vibrations of side chains) (protein band) (1220–1300 cm−1) | ↑ | ** | [55] |
1346 | Protein Phosphorylation | Several bands of moderate intensity, belonging to amide III and other groups (proteins) (1100–1375 cm−1) | ↑ | ** | [50] |
1408 | Protein Phosphorylation | ν(C=O)O− (amino acids, aspartic and glutamic acid) (1400–1430 cm−1) | ↑ | * | [56] |
1452 | Protein Phosphorylation | CH2 deformation (1437–1453 cm−1) CH deformation (DNA/RNA and proteins and lipids and carbohydrates) (1420–1480) | ↑ | ** | [57] |
1527 | Protein Phosphorylation | C-C Carotenoid (1520–1538 cm−1) | ↑ | ** | [58,59] |
1596 | Protein Phosphorylation | COO− (1560–1600 cm−1) | ↑ | ** | [60] |
1639 | Protein Phosphorylation | In-plane double end vibrations of bases; the spectra in this region are very sensitive to base-pairing interactions and base-stacking effects; i.e., effects of hydrogen bond formation (1620–1750 cm−1) Amide I (which is due mostly to the C O stretching vibrations of the peptide backbone; has been used the most for structural studies due to its high sensitivity to small changes in molecular geometry and hydrogen bonding of peptide group) | ↑ | ** | [51,61,62] |
1727 | Protein Phosphorylation | C=O (1716–1741 cm−1) | ↑ | ** | [63] |
Method | Sensitivity (%) | Specificity (%) | PPV | NPV |
---|---|---|---|---|
ELIA dsDNA | 81.0 | 83.7 | 24.8 | 98.5 |
CLIFT | 67.7 | 95.7 | 85.2 | 89.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Callery, E.L.; Morais, C.L.M.; Nugent, L.; Rowbottom, A.W. Classification of Systemic Lupus Erythematosus Using Raman Spectroscopy of Blood and Automated Computational Detection Methods: A Novel Tool for Future Diagnostic Testing. Diagnostics 2022, 12, 3158. https://doi.org/10.3390/diagnostics12123158
Callery EL, Morais CLM, Nugent L, Rowbottom AW. Classification of Systemic Lupus Erythematosus Using Raman Spectroscopy of Blood and Automated Computational Detection Methods: A Novel Tool for Future Diagnostic Testing. Diagnostics. 2022; 12(12):3158. https://doi.org/10.3390/diagnostics12123158
Chicago/Turabian StyleCallery, Emma L., Camilo L. M. Morais, Lucy Nugent, and Anthony W. Rowbottom. 2022. "Classification of Systemic Lupus Erythematosus Using Raman Spectroscopy of Blood and Automated Computational Detection Methods: A Novel Tool for Future Diagnostic Testing" Diagnostics 12, no. 12: 3158. https://doi.org/10.3390/diagnostics12123158