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Abstract: The development of genomic technology for smart diagnosis and therapies for various
diseases has lately been the most demanding area for computer-aided diagnostic and treatment
research. Exponential breakthroughs in artificial intelligence and machine intelligence technologies
could pave the way for identifying challenges afflicting the healthcare industry. Genomics is paving
the way for predicting future illnesses, including cancer, Alzheimer’s disease, and diabetes. Machine
learning advancements have expedited the pace of biomedical informatics research and inspired
new branches of computational biology. Furthermore, knowing gene relationships has resulted in
developing more accurate models that can effectively detect patterns in vast volumes of data, making
classification models important in various domains. Recurrent Neural Network models have a mem-
ory that allows them to quickly remember knowledge from previous cycles and process genetic data.
The present work focuses on type 2 diabetes prediction using gene sequences derived from genomic
DNA fragments through automated feature selection and feature extraction procedures for matching
gene patterns with training data. The suggested model was tested using tabular data to predict type
2 diabetes based on several parameters. The performance of neural networks incorporating Recurrent
Neural Network (RNN) components, Long Short-Term Memory (LSTM), and Gated Recurrent Units
(GRU) was tested in this research. The model’s efficiency is assessed using the evaluation metrics
such as Sensitivity, Specificity, Accuracy, F1-Score, and Mathews Correlation Coefficient (MCC). The
suggested technique predicted future illnesses with fair Accuracy. Furthermore, our research showed
that the suggested model could be used in real-world scenarios and that input risk variables from an
end-user Android application could be kept and evaluated on a secure remote server.

Keywords: deep learning; PIMA dataset; Type-2 diabetes; Recurrent Neural Networks; weight optimization

1. Introduction

Diabetes is a metabolic disorder influenced by high blood sugar levels due to insuf-
ficient insulin release or synthesis. Diabetes was predicted to affect 285 million people
globally in 2010. According to the disease’s current development pace, this figure will
increase to 552 million by 2030. One in every ten people is projected to have diabetes by
2040 [1]. Diabetes is becoming more prevalent because of individual habits, divergent
lifestyles, and living standards. Thus, researching how to effectively and promptly identify
and treat diabetes is worthwhile. Diabetes is diagnosed based on genomic patterns. It will
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result in a more accurate and precise outcome and assist in adhering to better habits that
are less likely to result in diabetes shortly. Very effective identification of an illness allows
individuals with future illnesses to slow or postpone the disease’s development and enjoy
better overall health. Machine learning techniques fall into two categories: screening future
illnesses and diagnosing an abnormality [2]. Based on current and prior medical conditions,
forward prediction techniques can anticipate diabetes before it occurs [3,4].

Type 2 diabetes (T2D), formerly called non-insulin-dependent diabetes) is a category
of metabolic disorders distinguished through hyperglycemia, resulting in abnormalities in
insulin production or insulin function. Lifestyle behaviors, including food habits, exercise,
and dietary choices, may significantly affect its development. T2D is the type of disease
known for decreasing the life span and reducing the standard of living. The illness may be
controlled with lifestyle modification and pharmaceutical management. Thus, it is essential
to have early diagnosis and treatment of T2D to help patients avoid life-threatening con-
sequences. Many research studies have been conducted on medical diagnoses to predict
illness and forecast the future with considerable efficiency accurately. Generally, most
diseases are triggered by a combination of two or more gene patterns. Recognition of the
combinational gene sequence by rigorous analysis of the reference genes of the healthy per-
son with the samples that are trained genes acquired from the diseased. Deoxyribonucleic
Acid (DNA) is significant for cell growth and is generally a hereditary component in each
cell of an organism. As stated by A. Arshad and Y. D. Khan [5], DNA is coded through
chemical bases adenine (A), guanine (G), cytosine (C), and thymine (T) that form up a cell
which is unique for almost all human beings. Analysis of DNA molecular compositions
of human genes is immensely used to predict illnesses associated with ancestors. The
genomics study would assist in changing the lifestyle of an individual, which results in
a lower risk of the disease in the future. DNA analysis can assist in the prediction of a
disease that is caused by a mutation of the DNA. Biomedical engineering has recognized
an enormous gene data set that could help predict various conditions. The Neural Network
approach can identify gene patterns that harm cells of a human body with a high possibility
of illness-causing patterns through the proposed mechanism. By incorporating Neural
Networks, approaches would have high Accuracy for illness prediction with reasonably
acceptable computational latency.

The advancement that has taken place in Genome-Wide Association Studies (GWAS)
holds tremendous information related to various gene patterns associated with divergent
illnesses that are complex and challenging to perform reductive analysis from a single locus,
as stated by Cho Ys [6] and Coron [7]. The evolution of GWAS has focused on integrating
data related to multi-locus across the gene that would assist in predicting complex illnesses
in advance. Polygenic Risk Scores (PRS) were proposed by Duncan L. et al. [8] for risk
analysis using the sum of the weight of each risk-associated locus of genomic sequence
obtained from the corresponding evidence. These weights are assessed from the regression
coefficient associated with each locus. These combined genetics features and correlation
matrices would significantly assist the entire field of genomics study [9]. These studies on
analyzing the genomic data and the tabular datasets such as PIMA would largely assist in
analyzing the future illness had paved the motivation for the current study, and the role of
various neural network components in the performance of the deep learning models are
evaluated [10,11].

The current study is primarily motivated by the research challenges in handling
genomic data and the pattern recognition for precisely identifying future illnesses. The
genomic data comprises more extensive DNA sequences, which requires tremendous
computational efforts to assess the disease’s probability. Earlier assessment of the future
illness would assist the individual in safeguarding themselves from such disease through
better living standards. Moreover, the current study has also focused on evaluating the
performances of various recurrent neural network models such as RNN, GRU, and LSTM
in disease prediction. Performances evaluation metrics such as the confusion matrix
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for Sensitivity, Specificity, F1-Score, and Mathews Correlation Coefficient measures are
considered in the current study.

The recurrent neural network components such as RNN, GRU, and LSTM are efficient
in learning from past experiments and can simultaneously process a sequence of inputs and
outputs, which is a kind of sequence-to-sequence network that is exceptionally efficient in
handling genomic data. The RNN-based neural network may represent a set of records such
that each pattern is thought to rely on preceding ones. The Hidden State, which remembers
certain information about a sequence, is the core and most essential aspect of RNN. LSTM
feeds genetic sequences into a network and makes assumptions based on the sequence
data’s discrete time steps. It can learn long-term dependencies, which is notably valuable
for sequence prediction issues. GRU uses less memory and is comparatively faster than the
RNN and LSTM models. But can effectively work with smaller sequences. GRU employs
fewer training parameters, requires less memory, executes quicker, and learns faster than
LSTM, although LSTM is much more accurate on more extended sequence datasets.

The main contributions of this work are as follows:

• The reference gene sequence is analyzed against the trained genomic data for possible
gene pattern matching. As well, the further correlation between the reference gene
and gene pattern associated with diabetes is assessed.

• The probabilistic estimations are performed by the softmax layer towards the future
illness based on the gene correlation. Additionally, based on the probabilities, the risk
factor outcome is yielded.

• The proposed RNN model is evaluated over the tabular patient data such as PIMA for
risk analysis, where the auxiliary memory components such as GRU and LSTM are
integrated for better prediction performance.

• The feature selection and weight optimizations are performed over the features of the
PIMA dataset for better prediction outcomes.

• The outcome of the present study is being evaluated against conventional classification
techniques such as Decision Tree, J48, K Nearest Neighborhood, Logistic Regression,
Naive Bayes, Random Forest, and Support Vector Machine.

The entire paper is arranged as follows. The paper’s first section introduces the
proposed approach and the Genomic domain. Section 2 presents the literature review
of existing studies focusing on various disease prediction techniques using genomic and
tabular data. Section 3 presents the methodology of the proposed model where various
aspects such as background work of the domain that highlights data collection, data
preprocessing, feature extraction strategies, and RNN with various memory components
are presented. Section 4 presents the result and discussion. Section 5 presents the conclusion
and future scope of the proposed model.

2. Literature Review
2.1. ML Models for Smart Diagnosis of Type-2 Diabetes

Machine Learning is the most emerging technology for addressing inevitable problems
in various domains. Machine Learning through supervised, semi-supervised approaches, or
weakly supervised approaches, is used with data from various sources, including medical
records and information obtained from wearable gadgets, to forecast an illness. In either of
these approaches, sickness cannot be predicted much earlier, and the patient cannot get rid
of the illness by changing his or her lifestyle in a short period. The polygenic scores-based
approach is among the most predominantly used strategies for the earlier prediction of an
illness. The Polygenic Score approach has been tremendously evaluated before it is used in
clinical trials. It is also used in illness screening mechanisms, as in the study of So et al. [12].
The current research and the genomic analysis could change lifestyles and reduce illnesses
such as heart attack, cardiovascular diseases, cancer, and Alzheimer’s disease. The process
of polygenic risk score involves two significant phases: discovery and validation. The
Discovery Phase identifies risks through a statistical association test using either linear or
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Logistic Regression. The later phase validates approximations performed in the earlier
stage for extracting information related to Single Nucleotide Polymorphism (SNP).

Deep learning (DL) [13,14] is the field of Machine Learning that is extensively used in
predicting type-2 disease by processing the blood glucose level and spectrogram images
generated from the blood glucose levels. Moreover, the DL models could also be used
with tabular datasets such as PIMA for the prediction of diabetes. Every layer in the
DL model reflects a degree of acquired information. The layer closest to the input layer
reflects low-level data elements, whereas the layer closest to the output layer shows a
higher degree of discrimination with more concise notions. Deep learning generally needs
more data for precise classification and also needs tremendous computational resources
for processing [15]. The major limitation of the deep learning models is that the decision
mechanism is not interpretable, which limits the trustworthiness of the models.

Clustering is one of the most predominantly performed operations with un-supervisory
approaches using dimensionality reduction approaches such as Singular Value Decom-
position (SVD) [16], Principle Component Analysis (PCA) stated by Konishi T. et al. [17],
Apriori stated by S. Mallik et al. [18]. Dynamic thresholding-based FP-Growth was stated
by Mallik S. et al. [19] for treating unusual illnesses and certain types of diseases with
unknown variations with different symptoms. However, most of these approaches do not
label the output data, as the provided input does not have any labels. The Accuracy of
the un-supervisory method is a significant concern as classes are not marked. In some
instances, the proposed algorithm might end up misinterpretation. A classification-based
illness prediction is a supervisory approach that includes various mechanisms such as
Linear and Polynomial Regression, Decision Tree, Random Forest, and many other sys-
tems, including the Support Vector Machine (SVM) used by Huang S. et al. [20], K-Nearest
Neighbour used by Parry R. et al. [21], and Logistic Regression approach that exhibits
better efficiency in terms of accuracy and precision other classification models. Supervisory
approaches exhibit optimal performance for known cases. The Accuracy of the prediction
outcome is directly proportional to the training set size, which needs many computational
efforts. However, in some cases, the approach diverges due to excessive training.

Random Forest is a rapid implementation approach using the Ranger package in the R
tool described by Wright and Ziegler [22], which is used to predict future illness from tabu-
lar data such as PIMA. Artificial Neural Networks based on illness prediction mechanisms,
as discussed by Anifat O. et al. [23] and Mantzaris D. et al. [24] involve a more profound ar-
chitecture that includes input and output layers alongside multiple hidden layers to process
records iteratively, moving data among layers that would minimize the loss function and
acquaint weights and biases of each layer. Various ensemble approaches, such as random
forest and boosting, have been experimented with as alternatives to machine learning
approaches for predicting future illness. Exponential research has been conducted using
either of those approaches with real-time and simulated data. The ensemble approaches
work faster for classification when compared to the conventional classification models.
However, either of the models ends up with non-additive issues. The resultant effect in the
forward direction of the layers would determine the predictive analysis, and the backward
pass would assess the standard error among the prediction made and the ground facts.

2.2. Deep Learning for Type-2 Diabetes

The Deep Learning (DL) model implements the framework that infers target gene
expression obtained from the expression of landmark genes. Utilizing 111,000 individual
gene patterns over a Gene expression Omnibus2, Deep Neural Network-based Gene Analy-
sis model (D-GEX) trained a feedforward neural network through three hidden layers. DL
models outperform linear Regression in summarizing expression levels of over 21,000 hu-
man genes based on a collection of landmark genes with about 1000 sequences. Although
the DL model is more accurate than conventional classification models, performance is not
adequate in the healthcare domain, where the design of DL models needs to be improved.
The deepVariant model outperforms all other recent neural network models [25]. Deep-
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Variant generalizes its training samples by utilizing various human genome expressions as
train and test datasets.

Additionally, when training with human gene expressions and evaluating with a
mouse genomic expressions dataset, DeepVariant obtained Accuracy that outperformed
training with mouse data. DeepFIGV is a deep learning algorithm that uses DNA sequences
to predict locus-specific signals from epigenetic tests. DeepFIGV quantifies epigenetic vari-
ance by employing several investigations with similar cell patterns and experiments [26]. It
combines the entire gene sequence to provide a customized genetic line for each person.
The Gene Co-Expression model is a differential network analysis model extensively used
in gene data analysis to identify gene sequence similarities and topologies [27]. This model
considers two classes of the gene through which the classification model is implemented.
However, the Gene Co-Expression model has to deal with comparatively larger features
than the size of the data and the non-linearity of the network architecture, where dependen-
cies would make it difficult to trust the model’s predictions. Reinforcement Learning (RL)
based intelligent systems such as Q-Learning, State Action Reward State Action (SARSA),
Deep Deterministic Policy Gradient (DDPG), and Deep Q Network (DQN), as stated by
Travnik Jaden B. et al. [28] are the most suitable for handling healthcare to better forecast a
future illness with minimal training of the algorithm recovers. The underlying technology
remains the same with minimal training. The algorithm is mechanized to learn from its
previous experiences.

Various studies have been presented to predict future illness through existing patient
data using machine learning algorithms. Predicting future illness has become a demanding
topic in healthcare [29]. Several studies have used machine intelligence techniques to
analyze the Pima Indian Diabetes Dataset. C. Yue [30] has investigated various hybrid
approaches, including Neural Networks, integrated Quantum Particle Swarm Optimization
(QPSO), and Weighted Least Square (WLS) Support Vector Machine (SVM) for diabetes
prediction, with the WLS-SVM hybrid model showing a classification accuracy of 82.18%.
However, the hybridization model needs considerable effort in the evaluation process. In
addition, the SVM model is not suitable for working with larger data [31]. Moreover, the
SVM model underperforms if the number of attributes for every data point exceeds the
training samples. The combinational models for diabetes prediction using Cross-validation
and Self-Organizing Maps (SOM) have achieved an accuracy of 78.4% [32,33]. SOM can rely
on the associated weights of neurons for precise classification. Inappropriate assignment of
initial weights may impact the model’s performance. A C4.5 technique [34] has been used
to analyze the PIMA dataset, attaining an Accuracy of 71.1%. The model works through the
entropy value associated with the feature vector. The conventional classification models
exhibit poor performance when working with distinct feature vectors [35].

A fuzzy entropy approach for feature selection for a similarity classifier has been
evaluated against various medical datasets, such as Pima–Indian diabetes, exhibiting an
accuracy of 75.29% [36]. A fuzzy model primarily depends on the membership evaluation
that requires considerable effort. Non-linearity in evaluating the model will limit the
model’s performance [37]. Genetic Algorithm (GA) with Radial Basis Function Neural
Network (RBF NN) has been used in the evaluation process of diabetes data, exhibiting
an accuracy of 77.39% over the testing dataset [38]. Moreover, for artificial evolutionary
algorithms such as GA, the most prohibitive and restricting element is frequently repeated
fitness function assessment for complex gene patterns. Hybridization of models with GA
would need more computational efforts than neural networks alone. Various cutting-edge
technologies for the classification and prediction of type-2 diabetes are presented in Table 1.
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Table 1. Various existing models for diabetes prediction.

Approach Type of Data Applicability Limitations

polygenic scores-based
approach

[12]
Genomic Data

Used in the evaluation of clinical
trials and illness screening

mechanisms

The polygenic score approach needs
larger samples and tremendous

training for considerable Accuracy.

Singular Value
Decomposition

[13]

Genomic Data
Tabular Data

The image they are
used

They are used in ranking the feature
set and compression of the data

through the least-square fitting. Gene
sequences are ranked based on the

probability of illness.

SVD is not an algorithm designed to
perform; it is a matrix decomposition
mechanism. They are various neural
ranking models that perform much

better than SVD.

Principle Component
Analysis [14]

Genomic Data
Tabular Data

PCA technique is extensively used in
gene analysis to discover the regional

and ethnic patterns of genetic
variation.

The independent gene expressions
are less interpretable, and

information loss is possible if the
number of components is carefully

chosen.

Gene Co-Expression
model

[27]
Genomic Data

The Gene Co-Expression model
analyzes the genomic data’s insights

through similarity assessment of
expressions and topologies.

The Gene Co-Expression model may
not deal with larger features than the

data size and non-linearity in the
network architecture.

Reinforcement
approaches (SARSA,

DDPG, DQN)
[28]

Genomic Data
Tabular Data
Image Data

The reinforcement learning models
are widely used in studies where the

states in the problem are
deterministic and in situations where

control over the environment is
needed. RL models are proven to

exhibit better non-linearity in gene
analysis.

Adding excessive amounts of
reinforcement learning may result in
an overflow of states, which might

reduce the effectiveness of the
findings. As well, RL models are

data-hungry.

Decision Tree
[39]

Tabular Data
Image Data

Using Decision Trees, the efforts to
preprocess data can be reduced as
normalization and scaling are not

required, and missing values will not
influence the model’s outcome.

DT models consume more time to
train the model, and more effort is

desired.

J48
[40]

Tabular Data
Image Data

J48 is a decision tree that can handle
outliers effectively and robustly in

non-linear problems.

J48 model is less stable, and noisy
data compromises the efficiency of

the data.

K Nearest Neighbor
[41]

Tabular Data
Image Data

The K Nearest Neighbor model does
not need prior training for classifying

the class data. It requires lesser
computational efforts and a faster

resultant outcome.

The KNN model fails to work with a
larger dataset and high-dimensional

data. The feature scaling phase is
crucial for an optimal classification
level, which requires considerable

effort.

Logistic Regression
[42]

Tabular Data
Image Data

Logistic Regression is the very
predominantly used classification
technique. The model efficiently
classifies the data based on the

likelihood and the association among
the data items. The model can sustain

the overfitting and underfitting
issues.

The challenging part of the Logistic
Regression is linear separatable and

often leads to overfitting when
observations are fewer concerning the

feature set size.

Naive Bayes
[43]

Tabular Data
Image Data

Naive Bayes algorithms perform well
for multi-class classification models

with minimal training.

NB assumes all the feature vectors as
mutually independent components in
the classification process. NB may not

perform better in evaluating the
problems with the interdependent

feature set.

Random Forest
[44]

Tabular Data
Image Data

Random Forest models perform
bagging for classification. RF models

efficiently reduce the over-fitting
issue and can handle the missing
effectively. Moreover, the feature

scaling task need not be performed.

RF models need tremendous training,
and frequent hyperparameter tuning
is required for considerable Accuracy.
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Table 1. Cont.

Approach Type of Data Applicability Limitations

Support Vector
Machine

[45]

Tabular Data
Image Data

Support Vector Machine is efficient in
handling thigh-dimensional and

efficient memory handling capability.

SVM is inappropriate for working
with a larger dataset with a larger

feature set. The outcome of the SVM
model is largely dependent on the

objective function. Too many support
vectors will be generated when

choosing a larger kernel, which might
impact the model’s training process.

Genetic Algorithm
[46]

Genomic Data
Tabular DataImage

Data

A genetic algorithm is an
evolutionary algorithm that uses

probabilistic transaction rules, and
non-linearity in the searching process

would yield better model accuracy.
As well, can effectively handle the

larger search space.

The genetic algorithm has susceptible
to local maxima and minima and
similarly to global maxima and

minima. That might result in poor
prediction performances.

All the mentioned models rely on tabular datasets such as PIMA and ECG signals [47]
in classifying the records with possible diabetic illnesses. The current study considers that
genomic data yields a better patient-centric outcome than tabular data.

2.3. Genomics for Type 2 Diabetes

Many research studies have been carried out on genetic-based illness prediction.
Incorporating machine learning approaches with genetic-based illness prediction could
result in an accurate outcome. This has intensified the role of Artificial Intelligence (AI)
in healthcare. It has been estimated that approximately $36 billion will be invested in AI
by 2025 [48]. Deep genomics through machine learning approaches has outperformed
accuracy in predicting and diagnosing illnesses such as cancer with minimal inclusion
of radiologists. It is desired to have sufficient biological knowledge to understand how
genetics can help us predict various conditions and analyze each chromosome to identify
the disease-causing gene. Pre-existing research studies have focused on genomics and gene
interaction patterns of various persistent illnesses such as Alzheimer’s, multiple cancers,
and Parkinson’s.

Many aspects need to be considered in the predictive analysis of an illness, as a gene
mutation might lead to two or three diseases. The main challenge when handling genomic
data for illness prediction is that the prototypical microarray image consists of fewer
records. In contrast, the number of fields concerning genres could result in a few lakhs
that might misinterpret the data with a significant false-positive ratio. Enhanced Gene-Set
analysis can be deployed to extract and analyze genes resulting in soaring throughput
on molecular assessments. Gene-Set analysis, as stated by Mooney M. A. and Wilmot
B. [49] and Mathur R. et al. [50], is also referred to as pathway analysis, is meticulous
in aggregating gene-sets with identical properties or sequences per the reference’s gene
trained or presented in the disease’s knowledge base. Genome-wide association studies
(GWAS) have demonstrated that many disease-causing genes are related to human diseases.
GWAS has also provided polygenic characteristics of diseases. Figure 1 presents a block of
GWAS in disease prediction. There are many steps during a gene-set analysis. They are
shown below as Steps 1 through Step 6:

Step 1: Preliminary genome-wide analysis and data preprocessing;
Step 2: Identifying gene-set definitions whose patterns have to be recognized;
Step 3: Processing genomic data such as filtering and identifying gene patterns;
Step 4: Identify gene set analysis models, such as identifying the statistical hypothesis;
Step 5: Assessing the statistical magnitude;
Step 6: Report summarization and visualization.
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Figure 1. Gene analysis-based disease perdition framework.

Gene data include metadata about the information associated with type 2 diabetes,
consisting of alleles, MegaBase, and Single nucleotide polymorphisms. An allele is a word
that denotes a particular gene sequence copy associated with a specific context. A mutation
might be considered one of two or more varieties of a particular gene. Most individuals have
SNPs. However, some variants are more prevalent than others in particular populations. A
single DNA-building unit, the nucleotide, is found at tens of thousands of different sites
on the human genome. In genetics, a MegaBase is a unit of length representing a genomic
region’s length. MegaBase is used to determine the distance between two genes. Values
of these gene features mentioned above are considered when evaluating the possibility of
feature disease.

A highly dense genotyping collection is considered for coverage throughout the whole
genome, such as covering common and uncommon variations in the genome. These gene
sequences contain many single-nucleotide polymorphisms (SNP) that can significantly
improve the capture of low-frequency variations, which is advantageous to users of other
genome-wide collections. Gene sequences that hold a higher possibility of T2D in the future
are listed in Table 2. Disease-corresponding gene sequences are cross-validated against
individual data for forecasting the likelihood of the disease.

Table 2. Genomic information associated with Type 2 diabetes.

Gene Data Type 2
Diabetes Fasting Glucose Alleles SNP Megabase

GLS2 4 G/A rs2657879 55.2
P2RX2 4 A/G rs10747083 131.6
WARS 4 G/T rs3783347 99.9
BCAR1 4 T/G rs7202877 73.8

ANKRD55 4 G/A rs459193 55.8
TLE1 4 G/A rs2796441 83.5

KLHDC5 4 C/T rs10842994 27.9
ANK1 4 C/T rs516946 41.6
ZMIZ1 4 A/G rs12571751 80.6
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3. Methodology

This study is focused on predicting future illnesses such as type-2 diabetes from
genomic and tabular data. Genomic data are analyzed for possible gene expression highly
likely to be affected by type-2 diabetes. Tabular data from the PIMA dataset with various
features are also explored through the proposed RNN model by identifying the feature
vector’s pivotal features. The proposed model relies on the Deep Neural Networks (DNN)
framework for analyzing the genomic data, making the precise assessment of possible
future illnesses with better Accuracy than the conventional pattern-matching techniques.
DNN is a probabilistic measure that would summarize the possible illness outcome that
would better assist in decision-making by the physicians. The working procedure and
implementation details are discussed in the current section. The models are trained from
the available gene base from scratch initially, and at the later stages, the model learns from
the experimental outcomes.

3.1. Recurrent Neural Network Model for Type 2 Diabetes Forecasting Based on Genomic Data

Predictions of future illness can be performed through Convolutional Neural Networks
(CNN), as stated by Leevy J.L. et al. [51] and Yadav S.S. and Jadhav S. M. [52] using
Recurrent Neural Network (RNN) module-based architecture described by SivaSai J.G.
et al. [53]. CNN model consists of many intermediate nodes connected. Each node is
significant in delivering the output following the anticipated outcome. RNN is robust
in handling variable-length input sequences with the help of internal auxiliary memory
modules [54]. The detailed architecture along with the implementation procedure for the
proposed approach, is presented in this section.

With the proposed approach, gene patterns are analyzed against pre-trained sequences
of genes that cause the disease. For the effective implementation of illness prediction,
the recurrent neural network component is incorporated with gene set analysis, which
could minimize the false positive ratio. The Recurrent neural network model is a layered
architecture approach where each layer works independently. The output of the previous
phase is fed as the input for the next phase. Recurrent neural networks can transform
individualistic components into contingent components by adjusting each layer’s weight
and bias by minimizing the number of parameters to be considered and reducing the
complexity of memorizing the previous layer’s output. The responsibility of each layer is
presented in this section, along with the working procedure of the proposed model.

3.1.1. Data Collection and Processing

Gene-related data were acquired from the open-access comprehensive miRbase-18.0 R
dataset with human gene sequences of 10,094 records labeled and annotated [55,56]. In the
present experimental study, 303 samples were considered for the training and validation of
the model at 70:30 proportion, respectively. Generally, gene sequences are 84 nucleotides in
length, ranging from 43 nucleotides to 154 nucleotides.

The data acquired from online repositories must be processed following the model’s
outcome. The information is organized in tables to be further refined to predict gene
sequence better, including aligning the region of interest in genomic patterns. Gene se-
quences could be expressed as a grid in which each location corresponds to a single-hot
vector containing letters A, C, G, and T. Gene expression is indeed a matrix containing
absolute values, each such element representing the pattern that is an integral part of the
gene in a particular environment, such as a cell. Spatial information is often described as a
three-dimensional array, with two dimensions representing the entity’s actual location and
a third dimension representing colors or genes. Typically, texts are defined as a one-hot
matrix for each token entering a stable database. While most cells have the same genome,
individual genes are expressed at highly variable amounts in variable tissues and cells in
response to various treatments and settings. Such degrees of gene expression could be
quantified by measuring levels of mRNA transcripts. In such context, comparison of gene
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expression of patients with the illness to that in healthy cohorts (without the disease of
interest) and different link genes with the diseases underlying biological systems.

3.1.2. Feature Selection

When analyzing gene data for illness prediction, features are significant in obtaining
an accurate and precise outcome. Feature selection is one of the vital phases of the proposed
approach. The feature selection process performed during the training step would have a
noticeable contribution to the dimensionality reduction of gene data, including discarding
irrelevant data and recognizing vital records in the dataset. The proposed approach’s per-
formance depends on the feature selection mechanism in the present work. It is significant
in identifying the diseased gene from the extracted genomic information for the human
body. Minimum Redundancy Maximum Relevance (mRMR), as stated by Zena M. Hira
and Duncan F. Gillies [57] and M. B. Shirzad and M. R. Keyvanpour [58], was used for
feature selection and extraction of microarray data in the current study.

The minimum Redundancy Maximum Relevance (mRMR) approach maximizes the
relevancy of components concerning the genomic information and minimizes the number
of corresponding classes. mRMR-based feature selection technique that favors features that
have a strong correlation with class but a low correlation among themselves. In the feature
extraction process, divergent statistical metrics are considered, including Mutual Informa-
tion (MI), which assesses the entropy of a random variable concerning other variables in
the corresponding class. The mRMR approach can also be used with both continuous and
discrete variables. The amount of MI among features is used to calculate redundancy. If
the value of MI is substantial, it indicates a significant degree of data redundancy among
the two characteristics, i.e., redundancies. A lower redundancy measure value suggests
more effective feature selection criteria. The purpose of redundancy is to locate the feature
with the lowest MI value among all features. According to the premise that the lower
the value of information redundancy across features, the more helpful it is to activity
categorization, which may be stated by decreasing MI among features [59]. The following
equation determines the gene that is not redundant for a set of features β(x ∈ {1, 2, . . . f})

Mr =
1

|f|2 ∑α,β∈C MI(α,β) (1)

In the above Equation (1), the discrete variable MI is the Mutual Information, variables
α and β represent genes, and |f| represents the number of features in class C. The maxi-
mum relevance concerning the target class is determined through the following equation:

R =
1
|f|∑α∈C MI(γ,α) (2)

In the above Equation (2), the variable γ is the class label for discrete variables. F-
Statistics for assessing the mean of two classes are significantly divergent for determining
the maximum relevance among corresponding genes and the class label. The minimal
redundancy that approximates the correlation of the complementary gene pairs in the class
is approximated as shown in Equations (3) and (4)

R =
1
|f|∑α∈C Fs(α,γ) (3)

Mr =
1

|f|2 ∑α,β∈C x(α,β) (4)
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The mutual information among the two gene sequences let them be p and q, and if
some gene-sequence of p is there in the gene sequence q. The MI for the gene sequences is
assessed using the generic formula for mutual information, as shown in Equation (5).

MI(p; q) = ∑p,q f (p, q)log
f (p, q)

f (p), f (q)
(5)

The Pymrmre package helps work with the mRMR method by employing an ensemble
mechanism to further investigate the feature map and construct a more robust feature set.
Figure 2 represents the feature selection mechanism for selecting the optimal features for
gene-data analysis.
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3.1.3. Layered Architecture of RNN-Based Prediction Model

There are multiple layers in the proposed RNN model. Each plays a vital role in
performing the predictive analysis of the illness, according to Carrara, F., Elias [60], and
Che et al. [61]. The RNN model has kernels that work on inputs to create a feature map
to detect referee patterns in the corresponding input sequence. The outermost layers
would be the input and output layers. There are many other intermediate layers, including
the Convolutional, max-pooling, Flattening, fully connected, and softmax layers. The
outermost layer captures the gene sequences that must be validated against the training
set. The inner Convolutional layers are used to handle complex patterns. Each of those
Convolutional layers also decomposes gene sequences.

The pooling layer acts as the interface between two convolution layers. Its focus is on
minimizing the number of parameters required for processing the data, thereby handling
overfitting. The pooling layer is responsible for reducing the spatial size of the model so
that the model is computationally feasible. The max-pooling layer would result in the
statistical outcome of decomposing the input to the minor extent possible and performing
components’ filtering. Members that hold the maximum values are processed to the further
stage. The rest of the components are left unprocessed. To flatten the layer associated with
the conversion process of the data obtained from the previous layer, it is necessary to create
a one-dimensional array of gene data that contain data to be fed to the next layer. The
convolutional result is flattened to compress the outcome of convolutional layers into a
single lengthy feature vector. The final classification model is termed a fully connected
layer. It is linked to the output. The fully connected layer does have connections to all
nodes in the layer. It is feasible to learn all nonlinear combinations of various complex
patterns. The reasonability of this layer is to obtain the probability of the gene causing
the abnormality. The fully connected layers comprise two significant layers. The first
fully connected layer gets the input data from parameter analysis and labels the input
GENE sequence for accurate prediction through weights. The fully connected output layer
approximates probabilities of illness-causing genes from gene sequences [62].

In addition, the Softmax layer expands the concept into something similar to a multi-
class environment. Specifically, in a multi-class classification issue such as disease predic-
tions, Softmax gives decimal probability to each class. The sum of all such probabilities
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associated with each category is equivalent to 1.0 in the long run when dealing with decimal
probability. Figure 3 presents the layered approach of RNN used in the prediction model.
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Convolution is an operation that transforms a function into an output component; it is
a technique that follows a certain sequence and involves intertwining two different informa-
tion sources. Every single Convolutional Neural Network starts with a Convolutional Layer
as its very first layer. The input is subjected to a convolutional operation in convolutional
layers, and the output is then passed on to the next layer. A convolution reduces the values
of all the pixels included within its receptive field to one. ReLU activation function is used
with the Convolution layer. When using ReLU, all of the negative pixels are converted
to 0 via an element-wise procedure. The result is a corrected feature map, which adds
non-linearity to the network.

• After the Convolutional layer, the pooling layer is often applied. The pooling layer’s
purpose is to minimize the volume of the input matrix for subsequent layers. In the
current study, the MaxPooling function is used in the current study.

• A flattening operation transforms data into a one-dimensional array to be used in
a subsequent layer. This is conducted so that CNN’s output may be sent to a fully
connected network.

• A neural network is a collection of non-linear, mutually dependent functions. Neurons
are the building blocks of every single function (or a perceptron). The neuron uses a
weights matrix as a fully connected layer to apply a transformation matrix to the input
vector. The result is then subjected to a non-linear transformation via a non-linear
input signal s as shown in Equation (6).

fc = f
(
∑p

i=1 ωckai + ωc0

)
(6)

• One way to represent a set of numbers as probabilities are to use the Softmax math-
ematical function, which multiplies all the values in a set by the scale at which they
appear in the vector. The likelihood of belonging to each class is calculated using the
outcome of the softmax algorithm.

3.1.4. RNN Component Structure

A recurrent Neural Network, also known as a back-feeding neural network, is a
more robust alternative to conventional feedforward neural networks as it does not need
an internal auxiliary memory. As the outcome of a current input relies on the previous
calculation, RNN is recurrent. After the outcome has been produced, copying and sending
the output into the recurrent network is known as “back-feeding.” The decision-making
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process analyses what it has learned from the prior information and applies it to the
present situation. Using the gene patterns present in the sequence, RNN may extract the
correlated patterns that result in type-2 diabetes. The same could be employed in analyzing
variable-length gene data for the probability of being affected by type 2 diabetes.

An RNN can evaluate any sequences, irrespective of length, iteratively through its
transition function over the state vector Oi. At iteration i, state activation may be calculated
as a function of the input sequence character Zi and the prior state vector Ni−1 transformed
into the Ri in the current state cell. The tan h is the activation function associated with
each cell. In RNN, the vanishing gradient issue is considered the most crucial challenge.
More extensive sequences need an activation function such as tan h with a high second
derivative that can maintain the gradient over iterations. Mathematical notations for each
RNN module are presented in Equations (7)–(11).

Ni = σN(xi) (7)

σN(xi) = σN(αNzi + βNRi−1 + bN) (8)

gi = σg(xt) (9)

σg(xt) = σg
(
WgNi + bN

)
(10)

Oi = tan h
(
WgOi−1 + Wg−1Zi

)
(11)

In Equations (7)–(11), the variable Ri denotes the input vector of size (1× x), the
variable Zi. The input for the RNN cell denotes the input vector of length (1× x). Vari-
ables α and β denote the parameter matrix associated with pivotal features. The bias is
represented by bN. Variables σN and σg denote the activation function in the RNN cell.
Variable Wg and Wg−1 denote weights associated with the cell in the current and previous
state. The RNN cell structure is presented in Figure 4, where the output of the previous
component is fed as the input for the upcoming component in the RNN cell.
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In the RNN model, the tan h denotes the Activation function, which implements a
non-linearity that negates maximum activation values, creating a negative activation −1.
The softmax layer deliberates probabilities that will assist in determining the possibility of
future illness from the provided input genomic data.

3.1.5. GRU Component Structure

GRU’s component in neural networks is used to address the degradation issue and
create a feasible deeper layout for better Accuracy that can retain lengthy semantic patterns
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without calibrating model parameters [63]. The GRU component consists of the update gate
and the reset gate. The update gate regulates the inflow of data to the memory component.
The reset gate regulates data flowing out of the memory component, GRU. The gating
unit controls the data flow inside rather than having a separate memory component to
perform the task. The unit consists of two activation functions: σ and tan h. The output
of the current units is identified by cst becomes the input for next unit as cst−1 over the
time t. The variable αt is assumed as the input training data and βt is the corresponding
output generated by the activation functions Γr and Γu that denotes the reset gate and the
update gate, respectively. The value of Γu lies in between 0 and 1. When its values are
close to 0, more data from the previous states are retained. The range of the variable Γr lies
in between −1 and 1. When the value is close to −1, it implies that more previous data are
ignored. The GRU can be shown mathematically through Equations (12)–(15).

Γu = σ(ωu[cst−1, αt] + biasu) (12)

Γr = σ(ωr[cst−1, αt] + biasr) (13)

ĉst = tan h(ωcs[Γr × cst−1, αt] + biascs) (14)

cst = (1− Γu)× cst−1 + Γu × ĉst (15)

From Equations (12)–(15), variables ωu, ωr, and ωcs designate weights associated
with training the update gate, reset gate, and candidate activation, respectively. Similarly,
variables biasu, biasr, and biascs designate the bias associated with the update gate, reset
gate, and candidate activation, respectively. Figure 5 presents the architecture of the
GRU module.
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3.1.6. LSTM Component Structure

LSTM component is often used in recurrent neural network designs for pattern estima-
tion issues in the sequential data over divergent time scales. Memory cells handle memory
components in an abstract LSTM layer module, including an input and output gate, a
forgetting gate, and a window connection [64,65]. Associated weights are comparable to
those that change during a model’s training process to regulate input and hidden states. Ac-
tivation functions for the LSTM component are explained with Equations (16)–(20). States
are identified through variable St with a hidden state vector identified by ϑt concerning the
time t over the input it.

Input Gate (ρt) = σ
(
itωiρ + γt−1ωγρ0 + pst−1ωpsρ + biasρ

)
(16)

Output Gate (ot) = σ
(
itωio + γt−1ωγo + pstωpso + biaso

)
(17)

Forget Gate (χt) = σ
(
itωiχ + γt−1ωγχ + pstωpsχ + biasχ

)
(18)

Cell State Gate (pst) = χt·pst−1 + ρt· tan γ
(
itωips + γt−1ωγps + biasps

)
(19)

LSTM Output(γt) = ot· tan γ (pst−1) (20)
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From Equations (16)–(20), variables ωiρ, ωio, ωiχ, and ωips designate weights asso-
ciated with the input, output, forget, and cell state gates, respectively. In addition, ωγρ,
ωγo, and ωγχ designate weights associated with the hidden layer. Similarly, variables biasρ,
biaso, biasχ, and biasps designate the bias component associated with the input gate, output
gate, forget gate, and cell state gate, respectively. The architecture of the LSTM component
is presented in Figure 6.

Diagnostics 2022, 12, x FOR PEER REVIEW 15 of 31 
 

 

 

Figure 5. Image representing the GRU cell structure. 

3.1.6. LSTM Component Structure 

LSTM component is often used in recurrent neural network designs for pattern esti-

mation issues in the sequential data over divergent time scales. Memory cells handle 

memory components in an abstract LSTM layer module, including an input and output 

gate, a forgetting gate, and a window connection [64,65]. Associated weights are compa-

rable to those that change during a model’s training process to regulate input and hidden 

states. Activation functions for the LSTM component are explained with Equations (16)–

(20). States are identified through variable ZL with a hidden state vector identified by [L 

concerning the time  M over the input VL. 

"\�]M ^0M_ (`L) = J(VL.1a + bL;�.ca4 + �+L;�.)Xa + UV0+a) (16)

d]M�]M ^0M_ (eL) = J(VL.1f + bL;�.cf + �+L.)Xf + UV0+f) (17)

g&h'_M ^0M_ (iL) = J(VL.1j + bL;�.cj + �+L.)Xj + UV0+j) (18)

k_%% ZM0M_ ^0M_ (�+L) =  iL ∙ �+L;� + `L ∙ tan b-VL.1)X + bL;�.c)X + UV0+)X5 (19)

mZn! d]M�]M(bL) = eL ∙ tan b (�+L;�) (20)

From Equations (16)–(20), variables .1a , .1f , .1j, and .1)X designate weights asso-

ciated with the input, output, forget, and cell state gates, respectively. In addition, .ca , 

.cf , and .cj  designate weights associated with the hidden layer. Similarly, variables 

UV0+a, UV0+f , UV0+j, and UV0+)X designate the bias component associated with the input 

gate, output gate, forget gate, and cell state gate, respectively. The architecture of the 

LSTM component is presented in Figure 6. 

 

Figure 6. Image representing the LSTM cell structure. 

  

Figure 6. Image representing the LSTM cell structure.

3.1.7. Working Procedure of the Proposed Approach

The working procedure presents the sequence of tasks performed for future illness
prediction, including tasks ranging from initial data acquisition to final assumptions of the
future illness.

Step 1: Acquire gene data from the annotated miRbase data set;
Step 2: Data are preprocessed to remove the outlier data and fill out acquired data gaps;
Step 3: Data is converted into 1D data, followed by aligning of genomic patterns;
Step 4: Data is categorized into a training set (80% of the data) and a testing set (20% of

the data);
Step 5: Patterns are labeled based on sequence patterns of various illnesses. Moreover,

weights are assigned in the later phases according to the correlation between the
input sequence and the trained gene pattern;

Step 6: When a new GENE sequence is fed as input for testing the algorithm, features are
extracted through the mRMR approach that is pivotal in the prediction process;

Step 7: The cumulative weight is evaluated from assigned weights based on the correlation
of gene sequences between the input and the trained set;

Step 8: Based on the approximated weight of the gene sequence, the probability of a future
illness is assessed;

Step 9: Final assumptions are made based on probabilistic approximations.

3.2. RNN Model for Illness Prediction from Tabular Data (PIMA Dataset)

The possibility of being affected by a chronic disease such as type-2 diabetes is analyzed
from the tabular data with various features such as Stabilized Glucose, age, High-Density
Lipoproteins (HDL) Ratio, Total Cholesterol, First Systolic Blood Pressure, Second Diastolic
Blood Pressure, body mass, the height of individual, gender, and many other things.
Significant features are selected, weights are adjusted in favor of pivotal features, and
prediction is performed based on the feature vector. The significance of these features in
the evaluation process has been discussed in earlier studies on a similar feature vector
for type 2 diabetes [66–68]. Ranks associated with each of these features are presented in
Table 3, shown below.
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Table 3. Feature set associated with Type 2 diabetes.

Feature Data_Type Min_Value Max_Value Information Gain Mean Rank

Glucose (mg/dL) Integer 0 199 0.2497 3
Pregnancies Integer 0 17 ~ ~

Age Integer 21 81 0.0761 3.17
Heart Rate Integer 7.67

Waist Integer ~ ~ 0.0356 9.5
Pulse Pressure Integer ~ 12.33

Insulin (mm U/mL) Integer 0 846 ~ 13.33
Hypertension

(Blood Pressure) (mm Hg) Integer 0 122 0.0304 (bp1), 0
(bp2) 15

BMI (weight) (kg/m2) Real 0 67.1 ~ ~
Diabetes Pedigree Function Real 0.08 2.42 ~ ~

Skin thickness (mm) Real 0 99 ~ ~

3.2.1. Feature Weight Initialization

Features are essentially important for analyzing the possibility of diabetes disease.
Weights associated with features and corresponding layers are updated over iterations [69].
When the feature is significant, it will cascade forward via hidden nodes, showing greater
influence over output nodes. Thus, weighting such a significant feature is important. The
feature that contributes more to the prediction process will be given considerable weightage
for further processing. After training, the feature weight is obtained from the trained neural
network, as shown in Equation (21).

Iw = ∑p−1
i=0 ∑q−1

j=0

∣∣∣ωi,j ×ωj,k

∣∣∣ (21)

From Equation (21), the variable Iw is the initial weight assigned to the feature
vector,ωi,j denotes the network weight between the input node i through hidden node j.
Similarly, the variableωj,k denotes weights of the hidden node j through output node k. The
summation covers all potential forwarding routes between input node i and output nodes.
For a few less significant features in the evaluation process, their weights are adjusted
so that the sum of approximated weights of less significant features is equivalent to the
total number of features. Associated weights for less significant features are given through
Equation (22).

ωlsf =
1
n ∑n−1

i=0 ωlsf (22)

From Equation (22), the variable ωlsf designates less significant weights, and the
variable n designates the number of features in the considered problem. In the current
context, the value of n is 8 from the Pima dataset.

3.2.2. Weight Optimization

Weights associated with features must be optimized regularly for better performance of
the model. These weights are optimized concerning the loss function and model parameters
associated with each parameter in the training dataset [70,71]. In the current study, the
input-target pair (i, j) and the

{(
ip, jp

)
, 0 ≤ p ≤ n

}
denote the training set. The validation

set is associated with the model for fine-tuning the model’s performance using the set{
i′p, j

′
p), 0 ≤ p ≤ m

}
, where the size of m is much smaller than the size of records in n.

The RNN model is denoted by <(p, θ). The associated loss function will be L
(
j′, j
)

which is
desired to be minimal, where j′ = <(i, θ). The expected loss associated with the training
set is determined through the variable Tl as shown in Equation (23).

Tl =
1
n ∑n−1

p=0 L
(
j′, j
)

(23)
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Tl =
1
n ∑n−1

p=0 fp(θ) where L
(
j′, j
)
= fp(θ) (24)

In Equation (24), the function fp (θ) is the loss function concerning data ip. Weights asso-
ciated with parameters are optimized to minimize the weighted loss through Equation (25).

O(θ)w = θ′∑n−1
p=0ωpfp(θ) (25)

The value of the variableωp is not known at the initial iteration. The value
{
ωp
}n−1

p=0
is tuned by training hyperparameters. The validation dataset could result in fine-tuning the
value ofω to reduce the weighted loss of the prediction model, as shown in Equation (26).

ω′ =
min
ω,ω′

1
m ∑m−1

p=0 f′p(θ × ω) (26)

To reduce negative training loss that could result in an unstable model, The value
associated with the weightω ≥ 0 for all parameters p.

3.3. Dataset Description

The Pima Indian Dataset is used in the current study to predict Type-2 diabetes. It
is part of the UCI machine learning repository maintained by the National Institute of
Diabetes, Digestive, and Kidney Diseases. The dataset consists of eight columns repre-
senting parameters of Pregnancy, Glucose, Blood Pressure, Skin Thickness, Insulin, Body
mass index (BMI), Diabetes Pedigree, and age. The PID dataset consists of a single output
class with a binary value indicating whether or not an individual has diabetes. The dataset
consists of 768 cases (500 non-diabetics and 268 diabetics) [72,73]. The Pima dataset is
considered in the current study as it is widely used for comparing the performances of
techniques. The dataset is partitioned as training and testing in a ratio of 70:30, with an
initial learning rate of 0.0002, and it is observed that the model has

3.4. Implementation Environments

The computer is equipped with an Intel(R) Core i7(11th Gen) 4.70 GHz processor and
16 GB of main memory running over a 64-bit Windows 10 environment. The proposed
RNN model for gene analysis is implemented over Kaggle, an online platform for executing
such frameworks [74]. Python version 3.6.6, also widely known as the anaconda, is used in
the implementation. Tensor Flow version 2.4.1, along with various libraries such as NumPy,
pandas, matplotlib, seaborn, and sklearn, are used in the implementation process of the
proposed model.

4. Results and Discussion

The proposed model has been evaluated on genomic data and the tabular data by
using the same feature engineering mechanism and the layered approach for predicting the
type-2 diabetes. The proposed RNN-based type-2 diabetes is evaluated against genomic
and tabular data from the PIMA Indian dataset independently and the evaluations are
presented independently in the current section. The model was evaluated against two
datasets concerning various evaluation metrics such as sensitivity, specificity, Accuracy,
and F1 score. The classification efficiency of the proposed model was assessed using true
positive (TuP, the number of times that the model accurately predicted the gene with
a high possibility of diabetes correctly), true negative (TuN, identifying the gene with
less possibility of diabetes precisely), false positive (FsP, misinterpreting the gene with
the high possibility of diabetes as low possibility of diabetes), and false negative (FsN,
misinterpreting the low diabetes gene as a high possibility of illness). The sensitivity
metric determines the ratio of how many were accurately recognized as positive samples
out of how many were truly positive samples in the complete dataset. The specificity
measure determines the ratio of how many were recognized as negative samples out
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of how many among the samples are truly negative from the complete dataset. The
Accuracy measures the correctly predicted True positives and Negative samples against the
overall sample in the complete dataset. The harmonic mean of sensitivity and specificity
measures are determined as the F1 score. MCC is the best single-value classification score
for summarizing the confusion matrix. The formulas for the aforementioned metrics are
presented through Equations (27)–(32) [75].

senstivity(recall) =
TuP

(TuP + FsN)
(27)

Speci f icity =
TuN

(TuN + FsP)
(28)

Accuracy =
TuP + TuN

(TuP + FsP + TuN + FsN)
(29)

Precision =
Tup

(TuP + FsP)
(30)

F1-score = 2× (precision× recall)
(precision + recall)

(31)

mcc =
(TuP× TuN)− (FsP× FsN)√

(TuP + FsP)(TuP + FsN)(TuN + FsP)(TuN + FsN)
(32)

It is a far more appropriate statistical rate that yields a good score only if the prediction
performed well among all the assumptions in the confusion matrix. The current section
presents results about the experimental outcome of both genomic and tabular data with
adequate analysis concerning existing models.

4.1. Experimental Outcome of Genomic Data

The performance of the proposed RNN model for predicting type 2 diabetes was
analyzed using performance evaluation metrics such as sensitivity, specificity, F1 score,
Mathews correlation Coefficient, and accuracy measures [76]. The above-discussed metrics
are assessed through true positive, true negative, false positive, and false negative values
approximating experimental outcomes. The dataset is split into a training set and a valida-
tion set at a ratio of 70:30. In the following graph, as shown in Figure 7, it is clear that data
values are skewed toward data instances, indicating that no diabetes exists. The percentage
of available data records of non-diabetic patients (or those who do not have diabetes) is
almost double that of diabetic patients.

Correlation coefficients among data points as input gene data are analyzed using
linear bivariate Pearson correlation coefficient (PCC). The correlation coefficient between
two samples of gene expression is expressed as PCC. Correlation coefficient with a com-
mon confidence interval and covariance, the relationship among them is the ratio of the
covariance of two variables and the product of their standard deviations. This gives a
numeric representation of the covariance with an outcome between −1 and 1. Only a linear
correlation between variables can be considered, even using the metric. Also, the metric
does not represent several relationships or correlations. Figure 8 shows a two-dimensional
heat map of data records.

Training and validation performances of the proposed model were evaluated using
hyperparameters such as train and testing scores. The training score determined how
perfectly the algorithm could generalize across its training samples. The testing score
determined how well the model could accurately correlate the known gene sequence
among individual records. An exceptionally high training score combined with a low-
test result indicates overfitting. When the training score is quite low, and the test score
is low, it indicates an underfitting. Performances of the proposed model concerning
hyperparameters are presented in Figure 9.
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Figure 9. A graph showing training and testing scores of the proposed model.

From graphs on the training and test scores, it can be depicted that the performance is
reasonably fair in making the classifications precisely as there is no considerable deviation
among either of the scores. In the current context, the gene expressions are classified as
sequences with a high possibility of affecting type 2 diabetes and sequences with a low
possibility of type 2 diabetes. The Decision Boundary is shown in a Scatter Plot, with every
data point visualized on the data scatter plot and characteristics represented by x- and
y-axes. The Decision Boundary forms a boundary for dividing data points into regions and
their classes. Categories of gene sequences with high and low possibilities of developing
diabetes are shown in Figure 10.
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Figure 10. A graph showing the decision boundaries of two classes of records.

The confusion matrix would assist in analyzing the performance of the proposed
model in analyzing future illness. The evaluated samples, i.e., TuP, TuN, FsP and FnP are
shown in the confusion matrix in Figure 11, and the corresponding performance evaluation
metrics are shown in Table 4.

Table 4. Performance evaluation metric and estimated values.

Metric Estimated Value

Sensitivity 83.66
Specificity 49.38
Precision 75.73
Accuracy 71.79

Mathew’s correlation Coefficient 35.09
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Figure 11. Image representing the confusion matrix for the proposed RNN model for future ill-
ness prediction.

As shown in Table 4, estimated values clearly demonstrated that the model made
predictions reasonably with few records. However, the model’s performance could be
further improvised when more data records could be used. The Receiver Operating Char-
acteristic (RoC) Curve of the proposed model is presented in Figure 12, and it is depicted
that the model has outperformed with reasonable accuracy in precisely classifying the
genomic data. The RoC curve estimates how well the proposed approach can differentiate
the two-class records that include gene expression with a higher or lower possibility of
being affected with type-2 diabetes. An accurate model can tell the difference between the
two. An improper model will find it difficult to tell the difference between the two sets
of records.
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4.2. Experimental Outcome with Tabular Data (PIMA Dataset)

The Pima Indian dataset consists of eight features that help predict the possibility of
affecting type-2 diabetes. The model’s performance was evaluated using various evaluation
metrics. The heat map represents the association of multiple parameters in determining a
future illness. Figure 13 illustrates the heat map of features in the PIMA Indian dataset.
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Figure 13. Heat map generated with the PIMA dataset.

The experimentation was performed with the PIMA data by optimizing initial weights
assigned to parameters. The proposed model exhibited better accuracy in optimizing
weights. Figure 14 presents the resultant confusion matrix obtained over data with and
without weight optimization for all three recurrent neural network components. Among
these, the LSTM-based architecture has outperformed in terms of classification accuracy.
Correctly identifying the individual record as a diabetic patient was assumed as a True
Positive (TuPR). The correctly predicting the non-diabetic patient was assumed as a True
Negative (TuNR). When the model misinterpreted normal cases as diabetic cases, False
Positive (FsPR) was considered. When diabetic cases were recognized as normal cases,
False Negative (FsNR) was considered.

The percentage of true positives that are accurately recognized is what sensitivity
analyzes. Specificity, often known as the real negative rate, is a measurement that deter-
mines the percentage of actual negative instances that are accurately classified as such.
The ratio of the number of instances properly categorized to the total number of instances
is called Accuracy. The F1 score is a statistic calculated by taking the harmonic mean of
a classifier’s accuracy and recall values and combining them into a single value. A low
number of false positives and false negatives gives you an excellent F1 score. The Matthews
correlation coefficient, or MCC, is a correlation coefficient that compares predicted values
to actual values, which is mostly used in binary class classification problems. The weight
optimization process could help evaluate the dataset more precisely as features with more
significance would be considered in the evaluation process. Weights are optimized over
the iteration. Resultantly, more significant features are involved in the evaluation process.
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The weight optimization could yield considerable Accuracy over a conventional model.
The experimental outcome presented in Table 5 shows the outcome of the proposed model
concerning optimized weights.
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Table 5. Performance of the proposed model with weight optimization.

Sensitivity Specificity Accuracy F1-Score MCC

RNN Model 0.800 0.690 0.753 0.825 0.473
RNN + GRU 0.786 0.652 0.744 0.809 0.426
RNN + LSTM 0.826 0.679 0.774 0.823 0.505

RNN Model (WO) 0.819 0.742 0.796 0.848 0.541
RNN + GRU(WO) 0.833 0.733 0.800 0.849 0.558
RNN + LSTM(WO) 0.815 0.793 0.810 0.856 0.568
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The classification efficiency assessment of the proposed model was compared with
various existing studies concerning evaluation parameters such as sensitivity, specificity,
Accuracy, and F1 score. Table 6 presents experimental values obtained by the proposed
model over other existing models such as Naive Bayes, J48, Logistic Regression, K Nearest
Neighbor, Random Forest, Decision Tree, REPTree, Sequential Minimal Optimization
(SMO) and BayesNet. Experimental outcomes of the current model are evaluated against
the outcomes of other existing models using similar datasets [77,78].

Table 6. Performance analysis of the proposed model with existing studies.

Sensitivity Specificity Accuracy F1-Score MCC

Decision Tree 0.781 0.561 0.697 0.762 0.349
J48 0.688 0.695 0.691 0.754 0.383

K Nearest Neighbour 0.748 0.603 0.708 0.787 0.331
Logistic Regression 0.775 0.666 0.744 0.813 0.416

Naive Bayes 0.820 0.687 0.689 0.830 0.502
Random Forest 0.789 0.661 0.750 0.813 0.436

Support Vector Machine 0.775 0.666 0.744 0.813 0.416
REPTree 0.530 0.744 0.590

SMO 0.280 0.724 0.410
BayesNet 0.570 0.738 0.600

RNN model 0.837 0.774 0.818 0.864 0.591

A resampling technique for evaluating the machine learning approaches is known as
cross-validation, where a small data sample is considered for evaluation. The technique
includes a single parameter, k which specifies how many groups are provided with sample
data. The k-fold cross-validation describes the number of groups associated with the
evaluation. When k = 2 means the model reference to 2-fold cross-validation. The formula
for the cross-validation over k f folds concerning to the mean square error (MSE) is shown
in Equation (33). In the current study, the accuracies of the RNN model with different
auxiliary memory components are evaluated against divergent K-Values, as presented in
Table 7.

cross_validationk f
=

1
k f

∑
k f
x=1 msex (33)

Table 7. The Accuracy of the RNN model with auxiliary memory components against divergent
K- Values.

Value of K RNN Model RNN + GRU RNN + LSTM RNN Model (WO) RNN + GRU (WO) RNN + LSTM (WO)

2 0.716 0.704 0.723 0.752 0.771 0.789
5 0.745 0.739 0.770 0.791 0.799 0.812

10 0.774 0.762 0.798 0.810 0.821 0.824

The ROC curve of the proposed model states the trade-off between the True Positive
assumption and the False Positive assumption of the proposed model concerning predic-
tions made with the Pima diabetic dataset. Figure 15 presents the ROC of the proposed
model with optimized weights using tabular data. The proposed model has shown the
classification’s desired performance concerns.

The present model was trained with limited genomic data or PIMA diabetic dataset.
Either of these datasets consisted of approximately 700 records. Of them, 30% of the overall
data were meant for testing, resulting in training the model with inadequate records that
could impact its performance. RNN-based models in various applications have exhibited
noticeable accuracies. However, the neural network model’s Accuracy can vary depending
on the ratio of the training sample to the testing sample.
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4.3. Practical Implications

The proposed technique for forecasting type-2 diabetes can be implemented over
a mobile framework with a front-end module. Patients and practitioners can perform
the initial assessment of the illness. Users can provide details such as glucose levels,
pregnancies, insulin, hypertension, BMI, Diabetes Pedigree, skin thickness, and heart rate.
Based on the provided input and the trained data, the model can analyze the input with
the trained data for predicting the illness. The model can be implemented in the iOS
platform to the back-end Kaggle using the back-end service such as the MBaaS component.
A secured socket layer (SSL) and two-factor authentication can ensure the security of the
model [79,80].

Images of the user interface of the application model are presented in Figure 16. The
leftmost image represents the registration page of the application. The middle image shows
the user information page, followed by the resultant prediction screen of the model. The
model makes the task of predicting a future illness more convenient. The model can be
improved by incorporating the genomic module for accepting gene data and evaluating
the illness based on gene information.
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evaluation of health conditions. The prediction could assist individuals in adopting better
life standards and living habits to avoid or prolong the chance of being affected by the
illness [81]. The computationally efficient approaches like the MobileNet V2 and MobileNet
V3 architectures would assist better in deploying the models in lightweight computational
devices. The RNN models need tremendous computation efforts despite providing highly
accurate performances.

5. Conclusions

The genomic-based future illness prediction is a path-breaking approach for pre-
cisely assessing future illness. Genomic-based data can be conveniently analyzed through
supervised-based approaches such as Neural Network models. The sequence of GENE
can be downsampled and analyzed based on the weight concerning the diseased sequence.
The approach decomposes a large GENE sequence into smaller GENE strings, raising the
chances of accurate matching with diseased sequences and resulting in a precise prediction.
Although there might be a considerable burden on the machine to decompose the large
genomic patterns, decomposing them to a certain predetermined extent has better Accuracy
than conventional approaches. When the proposed model was evaluated over the PIMA
diabetic dataset, it exhibited a reasonable performance in predicting type-2 diabetes. The
PIMA dataset consists of 768 records, of which only 537 are used for training. The Accuracy
would be much better when more records are for training purposes. Statistical analysis
for disease progression [82] has exhibited better performance than the existing models
when adequate data are available. Users may access the suggested model’s prediction
result via the Android application. As a result, it is desired to give an effective method
for determining the possibility of being affected by diabetes at an early stage. However,
it is exceedingly challenging to work with larger sequence gene data, the quantum and
federated learning techniques would effectively handle such a larger sequence data. On the
other side, when dealing with tabular data, the ensemble classification models would yield
almost identical performance with minimal computation to the suggested RNN models.

Although the proposed approach showed promising results, it was challenging when
decomposing to a more significant extent. In such situations, incorporating Long Short-
Term Memory (LSTM) can make the approach more robust with considerably lesser com-
putational latency. For handling an unusual illness, self-Learning Based algorithms and
the use of cognitive technology would be appropriate to minimize the steps needed for
training the algorithm [83]. The proposed approach based on Genomics with Self-Learning
algorithms might result in better results than supervisory approaches alone. In future
work, comparison with other smart diagnosis techniques and assessment of other clinical
datasets need to be performed. Once the model validation is performed with more datasets,
other risk factors affecting diabetes can be revealed. The future dimensions of the research
include the deep learning-driven pattern recognition models for analyzing the gene se-
quences for identifying the possible future illness and developing mobile applications that
can generalize the information from the genomic data. However, there is great demand for
explainable Artificial Intelligence models that are interpretable in decision-making.
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