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Abstract: Background: The benefits of immune checkpoint inhibitors (ICPis) in the treatment of
patients with malignancies emerged recently, but immune-related adverse events (IRAEs), including
acute kidney injury (AKI), cannot be ignored. The present study established and validated an ICPi-
AKI prediction model based on machine learning algorithms to achieve early prediction of AKI
events and timely intervention adjustment. Methods: We performed a retrospective study based
on data from the First Medical Center of the PLA General Hospital. Patients with malignancy who
received at least one dose of ICPi between January 2014 and December 2019 were included in the
study. The characteristics of available variables were included after case review, and the baseline
characteristics and clinical data of ICPi AKI and non-AKI patients were compared. After variable
preprocessing, eight machine learning algorithms were used to construct a full variable availability
model. Variable simplification models were constructed after screening important variables using
the random forest recursive feature elimination method, and the performance of different machine
learning methods and two types of modeling strategies were evaluated using multiple indicators.
Results: Among the 1616 patients receiving checkpoint inhibitors, the overall incidence of AKI was
6.9% during the total follow-up time. Sixty-eight patients were associated with ICPi treatment after
chart review, primarily in AKI stage 1 (70.5%), with a median time from first ICPi administration to
AKI of 12.7 (IQR 2 to 56) weeks. The demographic characteristics, comorbidities, and proportions of
malignancy types were similar between the ICPi-AKI and non-AKI groups, but there were significant
differences in multiple characteristics, such as concomitant medications and laboratory test indicators.
For model performance evaluation and comparison, the AUC values of all 38 variable availability
models ranged from 0.7204–0.8241, and the AUC values of the simplicity model constructed using
16 significant variables ranged from 0.7528–0.8315. The neural networks model (NNs) and support
vector machine (SVM) model had the best performance in the two types of modeling strategies,
respectively; however, there was no significant difference in model performance comparison (p >
0.05). In addition, compared with the full variable availability model, the performance of the variable
simplicity model was slightly improved. We also found that concomitant medications contributed
more to the model prediction performance by screening the optimal feature combination. Conclusion:
We successfully developed a machine learning-based ICPi-AKI prediction model and validated the
best prediction performance of each machine model. It is reasonable to believe that clinical decision
models driven by artificial intelligence can improve AKI prediction in patients with malignancies
treated with ICPi. These models can be used to assist clinicians in the early identification of patients
at high risk of AKI, support effective prevention and intervention, and ultimately improve the overall
benefit of antitumor therapy in the target population.
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1. Introduction

Immune checkpoint inhibitors (ICPis) are a novel and promising anticancer therapy.
The primary mechanism of action of these humanized monoclonal antibodies is inhibition of
downstream immune pathways and a reprogramming of adaptive immunity to recognize
and destroy tumor cells via host immune cells [1]. The FDA approved the first ICPi
against cytotoxic T-lymphocyte antigen 4 (CTLA-4) in 2011, and subsequent antibodies
against programmed cell death 1 (PD1) and programmed death ligand 1 (PDL-1) have been
gradually developed and used in the clinic while new drugs have entered clinical trials.

ICPi therapy has transformed many malignancies from a “death sentence” to a chronic
disease. However, the benefits of this therapy are not perfect, and extensive T-cell sup-
pression also leads to autoimmune side effects, which are termed immune-related adverse
events (IRAEs). These IRAEs most commonly affect the skin, gastrointestinal tract, liver,
and endocrine system but may involve any organ system, including the kidneys [1,2]. The
incidence of acute kidney injury (AKI) in single ICPi treatment is approximately 2%, and it
is up to 4.5% when a combination of ICPis is used [3]. Some studies suggest that the failure
to recover renal function in AKI patients is an independent predictor of death [4], and AKI
may affect the overall therapeutic effect in patients due to termination of ICPi medication.

A spectrum of kidney IRAEs has been described in case reports and smaller series,
including acute interstitial nephritis (AIN), acute tubular necrosis (ATN), and, less com-
monly, glomerular disease [4–6]. Recent clinical studies analyzed the pathogenic factors of
ICPi-AKI, and the risk factors include anemia, diuretics, nonsteroidal anti-inflammatory
drugs (NSAIDs), and proton pump inhibitors (PPIs) [3,4,7].

Due to the impact of ICPi-AKI on the treatment of patients with malignancies, the
early identification of target treatment populations with a high risk of AKI is highly
important. The construction of predictive modeling is promising, but such studies are
lacking. The classical logistic regression model is sensitive to the multicollinearity of
independent variables, which makes the model easy to be underfitted and far from accurate.
Artificial intelligence-based machine learning is booming and creating a technological
revolution, especially in the healthcare industry. Compared to traditional statistical analysis
methods, such as logistic regression, machine learning more effectively identifies complex
relationships between diseases and variables, classifies variables using specific criteria,
makes predictions based on baseline features, and identifies objects with similar patterns.
Therefore, these models help in disease identification and inference, assist in medical
decision-making, and improve the quality of treatment [7]. Current research on machine
learning modeling is rich.; Ebiaredoh-Mienye et al. [8,9] developed effective prediction
models for chronic kidney disease CKD, which is easy to ignore due to a lack of obvious
early symptoms. Superior classification performance with over 98% accuracy was achieved
in both studies. The positive effects of the improved sparse autoencoder (SAE) network
and information-gain-based feature selection technique on various classifiers were verified.
Research on AKI is also relatively rich. For example, Koyner et al. (2018) confirmed the
predictive efficacy of machine learning models for patients with acute renal injury before
creatinine changes [10]. Zhang et al. (2019) successfully demonstrated the potential of
machine learning methods to distinguish volume-responsive and volume-unresponsive
AKI [11]. Tomasev’s team and Google Deepmind, which is based on artificial neural
network algorithms, have pushed the research on AKI machine learning prediction models
to another high [12]. In Sections 2 and 3 of this paper, we introduce the modeling methods
and model results, respectively, and in Section 5, we discuss and summarize this research.
We fully drew on technical experience from previous studies to develop an ICPI-AKI
prediction model using machine learning algorithms for predicting the occurrence of long-
term AKI events in the target population based on variable characteristics during the first
ICPi treatment.
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2. Materials and Methods
2.1. Data Sources and Study Population

We performed a single-center retrospective study based on data from the First Medical
Center of the PLA General Hospital, which is a large military-affiliated hospital in Beijing
with more than 200 nursing units that treat nearly 200,000 patients annually. Patients with
malignancy who received at least one dose of ICPis between January 2014 and December
2019 and whose malignancy diagnosis was based on the International Classification of
Diseases code (ICD-9/10) were included in the study. Patients aged <18 years, renal
transplant patients, end-stage patients on maintenance hemodialysis, and patients with
incomplete follow-up data were excluded from the study. This study was a retrospective
case collection. The real IDs of all study subjects were privacy marked before analysis,
no special interventions were performed, and there was no impact on patient safety and
health. The ethics committees of PLA General Hospital approved the study (S2020-356).

2.2. Study Design

The study was divided into five steps. First, we relied on the big data center of the
PLA General Hospital for data identification and extraction of patients treated with ICPis,
wrote structured query language (SQL) scripts based on diagnostic criteria, and screened
AKI cases in the Oracle database 10 g. We used the 2012 Kidney Disease: Improving Global
Outcomes (KDIGO) definition of AKI as the source of major screening criteria [8]. AKI
was defined as an increase in serum creatinine (SCr) by 26.5 µmol/L within 48 h or a 50%
increase from baseline during the follow-up period [9]. The baseline SCr was the most
recent value within three months prior to the first ICPi dose, and the peak SCr level within
three months after AKI onset was used to determine AKI stage according to the following
KDIGO criteria: stage 1, the absolute SCr level increased to 1.5–1.9 times the baseline level;
stage 2, the SCr level increased to 2.0–2.9 times the baseline level; and stage 3, the absolute
SCr level increased to more than 3 times the baseline level or greater than 353.6 µmol/L, or
renal replacement therapy (RRT) was initiated [13]. Case follow-up periods were equivalent
to the duration of ICPi treatment until cessation due to tumor progression, IRAEs requiring
treatment adjustment and/or discontinuation of treatment, or death events. Urine volume
was not analyzed in this study due to the uncertainty of urine volume measurement and
the instability of available data.

Second, a novel definition and classification system for ICPi-AKI, proposed by Gupta
et al. [14], was used to distinguish ICPi-AKI from other AKI etiologies (non-ICPi-AKI). This
classification acknowledges several gradations of diagnostic uncertainty in the absence of
kidney biopsy. Definite ICPi-AKI was a diagnosis of ICPI-AKI confirmed by renal biopsy
after clinical review of risk factors. Probable ICPi-AKI was assigned when three criteria
were met after clinical review of risk factors: (1) SCr elevation ≥1.5 times the baseline value
on at least two consecutive values or the need for RRT; (2) absence of an alternative plausible
cause; and (3) at least one of the three additional criteria of sterile pyuria, eosinophilia, or
recent or concomitant non-kidney IRAE. Possible ICPI-AKI was an increase in SCr ≥50%
or the need for RRT, and the AKI was not readily attributable to alternative causes. Two
nephrologists charted all AKI cases for review, and a third nephrologist resolved diagnostic
differences.

Third, the variables were selected according to clinical experience and considering
significant variables in previous ICPi-AKI risk factor studies. Highly qualified nephrolo-
gists on the research team reviewed the variables, and AI engineers performed technical
confirmation. We restricted our research to structured data because the processing of
unstructured data (e.g., clinical notes). Although these data provide additional diagnostic
and laboratory information, it relies on natural language processing (NLP) technology,
which could directly affect our performance comparisons between different models. The
38 variables included demographic information, comorbidities, laboratory tests, ICPis
used, concomitant medications, and malignancy type, and all variables were included in at
least three other peer-reviewed studies. Medical records information was reviewed and
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extracted such that the time of exposure was the date of first dosing with ICPis, comorbidi-
ties were diagnosed before the first ICPi treatment, laboratory test values were the most
recent values within one week before the first dose of ICPis (except SCr), and concomitant
medications were a combination of drugs administered within one month before and three
weeks after the first dose of ICPis, including drugs that alter renal hemodynamics and
medications that induce allergic interstitial nephritis (AIN). End-stage renal disease (ESRD)
was defined as an estimated glomerular filtration rate (eGFR) <15 mL-min−1—(1.73 m2)−1,
and chronic kidney disease (CKD) was defined as eGFR <60 mL-min−1—(1.73 m2)−1. eGFR
was calculated using the eGFR-EPI formula [15], and the data were based on the time
automatically calibrated in the system.

Fourth, processing of screening variables and outlier processing of continuous vari-
ables in the database were performed to remove extreme values beyond the 1–99th per-
centile and exclude interference of extreme values due to entry errors (e.g., age, BMI, eGFR,
and laboratory test values). Categorical variables were converted to binary variables based
on exposure, i.e., “yes” or “no” (e.g., ICI drugs, concomitant medications, and comorbidi-
ties). For missing data, variables with missing values >20% were discarded. Otherwise,
missing values in the data were filled via random forest interpolation (missForest).

Fifth, multiple machine learning methods were used to construct the model. This was
because the ratio of the number of non-AKI to ICPi-AKI cases was approximately 23:1,
and the data were severely unbalanced. The downsampling method was used to process
the data, and a portion of the samples were randomly selected from the non-AKI cases to
ensure that the ratio of the two groups was approximately 3:1. Seventy percent of the data
after downsampling processing was randomly selected as the training group, and 30% was
used as the testing group. The training group data were used for model training, and the
testing group data were used for model testing (Figure 1). In the modeling process, the
parameters of the models were continuously adjusted using fivefold cross-validation to
reduce the chances of overfitting. In addition, we introduced the concepts of a prediction
time window and event time window in the modeling process to achieve information
matching between ICPi-AKI and non-AKI patients. The range of the prediction event
window was from the day before the first dose of ICPi to 21 days after the treatment, and
the range of the event time window was from 21 days after the first dose of ICPi treatment
to the end of follow-up. All variables were included in the prediction time frame, and the
time of the first creatinine value meeting the KDIGO criteria in the event window was
referred to as the AKI event time (Figure 2).

By incorporating all 38 feature variables, eight supervised learning methods were used
to construct the full variable availability model: logistic regression (LR), decision tree (DT),
random forest (RF), support vector machine (SVM), extreme gradient boosting (Xgboost),
adaptive boosting (Adaboost), naïve Bayes (NBs), and neural networks (NNs). To improve
the usefulness of the model, we incorporated a reasonable number of independent variables.
Therefore, the random forest recursive feature elimination (RF-RFE) method was used to
determine the optimal feature combination variables, and the optimal solution was used as
a parameter to determine the feature variables that would be included in the model. The
variable simplicity model was established in this manner.
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2.3. Model Evaluation

The area under the receiver operating characteristic curve (AUROC), accuracy, recall,
Matthews’ correlation coefficient (MCC), precision, and F1 value were used as model
efficacy evaluation metrics, and the confusion matrix of the optimal prediction model
was also shown. The AUC value of the model is significant for predictive modeling and
decision-making. Therefore, AUC was the main metric used in model selection and final
report.

2.4. Statistical Analysis

Continuous variables meeting the conditions of normal distribution are presented as
the mean (SD), and one-way analysis of variance (ANOVA) was used for between-group
comparisons. Continuous variables with nonnormal distribution are presented as the
median (IQR), and the Mann–Whitney U test was used for between-group comparisons.
Categorical variables are presented as n (%), and Pearson’s chi-squared test was used for
between-group comparisons. Delong test was used for model performance comparisons.
A two-sided p value of <0.05 was considered significant in all statistical analyses. The R
language data analysis software R-Studio (Version 7.2, RStudio Institute Inc., Boston, MA,
USA) was used for data reading and analytical modeling.

3. Results

A total of 1616 of the 1649 patients who received at least one dose of ICPis were
included in the study cohort. All cases were reviewed for AKI events according to the
KDIGO criteria. A total of 111 (6.9%) patients met the AKI diagnosis criteria during the
total follow-up time (Figure 3). As shown in Table 1, 68 patients (4.2%) were classified as
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having an ICPi-AKI diagnosis according to the cause differentiation and diagnostic certainty
classification of AKI using the Gupta method. Forty-three of these patients (63.2%) were
male, and the median age was 57.00 years (IQR 49.00 to 64.25). The most common cancers
included were lung cancer (26.5%), hepatobiliary cancer (26.5%), and gastrointestinal tract
cancer (20.6%). The most common comorbidities were diabetes (22.1%), hypertension
(35.3%), and liver disease (17.6%). The most common types of ICPis were nabolumab
(55.9%) and pablizumab (39.7%). The most common concomitant medications were PPIs
(95.6%) and NSAIDs (82.4%).
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As shown in Table 2, there were no patients with a definite diagnosis of ICPi-AKI
because kidney biopsy was not recorded in all patients. Twenty-one (30.9%) and forty-
seven (69.1%) patients met the criteria of probable and possible ICPi-AKI, respectively.
Forty-eight (70.5%) patients had stage 1 AKI, fifteen (22.1%) patients had stage 2 AKI, and
five (7.4%) patients had stage 3 AKI. The median time from the first ICPi administration
to ICPi-AKI was 12.7 (IQR 2 to 56) weeks. Nine patients (13.2%) received a nephrology
consultation. Urinalysis was performed in 55 patients (80.9%). Eleven (16.2%) patients had
leukocyturia that met the diagnostic criteria, nineteen patients (27.9%) had microscopic
hematuria, and thirty-five patients (51.5%) had positive albumin. Twelve (17.6%) patients
developed extrarenal IRAEs, including immune-associated pneumonia (5/7.4%), immune-
associated hepatitis (3/4.4%), immune-associated pleural effusions (2/2.9%), immune-
associated enteritis (1/1.5%), and immune-associated fever (1/1.5%), and were treated with
glucocorticoids.
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Table 1. Characteristics of the ICPi-AKI and non-AKI groups.

Variables Overall
(n = 248)

Non-AKI
(n = 180)

ICPi-AKI
(n = 68) p Value

Male (%) 181 (73.0) 138 (76.7) 43 (63.2)
Age, median (IRQ) 59.50 (51.00, 67.00) 60.00 (52.75, 67.00) 57.00 (49.00, 64.25) 0.053
BMI, median (IRQ) 23.10 (20.38, 25.40) 23.10 (20.50, 25.40) 22.75 (19.90, 25.45) 0.521

Malignancy type (%) 0.16
Mammary cancer 2 (0.8) 2 (1.1) 0 (0.0)

Colorectum cancer 15 (6.0) 11 (6.1) 4 (5.9)
Gastrointestinal tract

cancer 42 (16.9) 28 (15.6) 14 (20.6)

Genitourinary cancer 17 (6.9) 15 (8.3) 2 (2.9)
Hepatobiliary cancer 52 (21.0) 34 (18.9) 18 (26.5)

Lung cancer 91 (36.7) 73 (40.6) 18 (26.5)
Melanoma 2 (0.8) 1 (0.6) 1 (1.5)

Other 27 (10.9) 16 (8.9) 11 (16.2)
Concomitant medications

ACEI/ARB (%) 32 (12.9) 30 (16.7) 2 (2.9) 0.008
Antibiotic (%) 9 (3.6) 3 (1.7) 6 (8.8) 0.021
Diuretic (%) 75 (30.2) 46 (25.6) 29 (42.6) 0.014
NSAIDS (%) 125 (50.4) 69 (38.3) 56 (82.4) <0.001

Chemotherapy (%) 68 (27.4) 46 (25.6) 22 (32.4) 0.362
PPI (%) 186 (75.0) 121 (67.2) 65 (95.6) <0.001

Comorbidity
Diabetes (%) 43 (17.3) 28 (15.6) 15 (22.1) 0.308

Hypertension (%) 68 (27.4) 44 (24.4) 24 (35.3) 0.121
Coronary heart disease

(%) 22 (8.9) 19 (10.6) 3 (4.4) 0.205

Cerebrovascular (%) 11 (4.4) 9 (5.0) 2 (2.9) 0.721
Liver disease (%) 38 (15.3) 26 (14.4) 12 (17.6) 0.669

ICPi type
Nivolumab (%) 99 (39.9) 61 (33.9) 38 (55.9) 0.003

Pembrolizumab (%) 86 (34.7) 59 (32.8) 27 (39.7) 0.383
Ipilimumab (%) 9 (3.6) 5 (2.8) 4 (5.9) 0.432
Toripalimab (%) 23 (9.3) 23 (12.8) 0 (0.0) 0.004
Sintilimab (%) 40 (16.1) 34 (18.9) 6 (8.8) 0.084

Camrelizumab (%) 3 (1.2) 3 (1.7) 0 (0.0) 0.674
Atezolizumab (%) 5 (2.0) 4 (2.2) 1 (1.5) 1

Laboratory test indicators
HB, mean (SD) 116.56 (21.87) 120.04 (21.88) 107.37 (19.11) <0.001

WBC, median (IQR) 6.22 (4.50, 7.81) 6.22 (4.48, 8.01) 6.32 (4.59, 7.60) 0.946
PLT, median (IQR) 199.00 (147.75, 259.50) 206.50 (152.75, 259.50) 183.50 (138.00, 257.25) 0.186
NE, median (IQR) 0.70 (0.62, 0.78) 0.69 (0.61, 0.77) 0.74 (0.66, 0.79) 0.038

LYM, median (IQR) 0.19 (0.14, 0.26) 0.20 (0.14, 0.27) 0.18 (0.13, 0.24) 0.093
ALB, mean (SD) 37.75 (4.61) 38.41 (4.41) 35.99 (4.70) <0.001

SCR, median (IQR) 68.50 (55.35, 81.85) 70.30 (57.58, 82.78) 60.45 (50.55, 76.42) 0.006
ALT, median (IQR) 17.00 (11.20, 25.77) 16.30 (11.20, 24.90) 18.35 (11.15, 33.73) 0.459
AST, median (IQR) 19.30 (14.88, 29.65) 19.40 (14.45, 27.85) 19.00 (15.33, 34.67) 0.423

eGFR, median (IQR) 96.90 (83.23, 107.25) 95.43 (80.63, 104.96) 103.62 (89.14, 111.47) 0.006
LDH, median (IQR) 181.60 (148.07, 256.58) 180.45 (150.05, 249.10) 183.95 (145.67, 285.07) 0.598

D-DIMER, median (IQR) 1.04 (0.52, 2.67) 0.93 (0.44, 2.43) 1.36 (0.81, 3.80) 0.003
HCT, mean (SD) 0.34 (0.06) 0.35 (0.06) 0.32 (0.06) <0.001

Abbreviations: HB, hemoglobin; WBC, white blood cell, PLT, platelet; NE, neutrophil; LYM, lymphocyte; ALB,
albumin; SCR, serum creatinine; ALT, alanine aminotransferase; AST, aspartate aminotransferase; eGFR, es-
timated glomerular filtration rate; LDH, lactate dehydrogenase; D-DIMER, D2 polymers; HCT, hematocrit;
ACEI, angiotensin converting enzyme inhibitors; ARB, angiotensin receptor blocker; NSAIDS, nonsteroidal anti-
inflammatory drugs; PPI, proton pump inhibitors; BMI, body mass index; ICPi, immune checkpoint inhibitor.
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Table 2. Clinical data of patients with ICPi-AKI.

Patients with ICPi-AKI N = 68
(4.2% of all Patients)

AKI stage (%)
Stage 1 48 (70.5)
Stage 2 15 (22.1)
Stage 3 5 (7.4)

Gradations of diagnostic uncertainty
Definite ICPi-AKI 0
Probable ICPi-AKI 21 (30.9)
Possible ICPi-AKI 47 (69.1)
Urinalysis results 55 (80.9)

Leukocyturia 11 (16.2)
Microscopic hematuria 19 (27.9)

Albuminuria 35 (51.5)
Extrarenal IRAEs 12 (17.6)

Immune associated pneumonia 5 (7.4)
Immune associated hepatitis 3 (4.4)

Immune related pleural effusion 2(2.9)
Immune associated enteritis 1 (1.5)

Immune associated fever 1 (1.5)

Forty-three patients were classified with a non-ICPi-AKI diagnosis. Thirty-five (81.4%)
of these diagnoses were likely related to a prerenal cause, such as hemodynamics, four
(9.3%) diagnoses were attributed to postrenal obstruction (one bladder epithelial carcinoma,
one ovarian plasmacytoma, one rectal adenocarcinoma, and one colon adenocarcinoma),
three (7.0%) diagnoses were associated with contrast agents (two hepatocellular carcinoma
embolization PCI procedures in one case), and one (2.3%) diagnosis was associated with
nephrectomy for nephrocalcinoma.

3.1. Comparison of Clinical Characteristics between Groups

Table 1 shows the comparison of clinical characteristics between the ICPi-AKI group
and the non-AKI group. The results showed that age, sex, and BMI characteristics were
relatively similar between groups. Patients in both groups were more likely to have diabetes
and hypertension, and most patients in both groups received ICPis as treatments for lung
cancer, hepatobiliary cancer, and gastrointestinal tract cancer. Compared to the non-AKI
group, patients in the ICPi-AKI group were more likely to have received nivolumab,
antibiotics, diuretics, NSAIDs, and PPIs (p < 0.05), and had lower mean HB, ALB, baseline
SCr, and HCT (p < 0.05) and higher median NE, baseline eGFR, and D-dimer (p < 0.05). As
shown in Table 3, except for sindilizumab and D-dimer, there were no significant differences
between patients in the training and testing groups in clinical characteristics (p > 0.05).

3.2. Significant Variable Screening

To increase the clinical applicability of the model, we performed model feature screen-
ing using the RF-RFE method. Figure 4 shows that the model with 16 features had the best
diagnostic accuracy in cross-validation, and the model classification error rate continued to
increase with the inclusion of more features. Cross-validation was performed on different
combinations of features based on random forest with the learner itself unchanged, by
calculating the sum of decision coefficients to ultimately obtain the importance of different
features for the results and retaining the best combination of features. The final combination
of 16 significant variables that we identified included one demographic feature (age), one
ICPi (nivolumab), six concomitant medications (NSAIDS, antibiotics, PPI, ACEI/ARB,
diuretics, and chemotherapeutic agents), four laboratory test indicators (ALb, Hb, eGFR,
and D-dimer), and four malignancy types (hepatobiliary cancer, genitourinary cancer,
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gastrointestinal tract cancer, and lung cancer). These variables were closely related to AKI
events and should guide clinicians to pay more attention.

Table 3. Characteristics between the training and test groups.

Variables Overall
(n = 248)

Training Group
(n = 174)

Testing Group
(n = 74) p Value

ICPi-AKI (%) 68 (27.4) 48 (27.6) 20 (27.0)
Male (%) 181 (73.0) 124 (71.3) 57 (77.0) 0.436

Age, median (IRQ) 59.50 [51.00, 67.00] 60.00 [52.00, 67.00] 59.00 [51.00, 66.00] 0.673
BMI, median (IRQ) 23.10 [20.38, 25.40] 23.20 [20.33, 25.28] 22.55 [20.40, 25.67] 0.823

Malignancy type (%) 0.779
mammary cancer 2 (0.8) 1 (0.6) 1 (1.4)

Colorectum cancer 15 (6.0) 12 (6.9) 3 (4.1)
Gastrointestinal tract

cancer 42 (16.9) 30 (17.2) 12 (16.2)

Genitourinary cancer 17 (6.9) 11 (6.3) 6 (8.1)
Hepatobiliary cancer 52 (21.0) 36 (20.7) 16 (21.6)

Lung cancer 91 (36.7) 66 (37.9) 25 (33.8)
Melanoma 2 (0.8) 2 (1.1) 0 (0.0)

Other 27 (10.9) 16 (9.2) 11 (14.9)
Medication (%)

ACEI/ARB 32 (12.9) 18 (10.3) 14 (18.9) 0.102
Antibiotic 9 (3.6) 6 (3.4) 3 (4.1) 1
Diuretic 75 (30.2) 51 (29.3) 24 (32.4) 0.735
NSAIDS 125 (50.4) 86 (49.4) 39 (52.7) 0.739

Chemotherapy 68 (27.4) 53 (30.5) 15 (20.3) 0.136
PPI 186 (75.0) 136 (78.2) 50 (67.6) 0.109

Comorbidity (%)
Diabetes 43 (17.3) 30 (17.2) 13 (17.6) 1

Hypertension 68 (27.4) 47 (27.0) 21 (28.4) 0.948
Coronary heart disease 22 (8.9) 16 (9.2) 6 (8.1) 0.975

Cerebrovascular 11 (4.4) 7 (4.0) 4 (5.4) 0.883
Liver disease 38 (15.3) 27 (15.5) 11 (14.9) 1

Checkpoint inhibitor type
Nivolumab 99 (39.9) 70 (40.2) 29 (39.2) 0.991

Pembrolizumab 86 (34.7) 58 (33.3) 28 (37.8) 0.592
Ipilimumab 9 (3.6) 6 (3.4) 3 (4.1) 1
Toripalimab 23 (9.3) 14 (8.0) 9 (12.2) 0.433
Sintilimab 40 (16.1) 34 (19.5) 6 (8.1) 0.04

Camrelizumab 3 (1.2) 2 (1.1) 1 (1.4) 1
Atezolizumab 5 (2.0) 2 (1.1) 3 (4.1) 0.32

Laboratory test indicators
HB, mean (SD) 116.56 (21.87) 117.33 (22.16) 114.76 (21.20) 0.397

WBC, median (IQR) 6.22 [4.50, 7.81] 6.08 [4.42, 7.79] 6.74 [4.79, 7.87] 0.145
PLT, median (IQR) 199.00 [147.75, 259.50] 188.00 [147.25, 248.75] 218.00 [149.50, 277.75] 0.097
NE, median (IQR) 0.70 [0.62, 0.78] 0.70 [0.62, 0.77] 0.71 [0.64, 0.78] 0.478

LYM, median (IQR) 0.19 [0.14, 0.26] 0.20 [0.14, 0.27] 0.17 [0.13, 0.23] 0.067
ALB, mean (SD) 37.75 (4.61) 37.94 (4.71) 37.29 (4.36) 0.309

SCr, median (IQR) 68.50 [55.35, 81.85] 67.15 [55.12, 81.15] 71.70 [56.90, 82.38] 0.241
ALT, median (IQR) 17.00 [11.20, 25.77] 17.30 [11.35, 26.10] 16.00 [11.20, 24.77] 0.407
AST, median (IQR) 19.30 [14.88, 29.65] 18.80 [14.30, 29.20] 20.55 [15.53, 30.50] 0.504

eGFR, median (IQR) 96.90 [83.23, 107.25] 97.90 [84.88, 108.09] 93.86 [83.16, 104.74] 0.174
LDH, median (IQR) 181.60 [148.07, 256.58] 179.60 [147.55, 246.17] 190.70 [151.12, 278.98] 0.295

D-DIMER, median (IQR) 1.04 [0.52, 2.67] 0.98 [0.44, 2.46] 1.15 [0.68, 3.66] 0.041
HCT, mean (SD) 0.34 (0.06) 0.35 (0.06) 0.34 (0.06) 0.677

Abbreviations: HB, hemoglobin; WBC, white blood cell, PLT, platelet; NE, neutrophil; LYM, lymphocyte; ALB,
albumin; SCr, serum creatinine; ALT, alanine aminotransferase; AST, aspartate aminotransferase; eGFR, es-
timated glomerular filtration rate; LDH, lactate dehydrogenase; D-DIMER, D2 polymers; HCT, hematocrit;
ACEI, angiotensin converting enzyme inhibitors; ARB, angiotensin receptor blocker; NSAIDS, nonsteroidal anti-
inflammatory drugs; PPI, proton pump inhibitors; BMI, body mass index; ICPi, immune checkpoint inhibitor.
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3.3. Model Performance Evaluation

Based on the training group, models were constructed using machine learning meth-
ods, and performance was evaluated in the validation group. Table 4 shows the results of
multiple model performance tests based on the independent validation group, which was
trained and evaluated using all 38 variables. The AUC values ranged from 0.7204–0.8241
for all eight models, and the NNs model showed the best overall performance with an
AUC of 0.8167. The accuracy was 0.7703, the recall was 0.7, the precision was 0.56, the F1
value was 0.6222, and the MCC was 0.4660. The SVM model had similar performance, and
the DT, XGBoost, NBs, and AdaBoost models had intermediate performance. Although
the LR model had the worst performance, its AUC value and accuracy were more reliable,
however, there is no significant difference in prediction performance between different
models (p > 0.05) (Table S1). The receiver operating characteristic curves are shown in
Figure 5a. The confusion matrix for the NNs model is also showed in Figure 6a.

Table 4. The performance of different models based on all variables.

Model Accuracy AUROC F1-Score Recall Precision MCC

Support Vector Machine (SVM) with
radial kernel 0.7297 0.8093 NA 0 NA -

Support Vector Machine (SVM) with
sigmoid kernel 0.7568 0.7787 0.5 0.45 0.5625 0.3456

Support Vector Machine (SVM) with
polynomial kernel 0.7297 0.813 NA 0 NA -

Decision Tree (DT) 0.7568 0.7764 0.625 0.75 0.5357 0.4663
Random Forest (RF) 0.7432 0.8241 0.2963 0.2 0.5714 0.2192

logistic Regression (LR) 0.7703 0.7204 0.5405 0.5 0.5882 0.3910
Neural Networks (NNs) 0.7703 0.8167 0.6222 0.7 0.56 0.4660

Adaptive Boosting (Adaboost) 0.7568 0.8 0.5714 0.6 0.5455 0.4030
Extreme Gradient Boosting (XGboost) 0.6892 0.7685 0.4651 0.5 0.4348 0.2488

Naïve Bayes (NBs) 0.7297 0.7861 0.5833 0.7 0.5 0.4036
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Table 5 shows that based on the same independent validation group, the evaluation
results of multiple models constructed with 16 significant variables screened using the RFE
method revealed that all 8 models had an AUC range of 0.7528–0.8315. The SVM model
showed optimal performance with an AUC of 0.8315, an accuracy of 0.7568, a recall rate of
0.6, a precision of 0.6667, and an F1 value of 0.6077. The variable simplicity model achieved
a balance between minimizing the number of features and maximizing the performance
improvement relative to the models constructed with all 38 variables, with seven of the
models showing a performance improvement of 0.0009–0.05 (excluded NNs); however,
there is no significant difference in prediction performance between different models (p >
0.05) (Table S2). Figure 5b shows the receiver operating characteristic curves for multiple
models in the validation group. Figure 6b shows the confusion matrix for the SVM model.
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Table 5. The performance of different models based on important variables.

Model Accuracy AUROC F1-Score Recall Precision MCC

Support Vector Machine (SVM) with radial kernel 0.7568 0.8315 0.60769 0.6 0.66667 0.2651
Support Vector Machine (SVM) with sigmoid kernel 0.7432 0.8287 0.42424 0.35 0.53846 0.2788

Support Vector Machine (SVM) with polynomial kernel 0.7297 0.8213 NA 0 NA -
Decision Tree (DT) 0.7973 0.8056 0.6341 0.65 0.619 0.4944

Random Forest (RF) 0.7297 0.8306 0.375 0.3 0.5 0.2276
logistic Regression (LR) 0.7568 0.7528 0.5263 0.5 0.5556 0.3642
Neural Networks (NNs) 0.6622 0.769 0.5098 0.65 0.4194 0.2850

Adaptive Boosting (Adaboost) 0.7162 0.8009 0.4324 0.4 0.4706 0.2463
Extreme Gradient Boosting (XGboost) 0.7297 0.7713 0.4737 0.45 0.5 0.2933

Naïve Bayes (NBs) 0.7432 0.8037 0.5778 0.65 0.52 0.4017

4. Discussion

Based on a local dataset, we successfully developed and validated a machine learning
prediction model to identify high-risk patients with ICPi-AKI. The overall performance of
the simplified model with 16 variables was slightly better than the full variable availability
model, and known risk factors, such as nephrotoxic drugs, were predictors of ICPi-AKI
and contributed more to the model prediction performance.

Because of the extrarenal clearance mechanism of ICPis, its toxic effects on the kidney
have been neglected and underestimated for many years. The exact incidence of ICPi-AKI
is not certain because of the heterogeneity of the definition of ICPi-AKI. For example, the
mild symptoms of stage 1 AKI are considered in some studies, but case determination
is performed with stage 2 or higher AKI stages. The etiology of ICPi-AKI is not clearly
differentiated in many studies, which results in the existence of false positive cases. A lack
of follow-up information due to the delayed onset of ICPi-AKI is also one of the reasons.
The present study used the KDIGO criteria for case screening and found that the burden of
AKI in patients treated with ICPis was considerable, with an all-cause AKI incidence of
6.9% (111/1615). The high incidence of AKI in this population may reflect multiple causes
of renal dysfunction, including ICPi-related nephrotoxicity and other forms of impairment
that are inherent to patients receiving anticancer therapy. A chart review of AKI cases
was also performed using the Gupta method [14], and the incidence of ICPi-AKI was
calculated to be 4.2%. This method allowed for a detailed review of all AKI patients to
exclude non-ICPI-AKI cases and avoid the misclassification of cases when renal biopsy
was refused. According to the results of routine urine tests and extrarenal IRAEs, more
AKI cases without reasonable etiology were recorded as probable or possible cases. The
incidence results of our study cohort were between the results of Koks et al. [16] and
Cortazar et al. [4]. The etiological classification method in the former study was the same
as our study, with a calculated incidence of 4.7%. The latter study included 3695 patients
treated with ICPis in phase 2 and 3 clinical trials for meta-analysis, and the estimated
incidence of ICPi-AKI was 2.2%. However, our incidence was significantly lower than
Meraz-Muñoz et al. [17], who reported an ICPi-AKI incidence of 9.7%. Analysis of the
reasons for the discrepancy suggests that 14% of AKI cases with a duration of less than 72
h were excluded from the Meraz-Muñoz et al. [17] study. However, our study made no
distinction between persistent AKI because most patients had mild AKI (stage 1), and the
interval between SCr measurements was significantly longer than 72 h in all cases.

Increasing application of machine learning in predicting AKI (or prognosis) has been
seen in past research reports, and the technology has been modified and implemented
for different susceptible populations, including patients in general wards, patients with
severe disease, patients with pancreatitis or sepsis, and patients with SGLT-1 hypoglycemic
agents, using different modeling strategies. However, there are no studies on ICPi-treated
malignancy patients with a high risk of AKI. Minimizing any organ damage is necessary
due to the complex disease environment in oncology patients, which affects their quality of
survival and treatment benefit. Riding the fast train of artificial intelligence in the big data
era increases the possibility to predict and prevent AKI events. We focused on information
at the time the patient received the first dose of ICPi treatment and included only informa-
tion on malignancy diagnosis, prevalent comorbidities, concomitant medication orders,



Diagnostics 2022, 12, 3157 13 of 17

and partial test indicators that were easily available from the electronic health record (EHR)
to optimize the various evaluation metrics based on the chosen thresholds. The SVM
model showed the best performance, with outstanding advantages in several effectiveness
evaluation metrics, such as AUC, accuracy, recall, precision and F1 value, which were sig-
nificantly higher than the LR models. These results are similar to previous AKI prediction
model studies. For example, Sun et al. [18] used the open-source database MIMIC-III as the
basis for an AKI prediction model for intensive care unit inpatients using structured and
unstructured feature configurations. The SVM model achieved a competitive AUC value of
0.83. Qu et al. [19] used the SVM model for predicting AKI associated with pancreatitis
and achieved an AUC value of 0.86 and a specificity of 0.85. However, models, such as
XGboost, outperformed the SVM in the latter study. One similarity between that study
and our study is that both studies had relatively small positive and total sample sizes,
which demonstrates the computational modeling advantages of the SVM, such as greater
applicability to small sample size data, insensitivity to outliers, excellent generalization
ability, and the identification and effective use of key variables. Our study suggests that
the performance metrics of the 16 variables modeled after filtering with the RFE method
increased slightly, which ensures the stronger clinical usability of the model. Our results
indirectly demonstrated that sex, BMI, comorbidity, certain types of ICPis and most clinical
test indictors were not always reliable predictive biomarkers for ICPi-AKI. Therefore, our
model should better distinguish ICPi patients with a high risk of AKI, regardless of the
type of ICPi drug they are receiving (except nivolumab) and whether they have a previous
underlying disease or equivalent underlying physiological status, which was reflected by
test indictors, such as lymphocyte count and baseline SCr.

The optimal combination of variables in this study was screened according to the
RFE method, and the results suggested that the predictive contribution of AKI events
was closely related primarily to primary cancer type and medication orders, where drugs
included PPIs, ACEIs/ARBs, NSAIDs, diuretics, antibiotics, chemotherapy, and nivolumab.
PPIs increase the risk of AKI. The possible pathogenic mechanism involves PPI activation
of effector T cells, especially when T cells become sensitized with the use of ICPi, and this
effect gradually increases the risk of AKI [20,21]. Therefore, it may be beneficial to replace
H2 receptor blockers in patients with a potential risk of ICPi-AKI. No direct association
between NSAIDs and ICPi-AKI risk has been observed. Previous series hypothesized that
receipt of ICPis modified immune tolerance to these drugs, and these agents should be
discontinued after ICPi-AIN and potentially prior to rechallenge with ICPis [4,6]. The
findings on the association of diuretics and ACEI/ARB drugs with ICPi-AKI are also
controversial. It has been suggested that, except for immune effects that are similar to PPI,
the pathogenic mechanisms of drugs in both of these categories may be related to prerenal
factors [16]. The multifactorial analysis of several studies has not confirmed antibiotics
as an independent risk factor for AKI events, but antibiotics are believed to increase the
incidence of AKI [1,22]. However, systemic prophylactic antibiotic use greatly reduces
the progression-free survival and overall survival of patients treated with ICPis, possibly
by mechanisms related to antibiotic-induced alterations in the intestinal flora and effects
on the body’s immunity [23]. Nivolumab is one of the most widely used ICPis in clinical
treatment, and it was considered harmless to the kidney in early studies [24,25]. However,
its correlation with AKI events has been gradually emphasized [26]. Nivolumab-related
AKI is more likely to occur within 6–12 months after treatment and is more sensitive
to glucocorticoid therapy [27,28]. However, the exact pathogenic mechanism is poorly
understood.

The type of malignancy addressed in the present study had a high value for AKI
prediction, but the correlation between malignancy type and ICPi-AKI was inconclusive in
previous studies. Gynecological malignancies were previously associated with a 3.91-fold
increased risk of AKI in Koks et al. [16]. This correlation may be related to postrenal
obstruction caused by the tumor itself, but ureteral obstruction and retroperitoneal fibrosis
indirectly caused by radiotherapy are also important causative factors [29]. Several previ-
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ous studies confirmed that the overall incidence of AKI in patients with NSCLC treated
with nivolumab ranged from 1.9% to 3.4% [27,30,31]. The incidence of AKI was less than
1% in patients treated with pembrolizumab monotherapy [32,33]. Lung cancer accounted
for nearly 40% of the patients in our cohort. Although a direct correlation between lung
cancer and ICPi-AKI could not be confirmed in other parallel studies, it remained a strong
predictor and deserves clinical attention, especially when ICPis are combined with other
chemotherapeutic agents. Cancer of the liver and biliary system is one of the common
refractory cancers, and it has a strong immune-mediated pathogenesis that allows ICPi to
exert significant antitumor effects and become an effective alternative after sorafenib treat-
ment failure. Pembrolizumab, camrelizumab and tislelizumab are also recommended as
second-line regimens for hepatocellular carcinoma in several guidelines [34–36]. Gastroin-
testinal tract cancer is a global health problem, and prospective research results support
the use of ICPis in the third-line treatment of advanced gastric cancer [37–39]. Nivolumab
and pembrolizumab have been approved for third-line treatment in the United States and
Japan. Nephrotoxicity has not been explicitly stated in relevant studies related to these
two types of malignancy, and it has not been confirmed as an independent risk factor for
ICPi-AKI in subsequent studies. Therefore, the present study adds to the conclusion of its
importance in predicting the risk or grade of AKI for some patients with malignant tumors
treated with ICPis, even if the predictive factors are not equivalent to risk factors.

The study used the Gupta method to distinguish the cases of ICPi-AKI to avoid
the incorrect classification of cases without renal biopsy evidence in previous studies.
Compared to previous studies, our study had a relatively large sample size, which helped
us more effectively demonstrate and supplement the results of previous studies, especially
risk factors. Our research cohort was rich in malignant tumor diagnosis, which increases
the applicability of the model. Our study also has some limitations. First, the proportion
of ICPI-AKI patients was significantly lower than non-AKI patients, which affects the
generalization power and reliability of the model even after downsampling to balance the
sample. Second, there were no kidney biopsy cases in the study cohort, and etiological
classification according to the Gupta method could only confirm a probable or possible
diagnosis. However, the method reduced selection bias to some extent compared to other
studies. Third, the high proportion of patients with urinary erythrocytosis seen in this
study cohort did not exclude ICPi-derived glomerular injury, but the lack of renal biopsy
records did not allow further verification. Fourth, this study was a retrospective cohort
with few data on the use of PD-L1 and the clinical practice of ICPi combination therapy.
Therefore, we could not provide data and conclusions to demonstrate the specific effect
of combination therapy on ICPi-AKI. Sixth, there is no difference in the performance of
different models in this study, which may be related to the small sample size. In the future,
it is planned to continue to collect cases, expand the sample size, further optimize the
model parameters, and improve the model performance.

5. Conclusions

The present study successfully developed an ICPI-AKI prediction model based on
a machine learning method for the first time. This model only needs a small number of
clinically available variables for early prediction and risk assessment of ICPI-AKI events to
prevent clinicians from ignoring key AKI clues and adopt timely adjustment of medical
advice and effective preventive measures. While ensuring the consistency of ICPi treatment,
it can avoid the adverse effects of kidney puncture and hormone administration in some
people and ultimately improve the overall therapeutic benefits of malignant tumor patients
and the quality of life of the target population. Future studies will develop an electronic
tool based on this model and integrate it with physician workstations to optimize the
prevention and treatment management of ICPI-AKI using the alert function to combine
effective care decisions. We will perform prospective validation in other medical centers to
continuously optimize the performance of the model.
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