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Abstract: (1) Objective: To evaluate the performance of ultrasound-based radiomics in the preopera-
tive prediction of human epidermal growth factor receptor 2-positive (HER2+) and HER2− breast
carcinoma. (2) Methods: Ultrasound images from 309 patients (86 HER2+ cases and 223 HER2−
cases) were retrospectively analyzed, of which 216 patients belonged to the training set and 93 pa-
tients assigned to the time-independent validation set. The region of interest of the tumors was
delineated, and the radiomics features were extracted. Radiomics features underwent dimensionality
reduction analyses using the intra-class correlation coefficient (ICC), Mann–Whitney U test, and the
least absolute shrinkage and selection operator (LASSO) algorithm. The radiomics score (Rad-score)
for each patient was calculated through a linear combination of the nonzero coefficient features. The
support vector machine (SVM), K nearest neighbors (KNN), logistic regression (LR), decision tree
(DT), random forest (RF), naive Bayes (NB) and XGBoost (XGB) machine learning classifiers were
trained to establish prediction models based on the Rad-score. A clinical model based on significant
clinical features was also established. In addition, the logistic regression method was used to integrate
Rad-score and clinical features to generate the nomogram model. The leave-one-out cross validation
(LOOCV) method was used to validate the reliability and stability of the model. (3) Results: Among
the seven classifier models, the LR achieved the best performance in the validation set, with an area
under the receiver operating characteristic curve (AUC) of 0.786, and was obtained as the Rad-score
model, while the RF performed the worst. Tumor size showed a statistical difference between the
HER2+ and HER2− groups (p = 0.028). The nomogram model had a slightly higher AUC than
the Rad-score model (AUC, 0.788 vs. 0.786), but no statistical difference (Delong test, p = 0.919).
The LOOCV method yielded a high median AUC of 0.790 in the validation set. (4) Conclusion:
The Rad-score model performs best among the seven classifiers. The nomogram model based on
Rad-score and tumor size has slightly better predictive performance than the Rad-score model, and it
has the potential to be utilized as a routine modality for preoperatively determining HER2 status in
BC patients non-invasively.

Keywords: ultrasound; HER2; breast carcinoma; radiomics

1. Introduction

Breast carcinoma (BC) is the most common malignancy and the most frequent cause
of carcinoma mortality in women worldwide [1], and it is a complex and heterogeneous
disease [2–4]. Currently, BC is mainly classified into hormone-receptor-positive, human
epidermal growth factor receptor 2-positive (HER2+), and triple-negative BC on the basis
of histopathological characteristics [5,6].

HER2+ BC, in which the cells do not express estrogen receptors and progesterone
receptors, accounts for about 15% of all BC cases and presents a high rate of recurrence and
poor prognosis compared with hormone-receptor-positive BC [7–9]. Nevertheless, over
the last two decades, as agents that target HER2, including trastuzumab and pertuzumab,
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are extensively applied in clinical practice, significant advances have been made in the
treatment of HER2+ BC and overall survival has improved [10–12]. Hence, the status of
HER2 is one of the most significant and decisive factors in the treatment decision and
prognosis for breast carcinoma patients.

So far, the evaluation of HER2 status in breast carcinoma patients mainly relies on
immunohistochemistry (IHC) examination after surgical tumor excision or biopsy [13],
whereas both biopsy and surgery are invasive procedures and may lead to an increased risk
of complications such as seroma, local pain, and infection [14,15]. Moreover, the evaluation
results of a few tissue biopsies do not necessarily represent HER2 status of the whole
tumor [16]. In addition, in our center, routine histopathological findings are analyzed, but
patients still need to spend extra to get results from IHC. Therefore, it is urgent to develop
an economical, non-invasive, and precise pretreatment technology to predict HER2 status
in breast carcinoma patients.

Radiomics is a new research field on the basis of quantitative imaging methods, which
are mainly adopted to extract and analyze a large number of imaging features hardly
perceived by radiologists to reflect tissue information [17,18]. Recent studies demonstrate
that radiomics features extracted from magnetic resonance imaging (MRI) and computed
tomography (CT) images have been widely used in diagnosis, prediction of tumor stage
and histological subtype, as well as prognostic evaluation [19–22]. MRI and CT are limited
by economic cost and/or equipment availability. Compared with the above imaging
technologies, ultrasound, recognized as a radiation-free, convenient, and reasonably priced
technology, is universally used for breast carcinoma screening and diagnosis [23]. A number
of researchers have extended radiomics to ultrasound imaging [24,25]. Prior ultrasound
radiomics studies have shown that molecular subtypes of BC are related to qualitative
imaging characteristics and histopathologic features [26,27].

To the best of our knowledge, there are still relatively few studies to predict HER2 sta-
tus of breast carcinoma using the method of ultrasound-based radiomics. We hypothesized
that ultrasound radiomics features might provide guidance for predicting HER2 status
in patients with breast carcinoma and would like to develop and validate an ultrasound
radiomics model that could predict HER2 status.

2. Materials and Methods
2.1. Patient Cohorts

The institutional review board approved this retrospective study, and the requirement
for written informed consent was waived.

In total, 522 female patients confirmed as primary BC based on pathology examination
by means of biopsy or surgical excision and examined by ultrasound before treatment at
our institution from March 2019 to November 2021 were retrospectively collected.

Exclusion criteria were as follows: (a) ultrasound images not suitable for radiomics
study because of poor quality, artifacts, calcifications, or cystic changes (n = 48); (b) tu-
mors larger than 50 mm in diameter (incompletely displayed in a single plane) (n = 27);
(c) patients who underwent biopsy, radiotherapy, and/or chemotherapy before ultrasound
examination (n = 65); (d) patients with multifocal lesions or non-mass BC (n = 4040);
and (e) patients with missing clinical characteristics and/or postoperative histopathology
(n = 32); Finally, there were 309 eligible patients with BC, of whom those from March 2019
to November 2020 served as the training set (n = 216), while the remaining patients formed
the time-independent validation set (n = 93). The flowchart of patient selection is shown
in Figure 1.

2.2. Pathological Assessment

IHC is the leading clinical technology for immunostaining, which can precisely de-
termine the molecular subtypes of BC with high specificity. The estrogen receptor (ER)
and progesterone receptor (PR) status was considered positive if ≥1% of tumor cells had
positively stained nuclei [28]. For HER2 status identification, an IHC score 3+ of HER2 was
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considered as positive, while an IHC score 0 or 1+ of HER2 was considered as negative. An
IHC score of 2+ was considered indeterminate, and then fluorescence in situ hybridization
(FISH) was carried out to assess gene amplification, and HER2 was classified as positive
if the ratio was ≥2.0 [6]. For Ki-67 status, tumors with greater than 14% positive nuclei
were considered to have high expression, while other cases were considered to have low
expression [29].
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2.3. Clinical Characteristics

Clinical data such as age, tumor size, and tumor location were obtained from patients’
medical records. Status of ER, PR, and HER2, Ki-67 levels, molecular subtype, lymph
node metastasis, and histological type of tumor were obtained by reviewing patients’
pathology reports.

2.4. Image Acqusition and Segmentation

Breast ultrasound examinations were carried out by sonographers with more than
5 years of experience in breast ultrasound imaging, within 2 weeks before surgical resection.
Ultrasound was performed using the LOGIQ E9 ultrasound system with a 6–15 L linear
array probe and the Siemens Acuson S2000 with a 6–18 L linear array probe with radial,
transverse, and longitudinal scanning on both breasts. The imaging parameters were
consistent among patients: gain was about 50%; image depth was about 3.0 cm to 5.0 cm;
and focus paralleled the lesion. The ultrasound image was 1164 × 873 pixels and 1024 × 768
pixels in size on the LOGIQ E9 and Siemens Acuson S2000 devices, respectively. The image
of the largest section of the breast tumor with the clearest imaging was saved in the format
of Digital Imaging and Communications in Medicine to maximize the preservation of the
image information. Manual segmentation was performed on gray-scale ultrasound images
of breast lesions. Sonographer 1 (with more than 5 years of experience in breast ultrasound
imaging) with no information about the patient’s clinical history selected the largest plane
of each breast lesion and drew an outline of the region of interest (ROI) by using ITK-SNAP
software (version 3.4.0).

2.5. Radiomic Feature Extraction

A total of 788 radiomics features, consisting of shape, statistics, texture, and wavelet
features, were extracted. Radiomics features were extracted using the “pyradiomics”
package of Python (version 3.7.11). These ultrasound radiomic features were divided into
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four categories, including 14 two-dimension shape-based features, 18 first-order statistics
features, 22 gray-level co-occurrence matrix (GLCM) features, 16 gray-level run length
matrix (GLRLM) features, 16 gray-level size zone matrix (GLSZM) features, 14 gray-level
dependence matrix (GLDM) features, and 688 features derived from first-order GLCM,
GLRLM, GLSZM, and GLDM features using wavelet filter images. Supplementary Material
Data S1 contains details on the ultrasound radiomics extraction settings.

2.6. Evaluation of Inter- and Intra-Class Correlation Coefficient

The inter- and intra-class correlation coefficients (ICCs) were adopted to test the
reproducibility of feature extraction. Sonographers 1 and 2 (both with more than 5 years of
experience in breast ultrasound imaging) drew ROIs on the same ultrasound images from
the 50 randomly selected patients and extracted the radiomics features. Two weeks later,
sonographer 1 repeated ROI segmentation on the same ultrasound images and extracted
the radiomics features to assess the intra-observer reproducibility. An ICC greater than 0.75
suggested a good agreement for the feature extraction.

2.7. Radiomics Feature Selection

All the radiomics features were standardized by the z-score algorithm to ensure that
the scale of feature value was uniform and improve the comparability between features,
which was realized in the proportional scaling of the original data. The features with ICCs
less than 0.75 were excluded.

In the training set, the Kolmogorov-Smirnov test was first performed to assess whether
variances were normally distributed, and Levene’s test was used to assess the equality of
variance. An independent sample t test was used for variables with a normal distribution
and homogeneity of variance. Otherwise, the Mann–Whitney U test was used. The
radiomics features that showed no significant differences were excluded. The remaining
radiomics features were further screened by using penalized logistic regression with a least
absolute shrinkage and selection operator (LASSO) algorithm. An optimal lambda was
selected through 10-fold stratified cross-validation, which was tuned to achieve minimum
mean square error. Thus, features with a non-zero coefficient in the model were regarded
as the most representative features.

2.8. Development and Validation of the Prediction Model

The radiomics score (Rad-score) was calculated for each lesion using LASSO regression
and a linear combination of the values of the selected features weighted by their respective
non-zero coefficients. Based on the Rad-score, seven machine learning classifiers consisting
of decision tree (DT), K nearest neighbors (KNN), random forest (RF), support vector
machine (SVM), logistic regression (LR), naive Bayes (NB), and XGBoost were used to
construct the prediction model in the training set. The classifier with the highest AUC
value in the validation set was obtained as the Rad-score model.

2.9. Clinical Model and Nomogram Model

Clinical features that showed a statistical difference between the HER2+ and HER2−
BC in the training set were adopted to develop the clinical model by using the logistic
regression method. In addition, the nomogram model combining significant clinical factors
and the Rad-score was constructed for personalized HER2 status prediction.

We evaluated the performances of all the models in the time-independent validation
set in terms of sensitivity, specificity, positive predictive value (PPV), negative predictive
value (NPV), accuracy, and the area under the receiver operating characteristic (ROC) curve
(AUC). To verify the robustness of the nomogram model, the calibration curve [25] was
plotted. Furthermore, decision curve analysis (DCA) [26] was also utilized to select the
model that maximized patient benefits. The flowchart of this research is shown in Figure 2.
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Figure 2. Schematic representation of the radiomics analysis steps.

2.10. Statistical Analysis

R version 3.5.1 software was used for statistical analysis and figure plotting. Radiomics
features were extracted from each ROI using the “pyradiomics” package of Python (version
3.7.11). The continuous variables with normal distribution and homogeneity of variance
were shown as the mean (standard deviation) and tested by an independent sample
t test; otherwise, the data were analyzed by the Mann–Whitney U test and expressed
as the median (interquartile range). For categorical variables, the chi-square analysis or
Fisher’s exact tests were applied to compare the results. A two-tailed p < 0.05 indicated a
significant difference.

3. Results
3.1. Clinical and Pathological Characteristics

The clinical and pathological characteristics of the training and validation sets were
compared, and there was no statistically significant difference found (p > 0.05) (Table 1).
This suggested that the training and validation sets were harmonious in these clinical and
pathological characteristics.

Table 1. The baseline characteristics of the enrolled patients in the training and validation sets.

Characteristic Total Set
(n = 309)

Training Set
(n = 216)

Validation Set
(n = 93) p-Value

Age (year, mean ± SD) 52.88 ± 10.96 53.61 ± 10.98 51.18 ± 10.76 0.073

Size (mm, mean ± SD) 24.58 ± 11.06 25.25 ± 11.03 23.02 ± 11.03 0.106

Tumor location 0.480

Right lobe 165 112 53

Left lobe 144 104 40

BI-RADS 0.297

4A 46 29 17

4B 116 79 37

4C 81 63 18

5 66 45 21
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Table 1. Cont.

Characteristic Total Set
(n = 309)

Training Set
(n = 216)

Validation Set
(n = 93) p-Value

ER 0.973

Positive 228 160 68

Negative 91 56 25

PR 0.597

Positive 188 134 54

Negative 121 82 39

HER2 1.000

Positive 86 60 26

Negative 223 156 67

Histologic type 0.581

Invasive ductal 259 184 75

Invasive lobular 14 9 5

Other 36 23 13

Ultrasound equipment 0.636

Siemens Acuson S2000 246 174 72

LOGIQ E9 63 42 21

US-reported LN 0.875

Metastasis positive 130 92 38

Metastasis negative 179 124 55

Pathology-reported LN 0.868

Metastasis positive 170 120 50

Metastasis negative 139 96 43

Ki-67 (%, mean ± SD) 28.52 ± 22.16 28.16 ± 21.96 29.38 ± 22.72 0.663

Radiomics score (median, IQR) −0.0097
(−0.0975, 0.0794)

−0.0099
(−0.1030, 0.0787)

−0.0029
(−0.0883, 0.0808) 0.678

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; SD, standard
deviation; IQR, interquartile range; LN, lymph node; US, ultrasound; BI-RADS, Breast Imaging Reporting and
Data System.

3.2. Radiomics Feature Extraction and Selection

A total of 788 radiomics features were extracted from the ultrasound images of each
patient. The reproducibility of ultrasound radiomics features extraction was assessed. The
intra-observer correlation coefficient of sonographer 1 in two extractions was between 0.296
and 0.996, while the inter-observer correlation coefficient of extraction by sonographer 1
and sonographer 2 was between 0.323 and 0.989. Finally, 23 radiomics features (ICC < 0.75)
were excluded. The ICC evaluation results are shown in Figure 3. The morphological
characteristics of the randomly selected lesions for ICC assessment are provided as Sup-
plementary Material Data S2. All of the following analyses were based on the radiomics
features extracted by sonographer 1.

In the training set, after evaluating the differences of radiomics features by the Mann–
Whitney U test, 321 radiomics features were used for further analysis. Then, the optimum
Lambda (Lambda = 0.027464741148160516) was determined for the LASSO regression, and
12 radiomics features with nonzero coefficients were selected to differentiate HER2+ from
HER2− BC (Figure 4).
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used to predict mean square error of the Rad-score building by different Lambda values. (B) The
coefficient profiles of the radiomics features determined by different Lambda values.

Detailed information on the HER2+ BC-related features is shown in Table 2, and the
nonzero coefficients of the selected features based on the LASSO regression are shown in
Figure 5A. Moreover, the Pearson correlation coefficient between any pair of selected fea-
tures was computed, and the correlation coefficient matrix heatmap is shown in Figure 5B.

Table 2. List of features with nonzero coefficients.

Image Type Feature Class Feature Name Coefficient

original shape Elongation −0.011322

original glszm SmallAreaEmphasis −0.076092

wavelet-LHL glcm Idn 0.047259

wavelet-LHL glszm SmallAreaLowGrayLevelEmphasis −0.013013

wavelet-LHH glszm HighGrayLevelZoneEmphasis 0.008385

wavelet-LHH glszm SizeZoneNonUniformityNormalized 0.005098

wavelet-HLL firstorder 90Percentile −0.020703

wavelet-HLL glcm JointEntropy 0.020412

wavelet-HLL glszm GrayLevelNonUniformityNormalized −0.010225

wavelet-HLL gldm DependenceNonUniformityNormalized −0.033653

wavelet-HLH firstorder Mean −0.00703

wavelet-HHH firstorder Median 0.010776
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3.3. Radiomics Score Calculation

The radiomics score (Rad-score) for each patient in the training and validation sets
was calculated through a linear combination of the nonzero coefficient features based on
the LASSO regression, as shown in Figure 6A,B. The corresponding fitting formula is listed
in Supplementary Material Data S3. In the training set, the medians of Rad-score showed a
statistical difference between the HER2+ and HER2− BC (0.0838 vs. −0.0546, p < 0.001),
and the same results were achieved in the validation set (0.0936 vs. −0.0518, p < 0.001)
(Figure 6C,D, Table 3).
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Table 3. Rad-score for the training and validation sets.

Rad-Score HER2−
(Median, IQR)

HER2+
(Median, IQR) p-Value

Training set −0.0546
(−0.1303, 0.0338)

0.0838
(0.0336, 0.1523) <0.001

Validation set −0.0518
(−0.0985, 0.0394)

0.0936
(0.0185, 0.1623) <0.001

IQR, interquartile range.

3.4. Construction and Evaluation of Machine Learning Classifier

Seven machine learning classifiers (KNN, DT, RF, SVM, LR, NB, and XGBoost) were
then adopted to develop the prediction model based on the Rad-score. The sensitivity,
specificity, accuracy, PPV, NPV, and AUC values of the seven machine learning classifiers
are shown in Table 4.

Table 4. Diagnostic performance of seven machine learning classifiers in training and validation sets.

Training Set Time-Independent Validation Set

Model AUC (95%CI) SEN SPE ACC AUC (95%CI) SEN SPE ACC

LR 0.804 (0.742–0.865) 80.0% 70.5% 73.1% 0.786 (0.683–0.890) 69.2% 79.1% 76.3%

SVM 0.691 (0.622–0.760) 51.7% 86.5% 76.9% 0.702 (0.596–0.808) 53.8% 86.6% 77.4%

KNN 0.708 (0.641–0.776) 50.0% 91.7% 80.1% 0.699 (0.592–0.806) 57.7% 82.1% 75.3%

RF 1.000 (1.000–1.000) 100.0% 100.0% 100.0% 0.593 (0.480–0.706) 50.0% 68.7% 63.4%

DT 0.747 (0.680–0.814) 66.7% 82.7% 78.2% 0.742 (0.639–0.845) 69.2% 79.1% 76.3%

XGB 0.917 (0.872–0.963) 86.7% 96.8% 94.0% 0.627 (0.516–0.739) 53.8% 71.6% 66.7%

NB 0.655 (0.589–0.722) 40.0% 91.0% 76.9% 0.667 (0.564–0.770) 42.3% 91.0% 77.4%

DT, decision tree; RF, random forest; SVM, support vector machine; LR, logistic regression; NB, naive Bayes;
KNN, K nearest neighbors; XGB, XGBboost; AUC, area under the curve; SEN, sensitivity; SPE, specificity;
ACC, accuracy.

Among the classifiers, the general accuracies of the RF and XGBoost were 100.0%
and 94.0% in the training set and 63.4% and 66.7% in the validation set, which suggested
overfitting. The accuracy was 63.4% in the RF classifier and 77.4% in the SVM and NB
classifiers; the AUC values of the seven machine learning classifiers ranged from 0.593 to
0.786 in the validation set, with the LR classifier performing the best and the RF classifier
performing the worst. The LR classifier with the highest AUC value was selected as the
Rad-score model. In addition, a comparison of the ROC curves of the seven machine
learning classifiers in the training set and validation set is shown in Figure 7. Furthermore,
the AUC values between any pair of the classifiers were compared, and the p values were
obtained by DeLong test, which are shown in Table 5.
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Table 5. P values for AUC comparison between any pair of models tested by the DeLong method in
the validation set.

Model
(AUC Value)

LR
(0.786)

SVM
(0.702)

KNN
(0.699)

RF
(0.593)

DT
(0.742)

XGB
(0.627)

NB
(0.667)

LR (0.786) 1 - - - - - -

SVM (0.702) 0.023 1 - - - - -

KNN (0.699) 0.054 0.955 1 - - - -

RF (0.593) 0.004 0.164 0.101 1 - - -

DT (0.742) 0.124 0.317 0.225 0.021 1 - -

XGB (0.627) 0.042 0.344 0.367 0.674 0.142 1 -

NB (0.667) 0.006 0.305 0.574 0.329 0.124 0.612 1
LR, logistic regression; KNN, K nearest neighbors; DT, decision tree; RF, random forest; SVM, support vector
machine; NB, naive Bayes; XGB, XGBboost; AUC, area under the curve. The bold numbers (<0.05) mean
statistical difference.

3.5. Clinical Model and Nomogram Model

Comparison of the clinical features between the HER2+ and the HER2− BC in the
training set was performed. Tumor size (p = 0.028) and Rad-score (p < 0.001) were the
significant factors to distinguish the HER2+ from HER2− BC. Other clinical features such
as age, tumor location, ultrasound equipment, and ultrasound-reported lymph node status
were not identified as potential factors for predicting the HER2+ type (Table 6). Then, the
clinical model based on tumor size was constructed using logistic regression. At the same
time, the nomogram model was established by combining the tumor size and Rad-score
(Figure 8).

Table 6. Comparison of the clinical features between the HER2+ and HER2− BC groups in the
training set.

Training Set (n = 216)

Clinical Feature HER2−
(n = 156)

HER2+
(n = 60) p-Value

Age (year, mean ± SD) 54.04 ± 11.78 52.47 ± 8.55 0.279

Tumor location 0.673

Right 79 33

Left 77 27

Tumor size (mm, mean ± SD) 24.21 ± 10.90 27.93 ± 11.02 0.028

US equipment 0.064

Siemens Acuson S2000 131 43

LOGIQ E9 25 17

US-reported LN 0.550

Metastasis positive 64 28

Metastasis negative 92 31

Rad-score (median, IQR) −0.0546
(−0.1303, 0.0338)

0.0838
(0.0336, 0.1523) p < 0.001

SD, standard deviation; LN, lymph node; US, ultrasound; IQR, interquartile range.
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Figure 8. Nomogram based on the combination of the tumor size and Rad-score was developed
using logistic regression analysis.

Moreover, the predictive abilities of the clinical, Rad-score and nomogram models
were compared. The results for each model are summarized in Table 7. The ROC curves of
the three models to predict the HER2+ type are shown in Figure 9. In the time-independent
validation set, the AUC value of the nomogram was significantly higher than that of the
clinical model (AUC, 0.788 vs. 0.618; DeLong test, p = 0.016). Although the nomogram
model performed slightly better than the Rad-score model, there was no statistically
significant difference between them (AUC, 0.788 vs. 0.786; DeLong test, p = 0.919).

Table 7. Predictive performances of the models identifying HER2+ status in patients with BC.

Training Set Time-Independent Validation Set

Model AUC (95%CI) SEN SPE ACC AUC (95%CI) SEN SPE ACC

Clinical 0.594
(0.509–0.679) 48.3% 69.9% 63.9% 0.618

(0.485–0.751) 61.5% 62.7% 62.4%

Rad-
score

0.804
(0.742–0.865) 80.0% 70.5% 73.1% 0.786

(0.683–0.890) 69.2% 79.1% 76.3%

Nomogram 0.804
(0.742–0.866) 81.7% 71.8% 74.5% 0.788

(0.685–0.891) 73.1% 80.6% 78.5%

AUC, area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy.
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The LOOCV algorithm was carried out to validate the reliability and stability of the
results, which yielded a high median AUC (0.790 in the validation set), indicating that the
predictive performance of the nomogram model was reliable and stable.

3.6. Model Performance Evaluation

The predictive performances of the nine models, including seven machine learning
classifiers, a clinical model, and a nomogram model, in the validation set are shown in
Figure 10. The nomogram model has the highest AUC value (0.788), sensitivity (73.1%),
and accuracy (78.5%), and NB has the highest specificity (91.0%). To sum up, the overall
discrimination performance of the nomogram model was better than that of other models.
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3.7. Clinical Application of the Prediction Models

The calibration curve for the nomogram was tested using the Hosmer-Lemeshow test
and yielded nonsignificant results due to both p values > 0.05 in the training and validation
sets, showing good agreements between the observed and predicted results (Figure 11).
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Figure 11. Calibration curves of the nomogram model in the training (A) and validation sets (B).

Decision curve analysis of the clinical, Rad-score and nomogram models is shown in
Figure 12. The gray line represents the assumption that all lesions were HER2+ type. The
black line represents the assumption that all lesions were HER2− type. If the threshold
probability was less than 56.9%, using the nomogram would add more benefit (red line).
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Figure 12. Decision curves of the models. If the risk threshold is less than 56.9%, the nomogram
model will obtain more benefit than all treatment (assuming all breast cancer patients were HER2+)
or no treatment (assuming all breast cancer patients were HER2−).

4. Discussion

Mineable data can be extracted from digital medical images by radiomics and analyzed
to improve detection, diagnosis, staging, and prognosis prediction [20–22,24]. Ultrasound
radiomics might be helpful to answer questions like what the molecular subtype of BC is,
and this might affect the treatment strategy in patients with BC.

In our study, seven machine learning classifiers, such as KNN, LR, SVM, DT, NB, RF,
and XGBoost, were established based on the Rad-score in the training set and tested in the
time-independent validation set. Among them, the LR classifier with the AUC value of
0.786 performed the best, which might be that complex classifiers needed more training
samples. Then the LR classifier was selected as the Rad-score model. The results indicated
that the ultrasound-related Rad-score could predict the HER2+ status of patients with
breast carcinoma. In addition, by establishing a nomogram model combining the Rad-score
with clinical risk factors, we found that the nomogram model had significantly improved
predictive performance compared with the model only involving clinical risk factors (AUC,
0.788 vs. 0.618, in the validation set) and slightly improved the ability compared with the
Rad-score model (AUC, 0.788 vs. 0.786, in the validation set). The consistency between
the nomogram model’s predicted probability of HER2 status and the actual results were
evaluated by the calibration curve, and p-values in the training and validation sets were all
> 0.05, which suggested that the stability of the model is fine. In addition, patients with
BC could obtain a pronounced net benefit from the nomogram model when the threshold
probability is less than 56.9%, which is shown in the decision curve analysis, demonstrating
the good clinical utility of this model. The nomogram model could be potentially utilized as
a routine tool to assist clinicians in preoperatively predicting HER2 status non-invasively.

In recent years, radiomics studies have mainly been carried out based on computer
tomography or magnetic resonance imaging [19–22], demonstrating that radiomics features
could reflect the heterogeneity of tumors and have become a reliable potential biomarker
for improving diagnosis and treatment decisions. In recent radiomics studies on breast
ultrasound imaging, researchers have mainly focused on the differential diagnosis of
benign and malignant breast tumors [27,30,31], prediction of preoperative axillary lymph
node metastasis [26,32,33], and prediction of molecular subtypes [28], with mixed findings
that might be due to the heterogeneity of ultrasound machines, algorithms, and extracted
features. The results of our study facilitate a possible clinical role for the nomogram model
in the identification of HER2 status in BC, in accordance with the mentioned studies above
carried out by ultrasound radiomics.
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In the present study, the ultrasound images of breast carcinomas were analyzed by
radiomics, and finally 12 features were screened out to calculate the radiomics score. A
majority of the selected ultrasound radiomics features were wavelet-based features that
were supposed to redisplay tumor characteristics hidden behind the speckle and show
discriminative ability [32,34]. Among the 12 features, original_glszm_SmallAreaEmphasis
revealed the strongest correlation with HER2+, while wavelet-LHL_glcm_Idn and wavelet-
HLL_gldm_DependenceNonUniformityNormalized also showed a strong correlation. The
relationship between the combinations of gray levels in the image parameters is calculated
by glcm texture features, which have been widely used in many texture analysis applica-
tions and can reflect the internal spatial heterogeneity of the tumor lesions [35,36]. In the
present study, glcm features extracted from an ultrasound image of BC were correlated
with HER2 status. Radiomics features extracted from ultrasound image of BC could detect
the invisible heterogeneity of tumors and were available to predict HER2 status in patients
with BC.

Generally, one feature selection method is adopted in conventional radiomics analysis.
In the study by Xu et al. [37], six features based on ultrasound radiomics were selected by
the recursive feature elimination, and a random forest model including 90 trees was built for
prediction of HER2 status, with the AUC of 0.780 and 0.740 in the training and validation
sets. In order to reduce overfitting effectively, we used the ICC and Mann–Whitney U
test for feature selection in the first step and LASSO regression in the second step, and we
achieved better predictive performance with the LR classifier than the study by Xu et al.,
with AUC values of 0.804 and 0.786 in the training and validation sets, respectively. In
addition, the statistical power of our study might be more robust because the sample size
in our study was significantly larger than theirs (309 vs. 114).

A prior study by Wu et al. based on ultrasound radiomics developed models to predict
the expression of molecular biomarkers of the mass type of breast ductal carcinoma in situ
(DCIS) [29]. Based on 41 ultrasound radiomics features, they generated a model predictive
of HER2+ type in BC patients with AUC values of 0.940 in the training set and 0.740 in
the validation set. As the significantly reduced AUC value in the validation set and 41
ultrasound radiomics features (much more than 10% of the sample size of the training set)
were selected to establish the model, we speculated that the overfitting problem should
be taken into account. Moreover, in their study, only patients with a mass type of DCIS
were enrolled, whereas in this study, tumors such as invasive ductal carcinoma, invasive
lobular carcinoma, and mucinous breast carcinoma were included, which expanded the
range of tumor types. Furthermore, the sample size of their retrospective study was much
smaller than ours (116 vs. 309). Hence, compared with the study by Wu et al., a major
highlight in our study was the larger sample size and diversity of tumor types, which
might increase the universality of the nomogram model. We obtained a higher AUC value
compared to the aforementioned studies with regards to prediction of HER2 status by
using radiomics and a machine-learning algorithm [29,37]. The most probable explanation
for this is that we adopted seven machine learning classifiers to develop seven prediction
models and selected the one with the highest AUC value. Furthermore, the nomogram
model combining the Rad-score with the clinical risk factor of tumor size was constructed
and achieved better predictive performance than the LR classifier.

Despite the significance of the present research, there are several shortcomings in our
study. Firstly, the prediction model based on ultrasound radiomics features was established
and tested for identifying between HER2+ and HER2− BC in a single hospital with only
216 patients in the training set and 93 patients in the validation set. In addition, as all
data was collected retrospectively and limited to Chinese patients, bias was inevitable.
Therefore, further prospective studies need to involve a larger patient population and
perform multicenter external validation. Secondly, in our study, the extraction of radiomics
features required time-consuming tumor boundary segmentation and human-defined
features, and we believe that a deep learning algorithm might accurately and automati-
cally detect, segment, and achieve more objective results [38,39]. Thirdly, only gray-scale
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ultrasound images were adopted to develop the radiomics model, and other types of
images like elastosonography or color Doppler ultrasound might be taken into account for
multi-modal imaging to improve the predictive performance. Finally, radiomics studies
based on gray-scale ultrasound images still lack reproducibility, as researchers always select
different ultrasound images of the same lesion for radiomics analysis. Three-dimensional
ultrasound images for feature extraction might be more objective than the conventional
two-dimensional images, which could be considered in future studies.

5. Conclusions

In summary, the Rad-score model performs best among the seven classifiers. The
nomogram model based on Rad-score and tumor size has slightly better predictive per-
formance than the Rad-score model, and it has the potential to be utilized as a routine
modality for preoperatively determining HER2 status in BC patients non-invasively. How-
ever, further studies with a prospective design and a larger population are required to
validate the conclusions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12123130/s1. Data S1: The ultrasound radiomics
extraction settings; Data S2: The morphological characteristics of the randomly selected 50 lesions for
ICC assessment; Data S3: The corresponding fitting formula for calculating the Rad-score.
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