
Citation: Yeh, C.-Y.; Lee, H.-H.; Islam,

M.M.; Chien, C.-H.; Atique, S.; Chan,

L.; Lin, M.-C. Development and

Validation of Machine Learning

Models to Classify Artery Stenosis

for Automated Generating

Ultrasound Report. Diagnostics 2022,

12, 3047. https://doi.org/10.3390/

diagnostics12123047

Academic Editors: Jasjit S. Suri and

Ayman El-Baz

Received: 13 October 2022

Accepted: 30 November 2022

Published: 5 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Development and Validation of Machine Learning Models to
Classify Artery Stenosis for Automated Generating
Ultrasound Report
Chih-Yang Yeh 1, Hsun-Hua Lee 2,3,4,5 , Md. Mohaimenul Islam 6 , Chiu-Hui Chien 7, Suleman Atique 8,9,
Lung Chan 3,5,10,* and Ming-Chin Lin 1,10,11,*

1 Graduate Institute of Biomedical Informatics, College of Medical Science and Technology,
Taipei Medical University, Taipei 11031, Taiwan

2 Department of Neurology, Taipei Medical University Hospital, Taipei Medical University,
Taipei 11031, Taiwan

3 Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University,
Taipei 11031, Taiwan

4 Dizziness and Balance Disorder Center, Shuang Ho Hospital, Taipei Medical University,
New Taipei City 23561, Taiwan

5 Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
6 International Center for Health Information Technology, College of Medical Science and Technology,

Taipei Medical University, Taipei 11031, Taiwan
7 Division of Operation Performance, Center for Management and Development, Taipei Medical University,

Taipei 11031, Taiwan
8 Department of Public Health Science, Faculty of Landscape and Society, Norwegian University of Life

Sciences, 1430 Ås, Norway
9 Department of Health Informatics, College of Public Health and Health Informatics, University of Hail,

Hail 55476, Saudi Arabia
10 Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
11 Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
* Correspondence: 12566@s.tmu.edu.tw (L.C.); arbiter@tmu.edu.tw (M.-C.L.)

Abstract: Duplex ultrasonography (DUS) is a safe, non-invasive, and affordable primary screening
tool to identify the vascular risk factors of stroke. The overall process of DUS examination involves a
series of complex processes, such as identifying blood vessels, capturing the images of blood vessels,
measuring the velocity of blood flow, and then physicians, according to the above information,
determining the severity of artery stenosis for generating final ultrasound reports. Generation of
transcranial doppler (TCD) and extracranial carotid doppler (ECCD) ultrasound reports involves a
lot of manual review processes, which is time-consuming and makes it easy to make errors. Accurate
classification of the severity of artery stenosis can provide an early opportunity for decision-making
regarding the treatment of artery stenosis. Therefore, machine learning models were developed and
validated for classifying artery stenosis severity based on hemodynamic features. This study collected
data from all available cases and controlled at one academic teaching hospital in Taiwan between
1 June 2020, and 30 June 2020, from a university teaching hospital and reviewed all patients’ medical
records. Supervised machine learning models were developed to classify the severity of artery
stenosis. The receiver operating characteristic curve, accuracy, sensitivity, specificity, and positive
and negative predictive value were used for model performance evaluation. The performance of
the random forest model was better compared to the logistic regression model. For ECCD reports,
the accuracy of the random forest model to predict stenosis in various sites was between 0.85 and
1. For TCD reports, the overall accuracy of the random forest model to predict stenosis in various
sites was between 0.67 and 0.86. The findings of our study suggest that a machine learning-based
model accurately classifies artery stenosis, which indicates that the model has enormous potential to
facilitate screening for artery stenosis.
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1. Introduction

Stroke is the second leading cause of death globally, killing nearly 6.5 million people
annually [1]. A transient ischemic attack (TIA), known as a “mini-stroke”, is a medical
emergency caused by the temporary disruption of blood supply (i.e., ischemia) to the
brain [2,3]. Previous studies reported that 20–23% of patients with ischemic stroke were
associated with a TIA [4,5], and 80% of strokes after TIA are preventable [6]. Neurovascular
specialists usually evaluate and determine existing carotid artery stenosis or occlusion
(CAS) to manage the early phase of stroke and thus improve detection and therapy. Duplex
ultrasonography (DUS) is a safe, non-invasive, and affordable primary screening tool to
identify carotid artery stenosis. Although it has shown a high degree of sensitivity and
specificity to TIA [7], the overall process of DUS examination is complex and produces a
higher number of images to review [8,9].

Transcranial Doppler (TCD) and Extracranial Carotid Doppler (ECCD) are widely
used imaging techniques in the acute phase of the stroke to detect the presence of stenosis.
Several guidelines and diagnostic criteria are used to interpret and report a complete TCD
and ECCD examination. These guidelines and criteria mentioned that DUS examination
reports should be performed in grayscale images, spectral Doppler waveforms, spectral
Doppler velocities, and color Doppler images [10–12]. The European Stroke Organization
and the American Society of Neuroimaging Practice Guidelines recommended several
high-velocity criteria for detecting, quantifying, and progressing CAS [13,14]. The lack of
experienced clinicians, heavy workload, and time constraints are the major challenges to
correctly identifying high-risk patients and obtaining the significant clinical advantage of
using these techniques [15,16].

Over the past decade, machine learning models have shown excellent diagnostic
performance in detecting potential medication conditions, including neurological dis-
eases [17,18]. Machine learning-based clinical decision support systems (CDSS) may help to
improve diagnostic performance for stenosis detection. Therefore, the main objective of our
study was to develop a supervised machine learning model to automatically identify the
critical factors of different neurovascular ultrasound examinations, whether artery stenosis
exists or not.

2. Methods
2.1. Data Collection

The schematic diagram of our study is presented in Figure 1. The neurovascular
ultrasound (TCD and ECCD) data were collected from 538 subjects retrospectively between
1 June 2020, and 30 June 2020, from a university tertiary hospital. Furthermore, the medical
records of those patients were also reviewed to check their appropriateness. All of the
neurovascular ultrasound examinations were performed by experienced registered vascular
technologists and measured using a B-mode ultrasonography and color Doppler (Affiniti
50, Philips Ultrasound Inc., Bothell, WA, USA). Expert neurologists completed each ECCD
and TCD examination order and report. Neurologists also independently reviewed their
patient’s medical records with Doppler measurements (e.g., an estimate of blood flow),
and ultrasonography images. These reports were evaluated based on their neurology
knowledge and the multidisciplinary consensus criteria for the diagnosis of carotid and
cerebral artery stenosis. The retrospective study was approved by the Taipei Medical
University–Joint Institutional Review Board (approval No: N202011001).
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Figure 1. A schematic diagram of the study process.

2.2. Variables Collection

We collected the sonographic parameters from DICOM (Digital Imaging and Commu-
nications in Medicine) files and followed the standard protocol of neurosonology [10,19,20].
For the extracranial cerebrovascular—the common, internal, and external carotid arter-
ies, and V2 segment of vertebral arteries (CCA, ICA, ECA, and VA, respectively) were
examined using ECCD. Peak systolic velocity (PSV), end-diastolic velocity (EDV), blood
flow volumes, and vascular diameters of the vessels were measured with pulsatility index
(PI) or resistance index (RI) being calculated in all of the arteries. For the intracranial
cerebrovascular—the anterior, middle, and posterior cerebral arteries, V4 segment of verte-
bral arteries, and the basilar arteries (ACA, MCA, PCA, VA, and BA, respectively) were
also measured using TCD. The PSV, EDV and mean flow velocity (MFV) of the vessels were
also measured.

2.3. Handling Imbalanced Dataset

As our dataset was imbalanced, we therefore used the Synthetic Minority Over-
sampling Technique (SMOTE), which allows synthetic samples to be generated for the
minority category. The SMOTE approach was introduced by Nitesh Chawla in 2002 [21],
which helps to balance the class distribution without providing any additional informa-
tion to the model. This technique is used to overcome the overfitting problem posed by
random oversampling.

2.4. Statistical Analysis

Statistical analyses were conducted by using PASW version 18.0 (SPSS Inc., Chicago,
IL, USA). For categorical variables, we used descriptive statistics; however, the mean and
standard deviation were calculated for continuous variables. Patient characteristics were
compared between those who developed stenosis and those who did not, using Student’s
t-tests and chi-square tests. p values less than 0.05 were considered statistically significant.

For model development, the dataset was randomly divided into a training set (80%)
and a testing set (20%). We used 10-fold cross-validation and repeated it three times on
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the training set. This method involved dividing the training set into ten sets and using
nine sets for training, and the remaining set was used for verification. This process was
repeated ten times, and the results of the different test sets were averaged, ensuring an
independent result from the actual dataset subdivision. In the training dataset, random
forest (RF) and logistic regression (LR) were used to predict the development of stenosis
using all the predictor variables. The accuracy, sensitivity, specificity, positive and negative
predictive values, and the area under the receiver operating curve were used to measure the
performance of the models. All analyses were performed using RStudio version 2022.2.2.485
for Windows (2009–2022 RStudio, PBC, Boston, MA, USA) and the RF package developed
by Breiman and Culter in the R environment [22].

3. Results
3.1. Patient Selection

After retrospectively rereviewing neurovascular ultrasound examination reports, we
observed several cases with inaccurate diagnoses by clinicians. We assessed medical
errors and excluded those cases from our analysis where there was limited information
(ECCD: 2.7%; TCD: 1.3%), miscalculation (ECCD: 1.0%), or incomplete report (ECCD:
0.4%). For example, the image of interpretation error showed that the PSVICA is more than
145 cm/s, but the ECCD report showed a normal flow Doppler signal of bilateral carotid
arteries. Although those medical errors might not result in harm, they could lead to the
wrong diagnosis of stroke. Finally, we selected 463 individuals with ECCD reports and
75 individuals with TCD reports. Detailed information regarding exclusion is presented in
Table 1.

Table 1. The key reason for exclusion.

Item Root Cause ECCD TCD Total

1 Incomplete report 2 0 2
2 Misplacement of category 13 1 14
3 Detect values are different with report comments 5 0 5

Total 20 1 21

3.2. Patient Distribution

There were 463 subjects with ECCD reports (male: 235 (51%); female: 228 (49%). The
percentage of right (Rt’) ICA and left (Lt’) ICA was similar in both groups; however, Rt’-VA
was slightly higher in females than in males (100% vs. 97.9%). A higher number of female
patients had VA total flow compared to male patients (100% vs. 96.6%). In the case of
aberrant hemodynamics, Rt’-ICA, Lt’-ICA, Rt’-VA, and Lt’-VA were higher in male patients
than in females. The characteristics of ECCD are shown in Table 2.

Table 2. Patient distribution for ECCD.

Characteristics Female (n = 228) Male (n = 235)

Age (mean ± SD, range, yrs.) 63.0 ± 14.5 (18–96) 63.9 ± 14.1 (19–99)
Site of evaluation (no. of patients (%))

Rt’-ICA 227 (99.6) 232 (98.7)
Lt’-ICA 227 (99.6) 232 (98.7)
Rt’-VA 228 (100.0) 230 (97.9)
Lt’-VA 227 (99.6) 231 (98.3)

VA Total Flow 228 (100.0) 227 (96.6)
Aberrant hemodynamics (no. of patients (%))

Rt’-ICA 3 (1.3) 10 (4.3)
Lt’-ICA 2 (0.9) 13 (5.5)
Rt’-VA 10 (4.4) 22 (9.4)
Lt’-VA 9 (3.9) 12 (5.1)

VA Total Flow 26 (11.4) 36 (15.3)
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TCD reports were collected from 75 patients (male: 33 (44%); female: 42 (56%)). The
mean age (sd.) of male and female patients was 69.7 (13.9) and 64.7 (13.3), respectively.
Although male patients had high Rt’- and Lt’-MCA values, female patients had a high
number of Rt’- and Lt’-VA values. The distribution of male and female patients for TCD is
provided in Table 3.

Table 3. Patient characteristics for TCD.

Characteristics Female (n = 42) Male (n = 33)

Age (mean ± SD, range, yr.) 64.7 ± 13.3 (39–96) 69.7 ± 13.9 (39–95)
Site of evaluation (no. of patients (%))

Rt’-MCA 12 (28.6) 22 (66.7)
Lt’-MCA 10 (23.8) 22 (66.7)
Rt’-VA 42 (100.0) 33 (100.0)
Lt’-VA 42 (100.0) 33 (100.0)

BA 42 (100.0) 32 (97.0)
Aberrant hemodynamics (no. of patients (%))

Rt’-MCA 4 (33.3) 12 (54.5)
Lt’-MCA 3 (30.0) 12 (54.5)
Rt’-VA 7 (16.7) 8 (24.2)
Lt’-VA 6 (14.3) 3 (9.1)

BA 5 (11.9) 4 (12.5)

3.3. Important Predictors of ECCD

We separated ECCD reports into right and left arteries (Rt’-ICA, Lt’-ICA, Rt’-VA, Lt’-
VA) and total VA. The predictor variables of ICA were gender, age, PSV, and RI, while the
predictor variables of VA were gender, age, diameter, RI, and blood flow rate. The predictor
variables of total VA flow were gender, age, bilateral diameter, bilateral RI, and total blood
flow rate. We calculated the most important predictor variables for RF using the Gini
coefficient (Table 4). Table 4 shows that PSV was the explainable attribute for determining
stenosis in unilateral ICA; RI and blood flow rate were the relatively explainable attributes
for determining stenosis in unilateral VA, and the total blood flow rate was the explainable
attribute for determining stenosis in bilateral VA.

Table 4. Important predictor variables for RF model.

Random Forest Predictors Mean Decrease Gini

Rt’-ICA

Gender 13.44
Age 80.74
PSV 77.85
RI 49.57

Lt’-ICA

Gender 3.12
Age 61.84
PSV 86.56
RI 69.23

Rt’-VA

Gender 1.44
Age 35.16

Diameter 30.17
RI 60.02

Flow rate 75.95

Lt’-VA

Gender 1.15
Age 30.28

Diameter 30.04
RI 89.89

Flow rate 60.92
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Table 4. Cont.

Random Forest Predictors Mean Decrease Gini

Total VA

Gender 0.55
Age 8.21

Rt’-diameter 18.95
Rt’-RI 7.52

Lt’-diameter 12.30
Lt’-RI 10.53

Total Flow rate 114.22

3.4. Performance of Machine Learning Models to Predict Stenosis in ECCD

The performance of RF and LR is illustrated in Table 5. The RF model showed a better
performance in terms of accuracy, sensitivity, and specificity than that of LR to classify
stenosis. The accuracy, sensitivity and specificity for total VA was 1, 1, and 1, respectively,
in the RF model.

Table 5. The performance of the machine learning models to predict artery stenosis in various sites.

Specific
Side/Artery

Model
Performance Accuracy Sensitivity Specificity PPV NPV

Rt’-ICA
RF 0.96 1.00 0.96 0.33 1.00
LR 0.87 1.00 0.87 0.14 1.00

Lt’-ICA
RF 0.87 0.33 0.89 0.09 0.98
LR 0.89 0.33 0.91 0.11 0.98

Rt’-VA
RF 0.85 0.67 0.86 0.25 0.97
LR 0.82 0.67 0.83 0.21 0.97

Lt’-VA
RF 0.88 1.00 0.88 0.27 1.00
LR 0.85 1.00 0.84 0.22 1.00

Total VA
RF 1.00 1.00 1.00 1.00 1.00
LR 0.99 0.92 1.00 1.00 0.99

PPV: Positive Predictive Value; NPV: Negative Predictive Value.

The overall area under the receiver operating curve of RF model for classifying artery
stenosis in various sites was between 0.99 and 1. The range of the precision–recall curve for
RF was between 0.82 and 0.93. The overall area under the receiver operating curve of LR
model for classifying artery stenosis in different sites was between 0.96 and 1. The range of
the precision–recall curve for LR was between 0.77 and 0.99 (Figure 2).

3.5. Important Predictors of TCD

The TCD report was also separated into Rt’-MCA, Lt’-MCA, Rt’-VA, Lt’-VA, and BA.
The predictor variables of MCA were gender, age, M1 Dist./Prox. PSV, M1 Dist./Prox.
PI, M2 PSV, and M2 PI. The predictor variables of VA or BA were gender, age, PSV, and
PI (Table 6). Table 6 shows that M1 PSV was the explainable attribute for stenosis in
unilateral MCA; PI was the explainable attribute for stenosis in unilateral VA, and PI was
the explainable attribute for stenosis in the BA determinant.

3.6. Performance of AI Models to Predict Stenosis in TCD

The overall performance of RF and LR is presented in Table 7. The accuracy of Rt’-
MCA, Lt’-MCA, Rt’-VA, Lt’-VA, and BA was 0.86, 0.67, 0.60, 0.73, and 0.80, respectively,
in the RF. The RF model showed high sensitivity and specificity for predicting stenosis in
Rt’-MCA and Lt’-MCA.
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Table 6. Key predictors of TCD in the RF model.

Random Forest Predictors Mean Decrease Gini

Rt’-MCA

Gender 0.18
Age 0.94

Dist. M1 PSV 1.13
Dist. M1 PI 1.48

Prox. M1 PSV 1.55
Prox. M1 PI 1.20

M2 PSV 1.19
M2 PI 1.03

Lt’-MCA

Gender 0.17
Age 0.77

Dist. M1 PSV 2.18
Dist. M1 PI 0.77

Prox. M1 PSV 1.06
Prox. M1 PI 1.40

M2 PSV 1.16
M2 PI 1.29

Rt’-VA

Gender 0.21
Age 3.00
PSV 8.41
PI 18.69

Lt’-VA

Gender 0.44
Age 8.35
PSV 6.21
PI 15.82

BA

Gender 0.47
Age 6.07
PSV 6.27
PI 17.99

Table 7. Performance of RF and LR model to predict stenosis in various sites.

Specific
Side/Artery

Model
Performance Accuracy Sensitivity Specificity PPV NPV

Rt’-MCA
RF 0.86 1.00 0.75 0.75 1.00
LR 0.71 1.00 0.50 0.60 1.00

Lt’-MCA
RF 0.67 1.00 0.33 0.60 1.00
LR 0.67 1.00 0.33 0.60 1.00

Rt’-VA
RF 0.60 0.33 0.67 0.20 0.80
LR 0.60 0.33 0.67 0.20 0.80

Lt’-VA
RF 0.73 0.50 0.77 0.25 0.91
LR 0.53 0.50 0.54 0.14 0.88

BA
RF 0.80 0.50 0.85 0.33 0.92
LR 0.87 1.00 0.85 0.50 1.00

The overall area under the receiver operating curve of the RF model for classifying
artery stenosis in various sites was between 0.70 and 0.99. The range of the precision–recall
curve for RF was between 0.17 and 0.94. The overall area under the receiver operating
curve of the LR model for classifying artery stenosis in different sites was between 0.67 and
1.00. The range of the precision–recall curve for LR was between 0.11 and 0.97 (Figure 3).

3.7. Manual Evaluation of Inconsistency

We used the confusion matrix of our RF model to retrieve the inconsistent cases which
were incorrectly classified as positive or negative in the test dataset. A neurologist was
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invited to review original reports with hemodynamic information and compare the reports
for appropriateness.

After reviewing the original ECCD reports with hemodynamic information, the neu-
rologist considered that the original report was appropriate for ICA and the machine
learning model generated reports were more appropriate for VA cases (Figure 4). When
the neurologist reviewed the original TCD reports, he considered machine learning-based
reports more appropriate than the original TCD reports, except for Rt’-MCA cases. Detailed
information is provided in Table 8.
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Table 8. Performance evaluation between the original and AI-based reports by expert neurologist.

Exam. Specific
Side/Artery

Inconsistent
Cases

# of Preference for
Original Report

# of Preference for
Machine Learning-

Based Report

ECCD

Rt’-ICA 4 3 1
Lt’-ICA 12 9 3
Rt’-VA 13 5 8
Lt’-VA 12 6 6

Total VA 0 0 0

TCD

Rt’-MCA 2 2 0
Lt’-MCA 1 0 1
Rt’-VA 5 2 3
Lt’-VA 6 1 5

BA 1 0 1

Finally, we recalculated the evaluation metrics of the RF model, including accuracy,
sensitivity, and specificity. The accuracy of the RF model was significantly increased after
reviewing the inconsistent cases. For ECCD, the overall sensitivity of the RF model was
close to 1 for all sites. However, the overall specificity of TCD for classifying artery stenosis
of all sites was also close to 1.
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4. Discussion

Neurovascular ultrasound is a standard, painless, non-invasive imaging technique in
the diagnosis of carotid and vertebral artery diseases [22,23]. This examination is performed
by an experienced neurosonologist, who provides comprehensive and reliable information
on the morphological and hemodynamic status of artery diseases. Manual reviewing of
ECCD and TCD reports often leads to misclassification, wasteful duplication, and delayed
diagnosis [24]. Machine learning-based CDSS can improve the review process, reduce
misclassification, and enhance patient safety and care quality; therefore, machine learning-
based CDSS was developed to accurately classify artery stenosis. The RF model performed
excellently both in ECCD, and TCD reports in terms of sensitivity and specificity. For ECCD
reports, the area under the receiver operating characteristics curve (AUC-ROC) and the
precision–recall curve (AUC-PRC) was 0.99 and 0.93, respectively, in ICA. The AUC-ROC
and AUC-PRC were 1.00 and 0.94, respectively, in total VA flow. For the TCD report, the
RF model achieved an AUC-ROC of 0.98 and an AUC-PRC of 0.87 in BA.
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In our study, the RF model identified several potential predictors to accurately classify
artery stenosis. PSV was a key variable to determine stenosis in unilateral ICA by RF;
however, we also validated it through manual review. AIUM Practice Parameter Ultrasound
Examination of the Extracranial Cerebrovascular System [12] suggested that the areas of
stenosis or suspected stenosis must be adequate to determine the maximal peak systolic
velocity associated with the stenosis. Several potential velocity errors related to incorrect
angle assignment increase with the Doppler angle. If stenosis above 50% in ICA should
be graded to within a range, it would provide adequate information for clinical decision
making. Kang et al. [25] reported that among all ultrasonographic features, only a higher
PSV/EDV ratio helped to detect and was positively associated with an increased risk of
ischemic stroke. Murry et al. [10] also reported that PSV is used to determine stenosis, and
higher PSV is observed when contralateral ICA occlusion is present. However, the accuracy
of examination results may vary due to operator expertise. To support the previous reports,
Kim et al. [26] demonstrated that PSV may be a strong identifier of the degree of stenosis,
especially in cases of ≥70% stenosis.

Moreover, RI and blood flow rate were potential variables to identify stenosis in
unilateral VA. Previous studies mentioned that higher RI and lower blood flow velocity
of carotid arteries is associated with ischemic stroke [27,28]. The duplex ultrasonographic
examination of the extracranial arteries identify that vertebral artery blood flow significantly
contribute to a “hemodynamic effect” of carotid disease [29]. The relationship between
systemic arterial stiffness and cerebral circulation parameters is inconclusive; therefore,
Kwater et al. [30] evaluated the association between pulsatility (PI) and RI of the MCA,
reporting that increased PI and RI of MCA were potential contributors to increased aortic
stiffness. PI of the MCA incorporated with PSV/EDV is associated with ischemic stroke [25].

Limitation

Our study has several limitations. First, we collected only one-month ECCD and
TCD reports to develop and test our model’s performance. However, those included all
the doctors’ assessment varieties. The inclusion of more reports would help to develop a
more robust model. Second, we collected data from one hospital; therefore, the included
patients’ demographic characteristics might be the same and model performance may
vary if we implemented it in other hospitals or countries. Third, identifying the severity,
location, extent, and possible etiology of abnormality requires more information, including
waveform [31]; however, only hemodynamic information (measurement of blood velocities)
was used. Although our current model showed excellent performance for identifying
stenosis using those simple variables, there may be a bias in stratifying carotid artery
disease by duplex ultrasound. The accurate measurement of blood velocities can be used
together with a qualitative assessment of the appearance of the stenosis, including the
residual lumen diameter when visualized.

5. Conclusions

The findings of our study demonstrate that machine learning models, especially the
random forest model, can accurately classify patients with artery stenosis using hemody-
namics information. Compared with the manual classification of stenosis, the classification
performance of the RF model was superior to most but not all parts, such as Lt’-ICA and
Rt’-ICA. While RF is a simple and explainable model, its implementation on electronic
health record systems can be deployed. Our model could assist all physicians with different
training and experience in accurately classifying stenosis.

Author Contributions: Conceptualization, M.-C.L. and L.C.; methodology, M.-C.L., H.-H.L. and
C.-Y.Y.; validation, C.-Y.Y., H.-H.L. and L.C.; formal analysis, C.-Y.Y. and M.M.I.; investigation,
H.-H.L. and C.-H.C.; resources, L.C. and M.-C.L.; data curation, C.-H.C.; writing—original draft
preparation, C.-Y.Y.; writing—review and editing, M.M.I. and S.A.; supervision, M.-C.L. and L.C.;
funding acquisition, M.-C.L. and L.C. All authors have read and agreed to the published version of
the manuscript.



Diagnostics 2022, 12, 3047 13 of 14

Funding: This research was funded by the National Science and Technology Council, Taiwan (grant
number: 108-2314-B-038-053-MY3) to C.-Y. Yeh, M. Islam, C.-H. Chien and M.-C. Lin, and supported
from Taipei Medical University, Taiwan (grant number: 108-FRP-02) to H.-H. Lee, L. Chan, and
M.-C. Lin.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Joint Institutional Review Board of Human Research at
Taipei Medical University (IRB No: N202203146).

Informed Consent Statement: Patient consent was waived due to retrospective chart review only
with no more than minimal risk.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lindsay, M.P.; Norrving, B.; Sacco, R.L.; Brainin, M.; Hacke, W.; Martins, S.; Pandian, J.; Feigin, V. World Stroke Organization

(WSO): Global Stroke Fact Sheet 2019. Int. J. Stroke 2019, 14, 806–817. [CrossRef] [PubMed]
2. Fonseca, A.C.; Merwick, A.; Dennis, M.; Ferrari, J.; Ferro, J.M.; Kelly, P.; Lal, A.; Ois, A.; Olivot, J.M.; Purroy, F. European Stroke

Organisation (ESO) guidelines on management of transient ischaemic attack. Eur. Stroke J. 2021, 6, CLXIII–CLXXXVI. [CrossRef]
[PubMed]

3. Siket, M.S.; Edlow, J. Transient ischemic attack: An evidence-based update. Emerg. Med. Pract. 2012, 15, 1–26. [PubMed]
4. Rothwell, P.M.; Warlow, C.P. Timing of TIAs preceding stroke: Time window for prevention is very short. Neurology 2005, 64,

817–820. [CrossRef] [PubMed]
5. Hankey, G.J.; Warlow, C.P. Treatment and secondary prevention of stroke: Evidence, costs, and effects on individuals and

populations. Lancet 1999, 354, 1457–1463. [CrossRef]
6. Coutts, S.B. Diagnosis and management of transient ischemic attack. Contin. Lifelong Learn. Neurol. 2017, 23, 82. [CrossRef]
7. Jump, M.A.; Spalding, M.C.; Jenkins, J.; Franz, R.W. Accuracy of Duplex Ultrasonography in Estimation of Severity of Peripheral

Vascular Disease. Int. J. Angiol. 2013, 22, 155–158. [CrossRef]
8. Gilliland, T.J.; Gensollen, V. Review of the protocols used for assessment of DUS and VCU in Europe–Perspectives. In Sustainable

Use of Genetic Diversity in Forage and Turf Breeding; Springer: Berlin/Heidelberg, Germany, 2010; pp. 261–275.
9. Kording, F.; Yamamura, J.; De Sousa, M.T.; Ruprecht, C.; Hedström, E.; Aletras, A.H.; Grant, P.E.; Powell, A.J.; Fehrs, K.; Adam,

G.; et al. Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating. J. Cardiovasc. Magn. Reson.
2018, 20, 1–10. [CrossRef]

10. Murray, C.S.G.; Nahar, T.; Kalashyan, H.; Becher, H.; Nanda, N.C. Ultrasound assessment of carotid arteries: Current concepts,
methodologies, diagnostic criteria, and technological advancements. Echocardiography 2018, 35, 2079–2091. [CrossRef]

11. Winzer, S.; Rickmann, H.; Kitzler, H.; Abramyuk, A.; Krogias, C.; Strohm, H.; Barlinn, J.; Pallesen, L.-P.; Siepmann, T.;
Arnold, S.; et al. Ultrasonography Grading of Internal Carotid Artery Disease: Multiparametric German Society of Ultra-
sound in Medicine (DEGUM) versus Society of Radiologists in Ultrasound (SRU) Consensus Criteria. Ultraschall Med. Eur. J.
Ultrasound 2021. [CrossRef]

12. Alexandrov, A.V.; Sloan, M.A.; Wong, K.S.L.; Douville, C.; Razumovsky, A.Y.; Koroshetz, W.J.; Kaps, M.; Tegeler, C.H.; for the
American Society of Neuroimaging Practice Guidelines Committee. Practice Standards for Transcranial Doppler Ultrasound: Part
I-Test Performance. J. Neuroimaging 2007, 17, 11–18. [CrossRef] [PubMed]

13. Sharma, V.; Tsivgoulis, G.; Lao, A.Y.; Malkoff, M.D.; Alexandrov, A.V. Noninvasive Detection of Diffuse Intracranial Disease.
Stroke 2007, 38, 3175–3181. [CrossRef] [PubMed]

14. Grant, E.G.; Benson, C.B.; Moneta, G.L.; Alexandrov, A.V.; Baker, J.D.; Bluth, E.I.; Carroll, B.A.; Eliasziw, M.; Gocke, J.; Hertzberg,
B.S.; et al. Carotid Artery Stenosis: Gray-Scale and Doppler US Diagnosis—Society of Radiologists in Ultrasound Consensus
Conference. Radiology 2003, 229, 340–346. [CrossRef] [PubMed]

15. Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support
systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 17. [CrossRef] [PubMed]

16. Rodziewicz, T.L.; Houseman, B.; Hipskind, J.E. Medical Error Reduction and Prevention; StatPearls: Tampa, FL, USA, 2022.
17. Lee, E.-J.; Kim, Y.-H.; Kim, N.; Kang, D.-W. Deep into the Brain: Artificial Intelligence in Stroke Imaging. J. Stroke 2017, 19, 277–285.

[CrossRef] [PubMed]
18. Mouridsen, K.; Thurner, P.; Zaharchuk, G. Artificial Intelligence Applications in Stroke. Stroke 2020, 51, 2573–2579. [CrossRef]
19. Valdueza, J.M.; Schreiber, S.J.; Roehl, J.-E.; Conolly, F.; Klingebiel, R. Neurosonology and Neuroimaging of Stroke. Aktuel Neurol.

2017, 44, 346–347. [CrossRef]
20. Csiba, L.; Baracchini, C. Manual of Neurosonology; Cambridge University Press: Cambridge, UK, 2016.
21. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]

http://doi.org/10.1177/1747493019881353
http://www.ncbi.nlm.nih.gov/pubmed/31658892
http://doi.org/10.1177/2396987321992905
http://www.ncbi.nlm.nih.gov/pubmed/34414299
http://www.ncbi.nlm.nih.gov/pubmed/23257070
http://doi.org/10.1212/01.WNL.0000152985.32732.EE
http://www.ncbi.nlm.nih.gov/pubmed/15753415
http://doi.org/10.1016/S0140-6736(99)04407-4
http://doi.org/10.1212/CON.0000000000000424
http://doi.org/10.1055/s-0033-1336830
http://doi.org/10.1186/s12968-018-0440-4
http://doi.org/10.1111/echo.14197
http://doi.org/10.1055/a-1487-5941
http://doi.org/10.1111/j.1552-6569.2006.00088.x
http://www.ncbi.nlm.nih.gov/pubmed/17238867
http://doi.org/10.1161/STROKEAHA.107.490755
http://www.ncbi.nlm.nih.gov/pubmed/17947595
http://doi.org/10.1148/radiol.2292030516
http://www.ncbi.nlm.nih.gov/pubmed/14500855
http://doi.org/10.1038/s41746-020-0221-y
http://www.ncbi.nlm.nih.gov/pubmed/32047862
http://doi.org/10.5853/jos.2017.02054
http://www.ncbi.nlm.nih.gov/pubmed/29037014
http://doi.org/10.1161/STROKEAHA.119.027479
http://doi.org/10.1055/s-0043-108961
http://doi.org/10.1613/jair.953


Diagnostics 2022, 12, 3047 14 of 14
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30. Kwater, A.; Gąsowski, J.; Gryglewska, B.; Wizner, B.; Grodzicki, T. Is blood flow in the middle cerebral artery determined by
systemic arterial stiffness? Blood Press. 2009, 18, 130–134. [CrossRef] [PubMed]

31. Intersocietal Accreditation Commission. IAC Standards and Guidelines for Vascular Testing Accreditation. 2019. Available online:
https://www.intersocietal.org/vascular/standards/IACVascularTestingStandards2019.pdf (accessed on 15 May 2022).

http://doi.org/10.3389/fnhum.2022.841809
http://www.ncbi.nlm.nih.gov/pubmed/35572008
http://doi.org/10.1371/journal.pone.0265732
http://doi.org/10.1177/1358863X17751655
http://www.ncbi.nlm.nih.gov/pubmed/29502493
http://doi.org/10.1002/jcu.20351
http://doi.org/10.1007/s100169910015
http://doi.org/10.1080/08037050902975114
http://www.ncbi.nlm.nih.gov/pubmed/19462313
https://www.intersocietal.org/vascular/standards/IACVascularTestingStandards2019.pdf

	Introduction 
	Methods 
	Data Collection 
	Variables Collection 
	Handling Imbalanced Dataset 
	Statistical Analysis 

	Results 
	Patient Selection 
	Patient Distribution 
	Important Predictors of ECCD 
	Performance of Machine Learning Models to Predict Stenosis in ECCD 
	Important Predictors of TCD 
	Performance of AI Models to Predict Stenosis in TCD 
	Manual Evaluation of Inconsistency 

	Discussion 
	Conclusions 
	References

