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Abstract: In biomedical image analysis, information about the location and appearance of tumors and
lesions is indispensable to aid doctors in treating and identifying the severity of diseases. Therefore, it
is essential to segment the tumors and lesions. MRI, CT, PET, ultrasound, and X-ray are the different
imaging systems to obtain this information. The well-known semantic segmentation technique is used
in medical image analysis to identify and label regions of images. The semantic segmentation aims to
divide the images into regions with comparable characteristics, including intensity, homogeneity, and
texture. UNET is the deep learning network that segments the critical features. However, UNETs basic
architecture cannot accurately segment complex MRI images. This review introduces the modified
and improved models of UNET suitable for increasing segmentation accuracy.

Keywords: UNET; semantic segmentation; dice similarity coefficient; CNN; MRI

1. Introduction

Principal component analysis [1], fuzzy c-means Hsieh [2], Gabor filter [3], and multi-
level fuzzy c-means [4] are examples of traditional machine learning techniques. However,
the performance of these algorithms in the field of computer vision is not sufficient. There-
fore, deep learning is now widely employed in various industries [5–13], for example,
to tackle problems in computer vision and succeed in image recognition. Deep learning
techniques are used to assess complex and diverse pathological images. Deep learning
techniques can learn coarse and fine representations in all layers and perform end-to-end
learning. There are the following two basic frameworks: CNN and the FCN for segmen-
tation. Convolutional neural networks (CNN) perform well in classifying images and
significantly improve segmentation. Initially, the categorization of image patches was a
widely used deep learning approach where each pixel was sorted into matching categories
separately by employing image blocks around each pixel. On the other hand, the FCN
framework expands the fundamental CNN structure without a fully connected layer to
enable intensive prediction in medical image processing. The problem of pixel location is
solved using the shallower high-resolution layer, while the issue of pixel categorization is
solved using the deeper layer. This structure is used in almost all current medical image
semantic segmentation research. The internal structure of the human body is extremely
complex. Hence, it is difficult for doctors to determine the disease’s severity and location.
Many approaches have been developed to overcome this challenge, and new research is
constantly developing more novel and innovative methods. With the widespread adoption
of image-aided medical diagnosis, segmentation is the desired process in medical image
analysis. This is supported by the large number of papers explicitly published for the seg-
mentation process, in which U-net survive prominent method [14,15]. UNET can improve
the efficiency of segmenting disease-affected regions of the brain, lung, retina, liver, etc., as
depicted in Figure 1.
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Figure 1. Application of UNET in medical image segmentation. 

Semantic segmentation is the classification of features in images based on pixels. 

Due to the lack of image detail, it is impossible to derive precise boundaries using image 

semantic feature information. The UNET model [16] designed by Olaf Ronneberger, 

Philipp Fischer, and Thomas Brox is shown in Figure 2, an ideal solution for medical im-

age segmentation tasks, it efficiently uses the skip connection to merge feature maps of 

low-resolution and high-resolution images [17]. UNET is the CNN framework; it has a 

simple encoder and decoder network shaped like a U. This model can be well-trained 

with fewer samples. Despite the small training dataset, it provides precise segmentation 

results. The features were learned optimally using a UNET-based model. 
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Figure 1. Application of UNET in medical image segmentation.

Semantic segmentation is the classification of features in images based on pixels.
Due to the lack of image detail, it is impossible to derive precise boundaries using image
semantic feature information. The UNET model [16] designed by Olaf Ronneberger, Philipp
Fischer, and Thomas Brox is shown in Figure 2, an ideal solution for medical image
segmentation tasks, it efficiently uses the skip connection to merge feature maps of low-
resolution and high-resolution images [17]. UNET is the CNN framework; it has a simple
encoder and decoder network shaped like a U. This model can be well-trained with fewer
samples. Despite the small training dataset, it provides precise segmentation results. The
features were learned optimally using a UNET-based model.
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The survey articles [18,19] are related review works in which the application of UNET
in various imaging modalities and UNET variants used in medical image segmentation are
discussed. Our survey provides an
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In-depth review of UNET-modified architectures;
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Benchmark datasets and semantic architectures specifically designed for medical
image segmentation;
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Presents the application of modified architectures of UNET in the segmentation of
anatomical structures and a lesion in different organs to diagnose diseases;
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An updated survey of the improvement mechanisms, latest techniques, evaluation
metrics, and challenges.

2. Study Method

The references are taken between the time frame of from 2015 to 2022. This survey
is confined to the application of modified architectures of UNET in biomedical image
segmentation. To determine the relevant quality of the paper, the references are taken from
peer-reviewed journals. All architectures are thoughtfully collected from the original paper
with a unique model focusing on enhancing accuracy and reducing complexity. Managing
and comprehending the database format is a difficult task for researchers. Hence, this
survey includes a separate section describing the medical image analysis database. It
explains the benefits of adding the networks to the UNET in segmenting the lesion and
tumor from different organs using images from imaging modalities. The structure of this
review is given in Figure 3.
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3. Application of Modified UNET

This section highlights the modified architecture of UNET for segmenting the region
of interest from different imaging modalities to identify the severity of diseases.

3.1. InBrain Segmentation
3.1.1. UNET with Generalized Pooling

This model modifies the pooling operation to enhance segmentation [20]. In the CNN
and FCN models, the dimension is reduced to address the overfitting issue via max pooling
or average pooling.Features are not precisely defined for variable data in down-sampling.
A brain tumor’s characteristics are very minute, so it is vital to minimize feature loss. A new
generalized pooling (GP) method was developed to extract more prominent features from
downsampling and improve segmentation performance. This approach adapts a pooling
kernel’s weights based on the input MRI images or feature maps. The initial average
weight α0 of each element is assigned as in Equation (1). The mean is given in Equation (2)
as follows:

α0 =
1

p× q
(1)

where p is the length and q is the width of the pooling kernel.

ẑ
∑

p
r=1 ∑

q
s=1 zrs

p× q
(2)
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3.1.2. Stack Multi-Connection Simple Reducing Net (SMCSRNET)

Multi-connection stack, a novel framework known as simple reducing net (SMCSR-
Net) [21], is constructed using certain fundamental building elements (SRNet). Four down-
sampling/up-sampling procedures were carried out throughout the encoding/decoding
phases.UNET was further improved to better suit stacking to segment brain tumors. There
is only one convolution process before each down-sampling. The processes of cropping
and copying are maintained between decoding and encoding. This design aims to reduce
parameters and simplify the network structure. It is important to note that the SMCSRNet
model requires significantly less training time than the stacked UNET. In addition, the
precision of this model has increased. The final block contains 32 feature maps stacked to
the input image using the long skip connection depicted in Figure 4.
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3.1.3. 3D Spatial Weighted UNET

To properly utilize spatial contextual data at the intra-level plane and apply it to
volumetric spatial weighting at the inter-level plane, the volumetric feature recalibration
layer (VFR) is added to a 3D spatially weighted UNET [22]. It extracts geographic statistical
information. The spatial information is compressed using global average pooling. The
VFR is incorporated in this model before the de-convolutional layer and the max pooling
layer in the encoder and decoder, respectively. Prior to resizing, it can be used to improve
the features to prevent the loss of spatial information. Spatial statistical information is
obtained by applying the global average pooling operation in each plane in Equation (3).
The entire plane’s spatial information is multiplied by the tensor product term to form
the lower-weight tensor and change the weights of the volumetric input information. The
workflow of VFR is shown in Figure 5.

alp = GAPa( fl , p) = 1
I J ∑ij fl,p(i, j, k),

clp = GAPc( fl , p) = 1
IK ∑ik fl,p(i, j, k),

sl,p = GAPs( fl , p) = 1
JK ∑jk fl,p(i, j, k).

(3)

where fl is the volumetric feature tensor input to the first VFR layer, i is the length, j is the
width, k is the height, and p channels. The statistical information in three planes (axial,
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coronal, and sagittal) are alp, clp and slp. The weighted feature tensor is mathematically
given in Equation (4) as follows:

wl,p = al,p ⊗ cl,p ⊗ sl,p (4)
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This model is extended to the multimodality images with feature tensor values three
times higher than for a single modality.

3.1.4. Anatomical Guided UNET

The segmentation and the anatomical attention sub-networks are the two sub-networks
used in this model [23]. The segmentation network provides the local contextual informa-
tion and learns the feature map from the image intensity. The anatomical images in the
atlases train the anatomical networks. This anatomical gated network guides the segmen-
tation network to segment the appropriate region of interest. The proposed anatomical
guided architecture UNET is laid out in Figure 6. This work uses an anatomical gate to
combine the features created by two sub-networks.

The feature maps [ f s
i (feature map from segmentation network in the sth network), f s

a
(feature map from anatomical attention subnetwork)] are concatenated channel-wise. It is
fed into two convolutional layers (size: 1 × 1× 1), and a non-linear sigmoid unit follows
each convolutional layer to learn the weight tensor. (e.g., os

i ) for each input feature map.
The learning mechanism of weighted tensor is given in Equation (5) as follows:

os
i = σ

(
Ws

i
[

f s
i , f s

a
}
+ b
)
,

os
a = σ

(
Ws

a
[

f s
i , f s

a
}
+ b
)
.

(5)

The anatomical gate, feature map output ( f s
o ) is given by the following:

f s
o = os

i · f s
i + os

a · f s
a (6)

The anatomical attention gate contains brain structure information provided by mul-
tiple atlases at different scales. This model automatically learns the optimal weights
generated by the two subnetworks and efficiently fuses the two subnetworks for accurate
ROI segmentation.
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3.1.5. MH-UNET

In multi-scale UNET [24], several dense blocks, residual inception blocks, and hi-
erarchical blocks are included in the decoder and encoder, which reduce the trainable
parameters. Residual inception blocks (in Figure 7) extract valuable features. It learns much
global and local information from a large receptive field.Residual inception block output is
given in Equation (7).

yl+1 = (( fone( fd(yl)} yl))⊕ fone(yl)) (7)

where yl is the output of current layer, fd(.) is for Dilated Conv-IN-LeakyReLU, fone is
for 1 × 1 × 1 Conv-IN-LeakyReL. The hierarchical block extracts multi-scale information
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features. In the hierarchical block, dilated convolutional layers increase the receptive field
without increasing the dimensions. On the other hand, a dense network (in Figure 8)
decreases the trainable parameter and redundant feature for 3D convolution. The working
condition of a dense block is described in Equation (8).

xl+1 = g(xl) xl (8)

where x is the output of the current layer and g represents the flow of Conv-IN-LeakyReLU
and òis the concatenation function. Deep supervision is also proposed for superior seg-
mentation accuracy and faster convergence.
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3.1.6. MI-UNET

In MI-UNET [25], brain parcellation information is obtained for the input MRI, and this
information is additionally given as the input to the UNET (shown in Figure 9). LDMM [26]
image registration algorithm is used for extracting the segmentation details from the
atlas-based registration, and the MRI image is segmented into GM, WM, and LV.
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The brain parcellation is obtained as follows:

L1 = L0 } Φ∗a (9)

In Equation (9), L1 is the brain parcellation, L0 is the template label and Φ∗a is the trans-
formation. The GM, WM, and LV parcellation are obtained using atlas-based segmentation,
which is independent of the subsequent deep learning-based stroke lesion segmentation.

3.1.7. Multi-Res Attention UNET

In multi-res attention gate UNET [27], Multi resnet [28] block reduces the filter di-
mension by splitting the 5 × 5 and 7 × 7 into the series of 3 × 3. In addition, two-layer
filters (L1, L2) are implemented to reduce the requirement of high memory. L1 and L2 filter
parameters are given in Equations (10) and (11), respectively.

No of the filters parameter in L1 = k2 × n × l (10)

No of the filter parameter in L2 = (k’)2 × l2 (11)

A residual path is added to overcome the semantic gap problem between the encoder
and decoder.

Resx = θX3×3 .µi + wX1×1(µi) + bx (12)

Resy = θY3×3 .µi + wY1×1(µi) + by (13)

In Equations (12) and (13), variable x represents the first layer, and variable y represents
the second layer. Whereas θ is the filter term, µi is the feature map, w is the convolution,
and b is for bias. The attention-gating block has the GS(gating signal). This signal guides
the attention block to choose the exact features. Extracted spatial information is passed
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through a 1 × 1 (wGS) convolution operation. Finally, a ReLU activation function is applied
to the output. As shown in Equation (14), the resulting signal is the attention-gating signal.

GS = ReLU(wGS(s) + bGS) (14)

3.2. In Retinal Vessel Segmentation
3.2.1. GLUE [29]

A weighted U-Net (WUN) and a weighted residual U-Net(WRUN) form this model.
The WUN first creates a coarse segmentation map using patches that have been globally
improved. The WRUN then enhances the locally upgraded patches, whose parameters
are automatically updated rather than adjusted. Discriminative features are obtained by
adding residual connections to the second half of the model (WRUN). Additionally, it
uses the cascaded U-Net structure, which stands to gain improvements in retinal imaging
both locally and globally. On retinal images, the contrast-limited adaptive histogram
equalization (CLAHE) operation [30] is used to increase contrast.A circular template mask
for the region of interest is created to obtain the location of the fundus. This mask can be
used as the weighted attention mask to segment only the fundus and leave the irrelevant
area. The weighted attention mask is multiplied by the feature map of the last WRUN layer,
and the skip connection improves the depth and accuracy of UNET. It is implemented as in
Equation (15).

y = F(x, {wi}) + H(x) (15)

where x represents the input, H represents the identity mapping function and wi represents
the weight.

3.2.2. S-UNET

The minimum UNET is the foundation of the salient UNET [31] architecture. The
network parameter can be decreased from 31.03 M to 0.07 M with minimal UNET. The
bridge-style architecture, with two Mi-UNETs cascading, provides a prominent mechanism.
Some features were taken from the first MI-UNET and provided as foreground attention
directions for the next MI-UNET (shown in Figure 10). Features from all the output units
are concatenated with the input block. It is given in Equation (16).

O1 = W1 × 1 (16)

The saliency mechanism is shown in Figure 11 and defined in Equation (17).

sO1 = (W1X)f ⊕ X1 (17)

From Equation (17), it is clear that the second minimal UNET gets the enhanced input.
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3.3. In Nuclei or Cell Segmentation
3.3.1. As-Unet

The atrous convolution is added between the encoder–decoder to increase the net-
work’s receptive field without affecting the image resolution. Atrous convolution can
change the convolution step for multi-scale information. The 3 × 3 Separable convolutional
is added with the ReLu activation function. There are 4 dilation rates, and 5 parallel and
cascade atrous separable convolutions are added, and it is shown in Figure 12. The size
of the AS-UNET [32] model, the number of trainable parameters, and the evolution time
decreases using separable convolution. In AS-UNET, log-Dice loss and the focal loss are
added to calculate the loss function as in Equation (18).

Loss = λ ∗ logDL + (1− λ) ∗ FL (18)

In Equation (18), LogDL = −log(2∗(yt ∩ yp))/
(
|yt|+

∣∣yp
∣∣) is the logDice loss and

FL = yt ∗ log
(
yp
)
∗
(
1− yp

)γ is the focal loss, yt is the GT value, yp is the predicted value,
and λ is the training parameter.

3.3.2. RIC-UNET

The multi-scale residual inception block and channel gate are applied in RIC UNET [33].
The residual inception block extracts the multi-scale feature information. Cell contour ob-
tained from this network is used to segment the dense cell and reduce the cell level error.
The channel attention block selects the high-resolution features with the low-resolution
information taken from the up-sampling process. The structure of the RI block and DC
block is laid out in Figure 13.
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3.4. UNET in Heart CT Segmentation
3.4.1. Modified 2D UNET

A modified 2D UNET model [34] is the next-level model of the fundamental 2D UNET
model. It adds a dropout and batch normalization before each convolution block (depicted
in Figure 14) to segment the aorta and coronary artery. The internal covariate shift affects
the training process. The batch normalization stabilizes the training by normalizing the
inputs for each mini-batch, which was achieved by ciphering the standard deviation and
mean of each input variable for the layer of a single mini-batch.By randomly setting the
weights to zero, the over-fitting was reduced using the dropout layer.
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3.4.2. UCNET with Attention Mechanism

A negative mining technique is used in this model [35] to suppress the uninterested
area. First, the number of negative sample examples Ns for each training sample was
estimated using Equation (19).

Ns = Nnmax(2Np,
Nn

8
) (19)

In Equation (19), Ns is the number of negative samples, and Np is the number of
positive samples.

The attention mechanism and U-clique net focus only on the vital region. In the
attention mechanism, input is in the shallow layer, and the gate uses the deep layer. Both
are added to generate the attention map (Figure 15a) and are given to convolutional block,
batch normalization, and RELU. U-clique UNET is laid out in Figure 15b. In stage 1, each
layer is connected with the previous layer to update the next layer. In the next stage, layer 2
is concatenated to layer 1 in a forward direction, and the third and fourthlayers in the
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feedback directly to stage 1. This process will improve communication between the layers.
Finally, heart regions are divided into segments, and the Jaccard score is calculated.
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3.5. UNET in Lung Segmentation
3.5.1. Cascaded UNET [36]

The network includes the EM (expectation maximization) framework [37] to account
for the prior function of the disease-affected area. UNET is initially fine-tuned to discover
the consolidated region from the labels at the patient level by applying the EM algorithm
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after being trained with labeled, segmented image of the region of interest. Then, the latent
variable y is solved pixel-wise with the EM algorithm given in Equation (20).

yij =

{
1,
∣∣ f j
(

xi; θ′ + ϕ
(
zi, xij

))
> 1

0, Otherwise
(20)

3.5.2. Res-D-UNET

Res-D-UNET [38] extracts all the high-level features from the intra-slice plane. An
overview of a residual dense block is shown in Figure 16. The exclusive feature from the
top layer to the bottom layer gets utilized; hence, vanishing gradient problem is reduced
during the training period of the network.Binary cross entropy, similarity index, and dice
loss are the loss functions calculated in this model.

Figure 16. Res-D-UNET.

A ReLU activation layer, a batch normalization layer, and two convolution layers with
strides of 2 and 1 are included in each convolution block. In addition, a convolutional
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layer connects encoder input and output with a stride of 2, and a BN layer is used in
identity mapping.

3.6. UNET in Liver Segmentation

Multi-phase dynamic contrast enhancement MRI radiomics features [39] insist on
extracting the ICR characteristics from non-contrast images. Therefore, it is carried out
without the use of contrast chemicals. In this work [40], the radiomics features guide UNET
and generational adversarial network. Radiomics features are used at the discriminator,
and the DUN (shown in Figure 17) is used as the segmenter at the generator network.
UNET disseminates the directed knowledge. The gradient disappearance is reduced by
combining a dilated and densely convolutional network. A global attention model extracts
the desired characteristics from the pixels in low-contrast images. The discriminator of the
GAN receives the MCRF (multi-phase radiomics feature) as input, which easily separates
lesions from non-contrast images. Radiomics and semantic feature extraction models are
connected with radiomic-guided layer connections at the discriminator. Semantic features
are extracted using VGG 16 [41]. PyRadiomics [42] is an open-source tool to extract the
features from the MRI.
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3.7. UNET in Esophageal Segmentation

In this model of a dilated dense block, channel attention (CHA1) and spatial attention
(SPA) gates are used. The spatial gate retrieved tumor features in the main block were
retrieved by the spatial gate. In the space between the paths of extracting and contracting,
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the channel gate filtered out the unimportant features.Dubbed dilated dense attention
UNET model [43] (DDAUNET), it segments the esophageal GTV (gross tumor volume). Its
architecture is shown in Figure 18.
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Figure 18. Architecture of DDAUNET.

Figure 18 denotes DDSCAB (dilated dense spatial and channel attention block) and
DDB (dilated dense block). R represents the number of sub-DDBs. For example, chA1 is a
skip connection channel attention gate, ChA2 is a DDSCAB block channel attention gate,
and SpA is a DDSCAB block spatial attention gate. Although ChA1 is not included in the
final network (DDAUnet), it is used in some of the experiments.

3.8. UNET in Lymphnodes Segmentation

The body has lymph nodes and lymphoid tissues in all parts, making it challenging
to distinguish lymphoma on a full-body CT scan. Hyperdense encoding using UNET
architecture and recurrent dense Siamese decoding is employed in this model [44] at
the encoder and decoder, respectively. The segmentation accuracy is increased using
bootstrapping in re-sampling and a stable-gradient adaptive similarity dice loss function.
The recurrent dense Siamese UNET in Figure 19 enables the spatial and temporal correlation.
The Siamese decoder has two similar subnetworks for generating the feature vector for the
input and eradicating the duplicate features.
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3.9. UNET in Prostate Segmentation

A challenging task in prostate segmentation is (1) fast localization of the prostate
boundary and (2) accurate segmentation. Hierarchically fused UNET is the multitask FCN.
Adding an attention-based task consistency learning (TCL) module allows the encoder and
decoder to share task-related knowledge. This research [45] implements a channel-based
and a position-based attention network to learn the best information (shown in Figure 20).
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4. Evaluation Metrics

• DSC

The dice similarity coefficient (DSC) was first proposed by Dice [46]. It uses a repro-
ducibility validation metric and an index of spatial overlap. Fleiss also referred to it as the
percentage of explicit agreement [47]. DSCs values range from 0 to 1, which denotes the
entire spatial similarity between two data sets from binary segmentation, indicating total
spatial overlap. It predicts the similarity index between the ground truth and the predicted
image by comparing the pixel-wise agreement between the two images.

DSC =
2∗|X ∩Y|
|X|+|Y| (21)

In Equation (21), DSC is the dice similarity coefficient, X is the ground truth image
pixels, and Y is the predicted image pixels. It should be higher.

• PPV–positive predictive value or precision

It measures the precision of prediction [48–52] by counting the number of actual
samples. It is formulated in Equation (22).

PPV =
TP

TP + FP
(22)

• Accuracy

Accuracy calculates the correctly classified pixels in the images. The formula for the
accuracy is given in Equation (23).

Accuracy =
TP + TN

TP + FN + TN + FP
(23)

• Sensitivity or recall

It measures [53,54] the number of false and true images. It is otherwise known as the
positive rate. The calculation of recall is given in Equation (24).

Sensitivity =
TP

TP + FN
(24)

• F1 score

This metric [55] gives the balance value in-between precision and recall. The result of
1 represents the best prediction. F1 score is formulated in Equation (25).

F1 = 2× precision× recall
precision + recall

(25)

• AUC (area under curve) [56]

It is the plot of the receiver under the operation curve according to the true positive
rate(TPR) at the vertical axis and false positive rate(FPR) at the horizontal axis. TPR and
FPR are given in Equations (26) and (27), respectively.

TPR =
TN

TN + FP
(26)

FPR =
FP

FP + TN
(27)

• The 95th percentile Hausdroff distance
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Hausdroff distance [57] is the prediction of the distance between prediction and
ground truth images. Small value of HD represents the high segmentation accuracy.

HD(S, L)= max
{

kth
s∈S ming∈G||S−L||,

{
kth

g∈G mins∈S||L−S||

}
(28)

In Equation (28), S is the segmented image, and G is the ground truth image.

• Absolute volume difference

It predicts the difference between segmentation and label in terms of volume. A smaller
range of AVD [58] gives better segmentation.

AVD(S, L) =
Vs −VL

VL
× 100% (29)

In formula (29), Vs is the volume of the segmented image, and VL is the volume of the
labeled image.

• Jaccard score or IOU [59]

Jaccard(A, B) =
|A ∩ B|

|A|+ |B| − |A ∩ B| (30)

In Equation (30), A is the ground truth, and B is the segmented image.

• Matthews correlation coefficients (MCC) [60]

It is a statistical tool to identify the difference between predicted and actual images,
which Brain Matthew formulated.

MCC =
TN × TP− FN × FP√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(31)

5. Datasets
5.1. MRBrainS18 [61,62]

The image data for this challenge were collected at the UMC Utrecht using a 3T scanner
(The Netherlands). T1-weighted, T1-weighted inversion recovery, and T2-FLAIR scans
of 30 subjects have been fully annotated. Alzheimer’s patients, patients with dementia,
Diabetes, and, as well as matched controls (with increased cardiovascular risk) with varying
degrees of atrophy and white matter lesions (age > 50), were included in the study. The
voxel sizes for all scans are 0.958 mm, 0.958 mm, and 3.0 mm. The N4ITK algorithm is used
to correct the bias fields in the scans.

5.2. IBRS

The Internet Brain Segmentation Repository (IBSR) [63] encourages the advancement
of segmentation methods and the evaluation of MRI brain images. There are eighteen
subjects ranging in age from 7to 71). It is also worth noting that these data were subjected
to the CMA’autoseg’bias field correction routines.

5.3. BRATS

A trained human expert manually annotated multi-contrast MRI scans of ten patients
with low-grade glioma and twenty patients with high-grade glioma with two tumor
labels [64,65]. Furthermore, the training data consist of simulated images of 25 high-grade
and 25 low-grade glioma patients with the same 2 “ground truth” labels. The test images
included 11 high-quality and 4 low-quality real-world cases and 10 high-quality and
5 low-quality simulated images.
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5.4. ADNI

Alzheimer’s MRI images were taken from the ADNI (Alzheimer’s disease Neuroimag-
ing Initiative) database [66,67]. The primary purpose of ADNI is to track the progress of
the disease and study the variation in brain function and structure during the four stages
of the disease. ADNI has a clinical record of patients between 55 and 90, including males
and females. Patients have undergone all the tests at subsequent intervals. This project is
for collecting the anatomic, diffusion, perfusion, and resting-state MRI images.

5.5. ATLAS

A 955 T1-weighted MRI scans are available in the Anatomical Tracing of Lesions
after Stroke (ATLAS) dataset [68]. These scans are divided into training (n = 655 T1w
MRIs with manually segmented lesion masks) and testing (n = 300 T1w MRIs only; lesion
masks are not released). T1-weighted average structural template images from MNI152
standard space are used. The database contains lesion and scanner metadata in two.csv
files. The LONI Probabilistic Brain Atlas (LPBA40) is a collection of anatomical maps of
the brain that can be found in Atlas. These maps were created using data from 40 human
volunteers’whole-head MRIs. Each MRI was manually delineated to identify 56 brain
structures, most of which are located in the cortex.

5.6. CHASE_DB1

A child heart and health study in England (CHASE_DB1) [69] contains 28 color retina
images with a resolution of 999 × 960 pixels taken from the left and right eyes of 14 school
children for segmenting retinal vessels.

5.7. DRIVE

The fundus images in the Digital Retinal Images for Vessel Extraction (DRIVE) [70]
dataset include 7 abnormal pathology instances. It contains 40 images in JPEG format. The
dataset is equally split for training and testing. The images are taken from a Netherlands
screening program for diabetic retinopathy.

5.8. STARE [71]

The dataset contains 20 eye fundus images with a resolution of 700 × 605. In addition,
two sets of ground-truth vessel annotations are available. Six images in this dataset are
normal, and 11 indicate ophthalmological disease.

5.9. RITE [72,73]

Based on the publicly accessible DRIVE database, the RITE (Retinal Images Vessel Tree
Extraction) database was created to enable comparative investigations on the segmentation
or categorization of arteries and veins using retinal fundus images. Like DRIVE, RITE
has 40 images evenly divided into training and test subsets. A fundus image, a vascular
reference standard, and an arteries/veins (A/V) reference standard are included for each
set. Four different types of vessels are identified for the A/V reference standard based on
the vessel reference standard using four different colors. The image of the fundus is in tif
format. The A/V and vessel reference standards are also in the png file format.

5.10. CCAP IEEE Data Port [74]

It is obtained from the IEEE Data Port and consists of the following five distinct sets of
lung CT images: Viral Pneumonia, COVID-19, Bacterial, Pneumonia, Normal lung, and
Mycoplasma Pneumonia (MP).

5.11. SARS-CoV-2 CT-Scan Dataset [75]

It included 1252 CT scans from patients infected with the disease and 1230 CT scans
from patients not infected, for a total of 2482 CT scans.
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5.12. CHAOS [76]

CHAOS provides CT and MRI data from healthy subjects for single and multiple
abdominal organ segmentation.

5.13. ISLES [77]

In ISLES 201,863 patients’ information was included for training, while 40 patients’
information was added for testing. Furthermore, the developed methods are tested on a
40-stroke research dataset.

5.14. TCGA [78]

The TCGA project produced a massive amount of genomic, epigenomic, transcrip-
tomic, and proteomic data. Transcriptomics technologies are methods for studying an
organism’s transcriptome, the sum of its RNA transcripts. A proteome is a collection of
proteins made by an organism. This information has improved our ability to diagnose,
treat, and prevent cancer.

5.15. MOD [79]

It is a data set of pathological images with 30 images from the following 7 organs:
colon, stomach, prostate, liver, breast, kidney, and bladder. The images in the dataset have
a resolution of 1000 × 1000, with a total of about 21,000 nuclei. Professional pathologists
label the boundaries.

5.16. BNS [80]

BNS is a 512 × 512-byte breast cancer image data set with 33 HE-stained patholog-
ical images. There are also manually labelled nuclei (2754) with tissue data from seven
TNBC patients.

5.17. Medical Segmentation Decathlon (MSD) [81]

This repository includes segmented images and masks of liver, pancreas, spleen, colon,
lungs, brain, hippocampus, prostate, heart, and heptic vessels.

6. Implementation Details

NVIDIA Deep Learning GPUs offer high processing power for deep learning model
training. A software development kit (SDK) called NVIDIA CUDA-X AI [82] is intended
for researchers and developers creating deep learning models. It utilizes powerful GPUs
and satisfies several industrial benchmarks, including MLPerf. Computer vision tasks,
recommendation systems, and conversational AI are all developed for NVIDIA CUDA-X AI.
The following functionalities are supported by libraries in the NVIDIA Deep Learning SDK:

• Deep learning primitives are pre-built building blocks that can be used to define train-
ing elements such as tensor transformations, activation functions, and convolutions;

• Deep learning inference engine, a runtime you may use to deploy models in real-
world settings;

• GPU-accelerated transcoding and inference are made possible by deep learning for
video analytics, which also offers a high-level C++ runtime and API;

• Linear algebra—uses GPU acceleration to provide functionality for BLAS (basic linear
algebra subprograms). Compared to the CPU this is 6–17 times faster;

• Sparse matrix operations let to use of GPU-accelerated BLAS with sparse matrices,
such asthose required for natural language processing (NLP);

• Multi-GPU communication—allows for group communications over up to eight GPUs,
including broadcast, reduction, and all-gather.

Tensor flow [83,84] is a free and open-source end-to-end platform for performing
machine learning tasks, and Keras [85,86] is a tensor flow-based neural network library at
a high level.
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7. Comparison of UNET with Other Encoder–Decoder Deep Learning Model

The encoder–decoder deep learning model to segment the medical images alternate to
UNET are FCN, FPN, Segnet, and Deeplab. FCN is the first encoder-decoder model. The
convolution layer in the FCN [87] is the 1 × 1 convolution, which classifies and creates the
mask at the pixel level by upsampling the last convolution layer through the deconvolution
layer. However, the global contextual information is not obtained in the FCN, which
reduces its segmentation performance and does not tune the parameters according to
the image’s content. FPN (feature pyramid network) transmits the feature’s gradient
information from the encoder to the decoder through the skip connection [88]. The depth
of the model and separate encoder in the FPN increase the computational complexity [89].
UNET outperforms the segnet by producing higher accuracy in the multi-class classification
of the COVID-19 dataset [90]. In addition, the segmentation accuracy for segnet can be
improved with UNET. For example, a patch-wise residual-based squeeze U-SegNet model
can increase the segmentation accuracy of the brain MRI to segment the GM, WM, and
CSF [91]. In Deeplab [92], spatial pyramid pooling is used to adapt the pooling operation
according to the different input images. Dilated or atorous convolution and depth separable
convolution are other building blocks in the deeplab model applied to consider the spacing
between the pixels and reduce the convolutional operation for RGB input.

8. Discussion

There are many medical image processing performed using the deep learning tech-
nique. However, segmentation is of great interest in diagnosing diseases. UNET can be
fine-tuned according to the application and still has significant advancement potential in
application range, training speed optimization, feature enhancement and fusion, a small
sample training set, and training accuracy. Modified architectures of U-Net have recently
been used to achieve precise segmentation of different lesions by embedding attention
mechanisms, dense modules, residual structures, and other modules. Choosing an efficient
UNET model is challenging; hence, it is implemented for different datasets.Evaluation
metrics and limitations of different models are discussed in Table 1. The computational
time, learning rate, and contribution of each model are summarized in Table 2.

Table 1. Evaluation metrics and limitations of different UNET models.

Model
Type of
Disease

Diagnosed
Evaluation Metrics Limitations

UNET with generalized
pooling [17] Tumor

For the BRATS
18 dataset

• DSC

WT-0.839
TC-0.6594
ET-0.7341

• PPV

WT-0.9175
TC-0.6564
ET-0.8175

• Sensitivity

WT-0.7879
TC-0.7169
ET-0.7367

For the BRATS19 dataset

• DSC

WT-0.8764
TC-0.7465
ET-0.7926

• PPV

WT-0.9079
TC-0.7667
ET-0.8801

• Sensitivity

WT-0.8697
TC-0.8568
ET-0.8167

Assigning the average
initial weight to each
element complicates

the model.
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Table 1. Cont.

Model
Type of
Disease

Diagnosed
Evaluation Metrics Limitations

Stack Multi-Connection
Simple Reducing Net

(SMCSRNet) [18]
Tumor

Dice score-0.831
PPV-0.73
Sensitivity-0.87

When stacking more
basic blocks (after

10),the performance
decreases, and the

number of parameters
continuously

increases. Therefore, it
does not perform well
for enhanced tumors.

However, it is the
end-to-end model
which predicts the

entire image.

3D spatial weighted
UNET [19]

Psychological
changes in the brain

with age.

• DSC

GM-86.58 ± 1.76%
WM-89.87 ± 1.43%
CSF-84.81 ± 2.33%

• HD

GM-1.29 ± 0.25
WM-1.73 ± 0.50
CSF-1.84 ± 0.31

• AVD(Absolutevolume difference)

GM-5.75 ± 3.58
WM-5.47 ± 5.19
CSF-6.84 ± 4.14

It can be
implemented only in

the 3D input.

AnatomicallygatedUNET
[20] Alzheimer’s disease

ADNI
DC-0.8864 ± 0.0212
ASD-0.386 ± 0.058

LONI
DC-0.8067 ± 0.0383
ASD-1.070 ± 0.036

Two sub-networks
increase the

segmentation’s
memory burden. The
similarity between an
atlas and a segmented
MRI is not considered.
Image intensity data is

not included

MH-UNET [21] Tumor, stroke

Tumor-

• DSC

WT-90%
TC-83%
ET-78%
HD
WT-4.164
TC-9.809
ET-32.200

Stroke
DSC-82%
HD-17.69
Average Distance-0.68
Precision-77
Recall-0.37
AVD-5.61

During the
segmentation of whole
tumor, dice score will

become zero.

MI-UNET [22] Stroke

DC-56.72%
HD-23.94
ASSD-7
Precision-65.45
Recall-59.38

The registration
step occupies

computational time.
Difficult to segment

the small lesions

Multi-Res Attention
UNET [24] Epilepsy

DC-76.62%
Precision-87.97%
Recall-67.09%

Attention gating
signal should be

optimally chosen to
increase the recall rate

GLUE [26] Ophthalmic diseases

ForDRIVE Dataset
Accuracy-0.9692
Sensitivity-0.8278
Specificity-0.9861
Precision-0.8637

For STARE Dataset
Accuracy-0.9740
Sensitivity-0.8342
Specificity-0.9916
Precision-0.8823

The model’s first part
(WUN) has 23.49 M
parameters, and the
second part (WRUN)

has 32.43 M
parameters. Therefore,

it has to be
separately trained.
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Table 1. Cont.

Model
Type of
Disease

Diagnosed
Evaluation Metrics Limitations

S-UNET [28]

For CHASE-DB1
dataset
MCC-0.8065
SE-0.8044
SP-0.9841
Accuracy-0.9.58
AUC-0.9867
F1 score-0.8242

ForTONGREEN
Dataset
MCC-0.7806
SE-0.7822
SP-0.9830
Accuracy-0.9652
AUC-0.9824
F1 score-0.7994

For DRIVE dataset
MCC-0.8055
SE-0.8312
SP-0.9751
Accuracy-0.9567
AUC-0.9821
F1 score-0.8303

Not applicable for
Patch-based

segmentation

UNET with atrous
Separable [29] Cancer

For MOD dataset
Accuracy-
92.82 ± 0.43
Precision-
88.54 ± 0.58
Recall-86.46 ± 0.84
F1 score-87.35 ± 0.75
IoU-77.72 ± 1.15

For BNS dataset
Accuracy-96.86 ± 0.26
Precision-88.29 ± 0.80
Recall-86.19 ± 0.67
F1 score-86.97 ± 0.1
IoU-77.31 ± 0.11

3.96 million
parameters for

sepconvolution with
atrous and
1.01 million
parameters

without atrous.

RIC UNET [30] Cancer
Aggregated Jaccard index-0.5635
Dice-0.8008
F1 score-0.8278

It has a more
substantial

discrimination effect
on some deeper
backgrounds.

Modified 2D UNET
[31]

Coronary artery
disease

Only aorta-
DC-91.20%
IoU-83.82%

Aorta with coronary artery
DC-88.80%
IoU-79.85%

Small regions of the
proximal coronary

artery are occasionally
missed while using
this model.Cannot

produce high accuracy
for segmenting aorta
with coronary artery.

UCNET with attention
Mechanism [32]

Cardiac arrhythmia
and Congenital
cardiac diseases

Single modality
DSC-0.9112
Jaccard-0.8420

Multimodality
DSC-0.91112

Attention mechanisms
must be carefully

selected for each task
based on their
characteristics

Cascaded UNET [33] COVID-19 DSC-62.8% The tradeoff between
TPR and FPR rate.

Res-D-UNET [35] Pulmonary embolism

For CT lung dataset
DSC-0.982
Precision-0.985
Recall-0.980
SSIM-0.961

For CHAOS dataset
DSC-0.969
Precision-0.966
Recall-0.968
SSIM-0.951

Hyper-parameters
must be set through
many experiments
and adjustments.

Radiomics guided
–DUN GAN [37] Liver lesions

DSC-93.47 ± 0.83
Accuracy-96.23
Recall-91.79

Segmentor and
discriminator have to
be trained separately.

Dilated Dense attention
UNET [40]

Esophageal tumor
segmentation

DSC-0.79 ± 0.20,
Mean surface distance-5.4 ± 20.2 mm
95% Hausdorff distance-14.7 ± 25.0 mm

Performance is worse
for Smaller tumor cells
(30cc), while patients
with a disturbance in

esophageal, hiatal
hernia, proximal

tumor had no
discernible

network strength.

HDRDS UNET [41] Lymph node cancer
DSC-0.7811
SEN-0.9357
HMSD-0.8514

Only 60% of the
training volumes are

used in model
selection, reducing the

trained models’
generalization ability

and validation
performance.

HF-UNET [42] Prostate cancer

DC-0.88
ASD-1.31
SEN-0.88
PPV-0.89

Choosing the
information weight as
0 and 1 will degrade

the late and dual
branch network.
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Table 2. Summary of Model.

References Modification in
UNET

Dataset
Area of
Segmentation Contributions Computational TimeClinically

Available
Dataset

Publically
Available
Dataset

[17]
Generalized
pooling and
adaptive weight.

BRAT 2018 and
BRAT 2019

Brain

Extract valuable
features during
down-sampling.
Generalized
pooling is applied
to varying data.

Learning rate is
0.0001.

[18]

Stacking three
SRUNET. In total,
32 feature maps are
added in the last
UNET, stacked by a
long skip
connection to the
input image.

BRAT2015

Reduces
4/5 parameters
compared to the
original UNET.
Additionally, it
reduces multi-scale
feature fusion.

Learning rate-4× 10−5.
Epoch-12. This model
takes 9.6 s to segment
the tumor, and training
time is 4 h 29 min
(two stack level).
Therefore, the learning
rate is 4× 10−5. Batch
size is 10. Reduces the
computational time.

[19]
A volumetric
feature recalibration
layer is included.

Multi-atlas
Labeling
(MIAL)
MICCAI 2012
Grand Challenge

Spatial information
loss can be avoided,
and the power of
the features can be
enhanced.

This model s trained
for 20,000 iteration
with initial learning
rate is 0.001. After
that, the learning rate
becomes half every
5000 iterations. It
takes 1 day to train
the model.

[20]

The anatomical gate
learns the
anatomical features
from the brain
atlases and guides
the segmentation
network for
segmenting the
correct region
of interest.

ADNI and
LONI-LPBA40

The feature map
learned from the
input image fuses
with the multi-label
atlases to increase
segmentation
performance.

It takes approximately
one day to train the
model. Learning
rate-0.001, number of
epoch is 1000,
minibatch size-1.

[21]

Dense block,
residual inception
block, and
hierarchical blocks
are included

MICCAI BraTS
and ISLES

Gradient vanishing
and exploitation
gets reduced.
Less learnable
parameter

For MICCAI
BrasChallengedatase,
The learning rate is
4 × 10−5.
Batch size is 1.
Epochs-300.
For ISLES dataset,
Initial learning rate
5× 10−4, Epochs-300,
batch size-4

[22]

The
LDDMM algorithm
performs
brain parcellation.

ATLAS

It can be applied to
all types
of input regardless
of the dimensions.

Learning rate 0.001.
It takes 140 s
to segment strokes.
Batch size-32.

[24]
The chain of the
3 × 3 kernel is
connected in series.

SCTIMST,
Trivandrum,
India.

Consider the large
semantic gap
feature map
between encoder
and decoder.
It suppresses
redundant features.
It reduces higher
memory
requirements.

The learning rate is
0.0001
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Table 2. Cont.

References Modification in
UNET

Dataset
Area of
Segmentation Contributions Computational TimeClinically

Available
Dataset

Publically
Available
Dataset

[26]

Weighted attention
mechanism, and
skip connection
are added.

DRIVE and
STARE dataset

Eye

Data imbalance
reduced.

Learning rate is
5 × 10−5.
(batch size 128).
A number of epochs
is 60. DRIVE dataset
takes 91 minto train
and STARE
dataset takes
65 min to train
the model.
Segments the
20 retinal
images within
6.2 s.

[28]
Two MI-UNET with
saliency mechanism
is included.

TONGREN DRIVE,
HASE_DB1

Data imbalance
reduced.

DRIVE dataset-It
takes 3 h to train the
model and
segment the
vessel within 33 ms.
TONGREN
dataset-9 h
for training and 0.49 s
to segment.
CHASE-DB1
dataset-5hours for
trainingand 91 ms to
segment

[29]

Convolutional
operation is
changed into sep
convolution.

MOD and BNS

Cell or nuclei

Size, trainable
parameter, and
evolution time
reduced.

The learning rate is
1 × 10−3. Epochs-50

[30]

Residual block,
channel gate, and
multi-scale are
applied in UNET.

The Cancer
Genomic Atlas

Extract the different
cell shapes from the
dense cell.

The learning rate is
0.0001, which is
reduced by ten
percent per
1000 iterations. Batch
size is 2. Epoch-100

[31]
Batch normalization
and dropout layer
are added.

University
College Hospital
London and Barts
Health NHS
Trust.

Heart

Reduced overfitting
and stabilized the
training process.

The learning rate is
1 × 10−5. Epochs-200.
Segmenting time is
40–141 s.

[32]

SNEM, attention
mechanism, and
clique UNET are
included.

Cardiac CT
angiography at
Shuguang
Hospital,
Shanghai, China.

More salient
features can focus.

Learning rate 0.001,
drop out rate is 0.8.
Epochs-80,000

[33]
Expectation
maximization
algorithm.

CT datasets from
Iran, Italy, South
Korea, and the
United States
from multiple
institutions

Lung

Semantic label not
required.

The learning rate
is 0.0005

[35]

Residual and dense
networks are
embedded in
UNET.

China-Japan
Friendship
Hospital,

CHAOS CT
images

Attenuate the
problem of
degradation and
vanishing gradient.
Overfitting gets
reduced.

Learning Rate
2 × 10−4 (batch size
is 4). Running time
1096.7 s.
Numberofepochs
is 100.
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Table 2. Cont.

References Modification in
UNET

Dataset
Area of
Segmentation Contributions Computational TimeClinically

Available
Dataset

Publically
Available
Dataset

[37]
Radiomics features,
dense layer, and
GAN are added.

McGill University
Health Centre Liver

Network converges
faster and
smoother.

The learning rate is
1 × 10−6 for segmen-
toranddiscriminator.
Batch size is 2 for
segmentor and 64 for
discriminator.

[40]

Dilated dense
spatial attention
gate and channel
attention gate
are included.

Dataset approved
by Leiden
University
Medical Center’s
Medical Ethics
Review
Committee in
The Netherlands

Esophageal

Receptive field
increases without
increasing the
network size

Training time-6 days.
Batch size 7

[41]

Hyper dense
encoder and
recurrent dense
siamesedecoder
are added.

General Hospital
of Shenyang
Military Area
Command(F-FDG
PET/CT Scan)

Lymphoma

Stable gradient,
explore
spatial-temporal
correlation.

The initial learning
rate is 0.001, and it
will be halved after
each 10,000 iterations.
Validationof model is
performedafter each
200 iterations.

[42]

The contour
extracts the prostate
region.
Attention-based
task consistency
learning block
learns the data from
segmentation and
regression.

National Cancer
Institute—
International
Symposium on
Biomedical
Imaging
(NCI-ISBI) 2013
Automated
Segmentation of
Prostate Structures
Challenge dataset.

Prostate

Accurate contours
are created to
segment the
prostate.

A number of epochs
60. The learning rate
is decreased from 0.01
to 0.0001 by a step
size of 2 × 10−5

9. Conclusions and Future Work

Clinical applications and academic research are significantly influenced by the analysis
and processing of medical data. Deep learning can generate novel concepts for medical
image techniques that enable texture morphology detection purely from data. It has
emerged as the primary component in numerous medical image research. The outcomes
demonstrate that the DL approach on CNN has received widespread acclaim for its medical
image segmentation, classification, and other areas. This article examines the evolution
of UNET architecture for segmenting the region of interest from different internal organs.
This review also specified the evaluation metrics and segmentation regions obtained from
the UNET models according to the diseases. In future work, segmentation accuracy can be
improved by increasing the segmentation validation metrics. UNET can be cascaded with
GAN for synthesizing the medical images and can be utilized for efficiently segmenting,
classifying, and synthesizing the images. The architecture of UNET can be modified to
predict the statistical information from the segmented region.
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