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Abstract: Objective: The aim of this study was to establish a predictive nomogram for predicting
prostate cancer (PCa) in patients with gray-zone prostate-specific antigen (PSA) levels (4–10.0 ng/mL)
based on radiomics and other traditional clinical parameters. Methods: In all, 274 patients with
gray-zone PSA levels were included in this retrospective study. They were randomly divided into
training and validation sets (n = 191 and 83, respectively). Data on the clinical risk factors related
to PCa with gray-zone PSA levels (such as Prostate Imaging Reporting and Data System, version
2.1 [PI-RADS V2.1] category, age, prostate volume, and serum PSA level) were collected for all
patients. Lesion volumes of interest (VOI) from T2-weighted imaging (T2WI) and apparent diffusion
coefficient (ADC) imaging were annotated by two radiologists. The radiomics model, clinical model,
and combined prediction model, which was presented on a nomogram by incorporating the radiomics
signature and clinical and radiological risk factors for PCa, were developed using logistic regression.
The area under the receiver operator characteristic (AUC-ROC) and decision, calibration curve were
used to compare the three models for the diagnosis of PCa with gray-zone PSA levels. Results: The
predictive nomogram (AUC: 0.953) incorporating the radiomics score and PI-RADS V2.1 category,
age, and the radiomics model (AUC: 0.941) afforded much higher diagnostic efficacy than the clinical
model (AUC: 0.866). The addition of the rad score could improve the discriminatory performance of
the clinical model. The decision curve analysis indicated that the radiomics or combined model could
be more beneficial compared to the clinical model for the prediction of PCa. The nomogram showed
good agreement for detecting PCa with gray-zone PSA levels between prediction and histopathologic
confirmation. Conclusion: The nomogram, which combined the radiomics score and PI-RADS V2.1
category and age, is an effective and non-invasive method for predicting PCa. Furthermore, as well
as good calibration and is clinically useful, which could reduce unnecessary prostate biopsies in
patients having PCa with gray-zone PSA levels.

Keywords: radiomics; MRI; prostate cancer; biopsies

1. Introduction

According to the American Cancer Society, prostate cancer (PCa) was the most com-
mon malignancy and the second leading cause of cancer death among men in 2021 [1]. In
clinical practice, prostate-specific antigen (PSA) has been widely used in PCa screening,
because it is a good diagnostic measure for identifying PCa [2]. However, gray-zone PSA
levels (4–10.0 ng/mL) have poor sensitivity and specificity for PCa prediction, and biopsy
results have been reported to be positive in only 11.8–25% of patients with gray-zone PSA
levels [3,4]. This indicates that 75–88.2% of patients undergo unnecessary needle biopsies
and are at risk of complications [5]. In addition, PSA levels are affected by factors such
as the volume of the prostate, inflammation of the prostate, and BMI [6–9]. Therefore,
prebiopsy prediction of PCa in patients with gray-zone PSA levels is a clinical challenge.
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To reduce unnecessary biopsies, some indicators are widely used, especially in patients
with PSA levels in the range of 4–10 ng/mL, such as age, prostate volume (PV), free/total
PSA ratio (PSA f/t ratio), and PSA density (PSAD). However, which indicators are more
suitable for patients having PCa with gray-zone PSA levels remains controversial, and no
consensus has been reached [10,11].

In recent times, multiparametric magnetic resonance imaging (mp-MRI) based on
Prostate Imaging Reporting and Data System (PI-RADS) has shown a moderate-to-good di-
agnostic performance in the prediction of PCa in patients with gray-zone PSA
levels [12–14]. However, PI-RADS has some limitations, especially low specificity and poor
inter-reader reproducibility [12–15]. Thus, it is necessary to develop a quantitative and
objective diagnostic method to improve the performance of PI-RADS for predicting PCa in
patients with gray-zone PSA levels.

Radiomics can offer large numbers of imaging features to quantify specific tumor
attributes and phenotypes. These features can be used to glean valuable diagnostic or
prognostic information [16–18]. In recent years, MRI-based radiomics has been found to
be potentially beneficial in predicting PCa, thereby providing an objective method based
on much more information than can be visually analyzed by radiologists [18–20]. To date,
radiomics signatures and clinical factors have been analyzed in combination to develop
a radiomics nomogram, which is widely used for cancer prediction, along with building
a graphically depictive statistical predictive model that is individualized [21]. Thus, the
study aimed to develop and validate a nomogram combining radiomics and conventional
clinical factors to evaluate the diagnostic accuracy for PCa in patients with gray-zone PSA
levels. We also compared whether the combination nomogram of these methods helps
improve diagnostic efficiency.

2. Materials and Methods

This retrospective study was conducted according to the TRIPOD reporting checklist
(available at http://dx.doi.org/10.21037/tau-21-49, accessed on 21 December 2021). The
institutional review board approved this study, and the requirement of informed consent
was waived.

2.1. Patients

Between December 2015 and October 2021, 478 consecutive patients with PSA levels
of 4–10 ng/mL who underwent prostate mp-MRI in Shaanxi Provincial People’s Hospital
were included in this study. The patients were selected based on the following criteria:
(1) prebiopsy prostate mp-MRI acquired according to the PI-RADS criteria; (2) MRI ex-
amination performed before standardized prostatic biopsy and/or prostatectomy and
pathologic confirmation of PCa, inflammation, or prostatic hyperplasia; (3) no previous
any treatments including prostate endocrine therapy, radiation therapy, or surgery before
the MRI examination. The exclusion criteria were as follows: (1) MRI quality was poor
for diagnosis or segmentation and (2) a lack of clinical data to construct the prediction
model. The flowchart for the study population enrollment is shown in Figure 1. They were
randomly divided into training and validation sets (n = 191 and 83, respectively).

2.2. MRI Protocol

MRI was performed using the 3.0-T Ingenia or 3.0-T Ingenia CX MR system (Philips
Healthcare, Best, the Netherlands) with an abdominal eight-channel surface phased array
coil. The main sequences included sagittal T2-weighted imaging (T2WI), axial T2WI, coro-
nal T2WI, axial T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI) (b values
of 0, 1000, and 2000 s/mm2), Apparent diffusion coefficient (ADC) maps, and dynamic
contrast-enhanced (DCE)-MRI. Gadopentetate dimeglumine (Omniscan, GE Healthcare,
Milwaukee, WI; Magnevist; Bayer Healthcare) was intravenously injected at a dose of
0.1 mmol/kg of body weight and rate of 2.5 mL/s by using an automatic injector (Guerbet).
The details of MRI acquisition parameters, including the sequence, flip angle (degree),
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repetition time (TR)/echo time (TE), echo train length, matrix size, field of view, thickness,
and b values, are summarized in Supplementary Materials (Table S1).
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Figure 1. Patient selection flowchart.

2.3. Reference Standard

All lesions were histopathologically evaluated based on a standard 12-core systematic
transperineal ultrasound-guided prostate biopsy or surgical specimens (radical prostate-
ctomy). Two experienced genitourinary pathologists recorded the location and Gleason
score, with all disagreements being resolved by consensus. The area of systematic prostate
biopsy was divided as follows: the prostate gland was divided into 3 sections (the basal
region, the body, and the apex) from top to bottom, and each part was divided into the left
and right regions. The right and left regions of the basal and body regions were divided
into the inner and outer regions, and the whole prostate gland was divided into 10 areas.
Each area was punctured with 1 needle, and 2 additional needles were used to puncture
the suspicious area.

2.4. Clinical Data

Age, PV, serum PSA level (including total PSA [tPSA] and free PSA [fPSA]), f/t
PSA, and PSAD were collected for the patients selected. PV was calculated as follows:
anteroposterior diameter × vertical diameter × transverse diameter × 0.52. PSAD was
calculated as total PSA/PV. Two radiologists (L.C.L. with 7 years of experience in prostate
MRI, and J.Z. with 5 years of experience in prostate MRI) independently assigned each
lesion according to the PI-RADS V2.1. criteria; they were blinded to all clinicopathological
information. For the transition zone (TZ) lesion, T2WI remains the key sequence, with
using of DWI features to upgrade atypical nodules to category 3 lesions for staging lesions.
For peripheral zone (PZ) lesions, DWI remains the key sequence, with using DCE for DWI
score 3 lesions. The radiologists independently assigned each lesion a score of 1–5 for T2WI,
a score of 1–5 for DWI, “+” or “−” for DCE, and an overall PI-RADS assessment category
according to PI-RADS v2.1. For patients with multiple lesions, only the largest lesion in
each patient was scored. Then the final PI-PADS V2.1 score was discussed with a third
radiologist (L.X.Y. with 15 years of experience in prostate MRI) during image interpretation.



Diagnostics 2022, 12, 3005 4 of 13

2.5. Radiomic Analysis: Segmentation and Extraction

A radiologist (L.C.L.) blinded to the clinical information and histopathological results
manually performed segmentation using ITK-SNAP (http://www.itksnap.org, accessed
on 15 January 2022) software independently. Volumes of interest (VOI) delineated the
visible lesion slice by slice based on T2WI and ADC map, and then, VOI labels were
automatically generated.

When multiple lesions were found, only the dominant lesion (the largest lesion) was
considered. Finally, the PI-RADS V2.1 reports, biopsy results, and radiologists’ segmenta-
tion were matched for each patient. The location and size of the lesions were determined as
follows: (I) the detailed records of the prostate system punctures (injection site and depth)
and pathological diagnostic results were used to determine the location and nature of the
lesion; (II) the location described by pathology was matched to the corresponding lesion on
the MRI images; and (III) combined with the PI-RADS V2.1 scoring diagnostic criteria, the
range of lesions was determined.

The open-source software Pyradiomics (v. 3.6.5; https://www.python.org, accessed
on 25 January 2022) was used to extract radiomics features. The synthetic minority over-
sampling technique (SMOTE) was used to generate a sample from the joint weighting of
multiparametric features [22]. A total of 3146 features of four types (first-order statistics,
texture features, shape features, and wavelet filter and Laplacian of Gaussian filter features)
were extracted from axial ADC and T2WI sequences.

Feature selection involved four steps. First, another radiologist (J.Z.) was provided
with the lesion location based on pathology randomly selected 30 cases to segment. Using
the intra-class coefficient (ICC) to evaluate the inter- and intraobserver stability of the
obtained radiomics features from the two VOI sets, features with inter-class coefficients
and ICCs > 0.75 were selected for the following analysis. Second, redundant features were
removed by one-way analysis of variance. Third, Pearson’s correlation coefficient analysis
was performed sequentially. Fourth, the least absolute shrinkage and selection operator
regression (lasso) method was applied to select the most significant features for predicting
PCa with gray-zone PSA levels.

2.6. Model Construction

For the clinical model, these indexes, including age, volume, tPSA, fPSA, F/T PSA,
PSAD, and the PI-RADS V2.1 score, were assessed by univariate logistic regression. The
features identified as statistically significant with univariate logistic regression analysis
were then analyzed with multiple logistic regression analysis to build a model to identify
associations between clinical features and PCa in the PSA gray zone.

For the radiomics model, a logistic regression algorithm was applied to construct
the model in the training set to obtain the optimal parameters, and the model was then
assessed in the validation set. Then, a radiomics score (rad score) was calculated for each
patient via a linear combination of selected features that were weighted by their respective
coefficients. The number of patients with PCa was smaller than the number of non-PCa
patients, and this sample imbalance would have an adverse impact on the performance of
a classifier. Thus, we used SMOTE to generate a sample.

For the clinical radiomics model, a nomogram was constructed using the combined
clinical and radiomics model with the coefficients of clinical factors and radiomics features
by multivariate logistic regression. The C-index was calculated to assess the discrimination
performance of the radiomics nomogram. A calibration curve was plotted to explore the
predictive accuracy of the nomogram [23].

The training and validation test was applied for all three models.

2.7. Clinical Usefulness

Decision curve analysis (DCA) was used to investigate the clinical utility of the nomo-
gram in both the training and validation sets [24].

http://www.itksnap.org
https://www.python.org
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2.8. Statistical Analysis

All statistical analyses were performed using SPSS (v. 21.0.0.0; https://www.ibm.com,
accessed on 28 January 2022), and R (v. 4.1.2; http://www.r-project.org/, accessed on 29 Jan-
uary 2022) software. The clinical features between the PCa and non-PCa were compared by
applying the t-test, the Chi-square test, or the Mann-Whitney U test, as appropriate.

Univariate and multiple analyses were performed using logistic regression analysis
to select significant predictors of PCa in the PSA gray zone. Odds ratios and 95% CIs
were determined. The AUC-ROC curve was used to evaluate the performance of each
model. Accuracy, sensitivity, specificity, negative predictive value (NPV), and positive
predictive value (PPV), positive likelihood ratio (LR+), negative likelihood ratio (LR−)
were calculated according to the Youden index.

Further, we evaluated the incremental discrimination ability of the clinical model, ra-
diomics model, and clinical-radiomics model using the DeLong test [25]. p < 0.05 indicated
statistical significance. The entire workflow of this analysis is presented in Figure 2.
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3. Results
3.1. Patient Characteristics

A total of 274 patients with PSA in the gray zone were included in this study, of which
90 patients had PCa and 184 patients had benign lesions. In assessments of the lesion origin,
75 lesions were found to have originated from the PZ, while 199 lesions were located in the
TZ. Among them, 177 lesions were benign prostatic hyperplasia which were located in the
TZ. A total of 64 (33.5%) of 191 patients in the training cohort and 26 (31.2%) of 83 patients in
the validation cohort were diagnosed with PCa. As for the reference standard, 184 patients
with benign lesions and 41 patients with PCa did not undergo radical prostatectomy,
and the pathological results were determined by TRUS-guided biopsy. Other 49 patients
with PCa did undergo radical prostatectomy with surgical specimens. Table 1 shows the
characteristics of all patients.

3.2. Clinical Model

The univariate logistic regression analysis suggested that among clinical factors, pa-
tient age, PV, tPSA, PSAD, and PI-RADS V2.1 score were significant factors for predicting
PCa in patients with PSA in the gray zone. The multiple logistic analysis showed that age
and the PI-RADS V2.1 score were important factors that could be used as independent
predictors. The outcomes of the univariate and multiple logistic regression analyses are
presented in Table 2.

https://www.ibm.com
http://www.r-project.org/
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Table 1. The characteristics of all patients.

Characteristics PCa (n = 90) Non-PCa (n = 174) p Training Cohort
(n = 191)

Validation Cohort
(n = 83) p

Age (y) 75.0 [53.0, 98.0] 69.5 [47.0, 93.0] 0.015 71.0 [47.0, 98.0] 74.0 [57.0, 93.0] 0.360
Volume (mL) 39.0 [14.5, 138] 60.5 [2.70, 432] <0.001 54.1 [14.2, 432] 53.6 [2.70, 186] 0.484

tPSA 7.66 [4.00, 10.7] 6.71 [3.26, 9.95] 0.005 6.98 [3.26, 10.7] 7.35 [4.21, 9.95] 0.749
fPSA 1.19 [0.01, 6.06] 1.18 [0.10, 5.13] 0.979 1.20 [0.01, 6.06] 1.14 [0.20, 3.12] 0.512

f/tPSA 0.161 [0.0025, 0.652] 0.180 [0.025, 0.523] 0.157 0.177 [0.0025, 0.652] 0.167 [0.0274, 0.382] 0.339
PSAD 0.193 [0.0474, 0.513] 0.113 [0.0095, 2.93] 0.037 0.129 [0.0095, 0.513] 0.129 [0.0095, 0.513] 0.173

PI-RADS v2.1 score <0.001 0.993
1 5.00 (5.6%) 52.0 (28.3%) 41.0 (21.5%) 16.0 (19.3%)
2 7.00 (7.8%) 82.0 (44.6%) 58.0 (30.4%) 31.0 (37.3%)
3 13.0 (14.4%) 29.0 (15.8%) 30.0 (15.7%) 12.0 (14.5%)
4 39.0 (43.3%) 19.0 (10.3%) 41.0 (21.5%) 17.0 (20.5%)
5 26.0 (28.9%) 2.00 (1.1%) 21.0 (11.0%) 7.00 (8.4%)

Table 2. Univariate and multiple logistic analysis results of clinical factors.

Predictor Univariate Analysis Multiple Analysis

β OR (95%CI) p Value β OR (95%CI) p Value

Age (y) 0.0748 2.455 [1.501, 4.015] <0.001 0.0774 2.533 [1.378, 4.656] 0.001
Volume (mL) −0.0186 0.486 [0.308, 0.768] 0.002 NA NA 0.486

tPSA 0.2307 1.871 [1.445, 3.058] 0.013 NA NA 0.225
fPSA 0.0283 1.012 [0.749, 1.393] 0.893 NA NA NA

f/tPSA −2.0633 0.803 [0.552, 1.165] 0.247 NA NA NA
PSAD 8.1946 2.956 [1.568, 3.362] <0.001 NA NA 0.714

PI-RADS v2.1 score 1.2241 11.569 [5.811, 23.032] <0.001 1.2439 12.034 [5.847, 24.77] <0.001

OR, odds ratio; CI, confidence interval; NA, Only when univariate and multivariate regression variable values
have statistical significance, that is, when the p-value is less than 0.05, corresponding β value and OR value can be
obtained. The remaining spaces have no corresponding values and are represented by Not available (NA); PSA,
Prostate-specific antigen.

Finally, the logistic regression classifier was established according to age and the
PI-RADS V2.1 score. The AUC, sensitivity, and specificity of the training set were 0.866
(0.783–0.950), 0.842 (0.724–0.916), and 0.846 (0.655–0.941), respectively, in the validation set
(Table 3).

Table 3. Diagnostic performance of three models in training and validation sets.

Training Cohort Validation Cohort

Clinical Model Radiomics Model Clinical-Radiomics
Combined Model Clinical Model Radiomics Model Clinical-Radiomics

Combined Model

AUC (95%CI) 0.868 [0.813, 0.922] 0.982 [0.964, 0.999] 0.984 [0.968, 1.000] 0.866 [0.783, 0.950] 0.941 [0.888, 0.995] 0.953 [0.907, 0.999]
Sensitivity (95%CI) 0.750 [0.630–0.841] 0.953 [0.865, 0.985] 0.953 [0.865, 0.985] 0.846 [0.655, 0.941] 0.808 [0.613, 0.918] 0.885 [0.697, 0.962]
Specificity (95%CI) 0.827 [0.751–0.883] 0.961 [0.909, 0.984] 0.984 [0.939, 0.996] 0.842 [0.724, 0.916] 0.965 [0.870,0.991] 0.930 [0.827, 0.973]

PPV 0.686 [0.562, 0.789] 0.924 [0.825, 0.972] 0.968 [0.880, 0.994] 0.710 [0.518, 0.851] 0.913 [0.705, 0.985] 0.852 [0.654, 0.951]
NPV 0.868 [0.791, 0.920] 0.976 [0.926, 0.994] 0.977 [0.928, 0.994] 0.923 [0.806, 0.975] 0.917 [0.809, 0.969] 0.946 [0.842, 0.986]

LR+ 4.330 [2.886, 6.494] 24.209 [10.236,
57.257]

60.523 [15.287,
239.619] 5.359 [2.878, 9.977] 23.019 [5.825,

90.973]
12.606 [4.850,

32.762]
LR− 0.302 [0.197, 0.464] 0.049 [0.016, 0.147] 0.048 [0.016, 0.144] 0.183 [0.073, 0.453] 0.199 [0.091, 0.439] 0.124 [0.043, 0.361]

Z −4.391 −0.952 NA −2.154 −1.1227 NA
p value <0.001 0.341 NA 0.031 0.262 NA

3.3. Radiomics Model

The interobserver ICCs of the selected features ranged from 0.772 to 1, and the in-
traobserver ICCs ranged from 0.751 to 1. Thus, 3146 features extracted from T2WI images
combined with ADC mapping were screened for subsequent analyses. Finally, 25 ra-
diomics features (Table S2) by the lasso model were included for the T2WI images and
ADC mapping (Table S2 and Figure 2).

Rad scores were obtained (Table S2), and the rad score bar diagrams are shown in
Figure 3. The bar diagrams demonstrated good discrimination performance of the rad score.
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The radiomics signature yielded an AUC, sensitivity, and specificity of 0.982 (0.964–0.999),
0.953 (0.865–0.985), and 0.961 (0.909–0.984), respectively, for discriminating between PCa
and non-PCa groups among patients with PSA in the gray zone in the training cohort and
0.941 (0.888–0.995), 0.808 (0.613–0.918), 0.965 (0.870–0.991), respectively, in the validation
cohort (Table 3). The values of AUC, sensitivity, specificity, and accuracy by the SMOTE
method were similar, and are illustrated in Table S3.
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3.4. Nomogram Model

The results showed that age (p = 0.0013), PI-RADS V2.1 score (p < 0.001), and the
rad score (p < 0.001) were significantly different between PCa and non-PCa patients with
PSA in the gray zone. The clinical radiomics nomogram incorporating age, PI-RADS V2.1,
and rad score on the basis of multivariate logistic regression are shown in Figure 4. The
clinical radiomics nomogram yielded an AUC, sensitivity, specificity, and C-index of 0.953
(0.907–0.999), 0.885 (0.697–0.962), 0.930 (0.870–0.991), and 0.953, respectively, in the valida-
tion cohort. The nomogram showed the same diagnostic efficacy as the radiomics model.
The AUC, accuracy, sensitivity, specificity, PPV, and NPV of the three models are listed in
Table 3. A comparison of the ROC curves of these three models is shown in Figure 5.
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3.5. Calibration

The calibration curves obtained after the application of the nomogram in the training
and validation groups are shown in Figure 6. The nomogram showed good agreement
between prediction and histopathologic confirmation for detecting PCa in PSA gray zone.

3.6. Clinical Use

The DCAs for the clinical and radiomics models and the nomogram are shown in
Figure 7. The DCAs indicated that PCa prediction using the radiomics or combined models
added more benefit than prediction using the clinical model.
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4. Discussion

Our study sought to construct and validate a nomogram incorporating the radiomics
signature with two preoperative clinic characteristics (PI-RADS V2.1 score and age). The
radiomics model and the combined model showed stronger ability than the clinical model
in discriminating between PCa and non-PCa in cases with PSA in the gray zone. Fur-
thermore, the addition of the rad score to the clinical model could increase the rate of
identification of PCa-negative cases by 8.4% in comparison with the clinical model for
predicting PCa in cases with PSA in the gray zone. Radiomics signatures based on the
SMOTE-balanced dataset achieved similar synthesized performance as the original dataset.
DCA demonstrated good clinical usefulness of the nomogram and suggested that it facili-
tated preoperative individualized prediction of PCa and could be used to reliably rule out
PCa in the gray zone, obviating the need for biopsies.

Some previous studies have used PI-RADS for PCa screening [26,27]. Wang et al. [26]
showed that for TZ patients with PSA levels of 4–20 ng/mL, the PI-RADS V2.1 score
detected PCA with an AUC of 0.889. Sun et al. [27] incorporated risk factors, including the
PSA level and PI-RADS V2 score into a nomogram, which showed better PCa prediction
performance (AUC = 0.876) than PI-RADS V2 only. Niu et al. [21] used patient age, PI-RADS
V2 score, and adjusted PSAD to develop a nomogram by the logistic regression model and
showed an AUC of 0.85 (0.79–0.90) for predicting PCa in the gray zone. Through univariate
and multiple logistic analyses, our clinical model combined the PI-RADS V2.1 score and
age and showed an AUC of 0.866 in the validation set, which was consistent with the
results reported by Niu et al. [21] and Sun et al. [27]. However, considering the differences
in clinical factors and case grouping in the above-mentioned studies, a more simple and
accurate method for predicting PCa in the gray zone should be sought in future studies.

Benign prostate lesions include glandular structures and large intercellular spaces.
However, PCa shows high cellularity and reduced extracellular spaces. These differences
in histopathological features can be reflected by radiomics methods. Radiomics involves
more quantitative and objective features of the tumor, which can overcome the interob-
server variability of PI-RADS, and potentially yield useful predictive biomarkers of tumor
heterogeneity that cannot be discerned via visual analysis [28,29]. Li et al. [30] reported
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the development of a radiomics model to predict PCa. Their findings showed that the
radiomics model has high predictive efficiency with AUC values of 0.99 and 0.98 in both
training and validation sets, which were higher than our results (AUC of 0.982 in the
training set and 0.941 in the validation set). This may be due to the fact that the previous
study included patients with no limitations on the PSA level. In fact, the PSA in the gray
zone, which groups up to 80% of biopsies, was unnecessary [5]. Therefore, a better risk
prediction method specific to these patients is needed [21,31].

A similar study by Qi et al. [14] developed a radiomics signature incorporating the
age, PSAD, and the PI-RADS V2 score and yielded AUC values of 0.956 and 0.933 in the
primary and validation cohorts, respectively. However, this cohort used the PI-RADS V2
score, which was published in 2014, and did not develop a nomogram model.

Nomograms are widely used to predict medical prognoses and outcomes by combin-
ing multiple risk factors, representing a clearer, more concise, and easier-to-understand
approach [32,33]. The present study used the radiomics signature, age, PI-RADS V2.1
score (published in 2019), after univariate and multiple analyses to determine significant
predictors, and constructed a radiomics clinical nomogram that achieved high performance
for PCa identification in this study. The addition of the rad Score to the clinical model can
improve the diagnostic efficiency and clinical net benefit in “gray zone” PCa diagnosis.

In our study, the calibration curve indicated high accuracy for individual predictions
in the training and validation sets (Figure 6). The DCA in the current study showed that
using radiomics nomograms to predict PCa with PSA in the gray zone added more benefit
than either the treat-all scheme or no-treatment scheme. The prediction model showed
more advantages in guiding physician decision-making.

Several limitations of this study require consideration. First, due to its retrospective
design, the study inevitably showed sample selection bias. Second, this was a single-center
study without external validation. In future studies, our model should be assessed and
verified in more centers with larger samples. Third, some patients underwent a biopsy as
the reference test, which resulted in the risk of mismatching some cancers. Nevertheless, a
systematic prostate biopsy is the recommended technique for a prostate biopsy according to
the NCCN guidelines. Additionally, we identified lesions by comparing biopsy templates
with mp-MRI results, trying our best to reduce the deviation. On the other hand, the biopsy
results might have been affected by the underestimation of the Gleason Score with the
diagnosis of PCa. In the future, studies are needed with the length of specimens >12 mm or
targeted biopsies to avoid this underestimation [34]. Fourth, our study did not separate
the PZ and TZ lesions due to the small number of enrolled patients. Therefore, further
investigations are needed to expand the sample of the population and evaluate PZ and TZ
lesions separately in different groups. Fifth, radiomics signatures extracted from our MR
images only contained T2WI, and ADC maps of patients, such as DCE may provide more
information and improve performance. This still needs further investigation.

5. Conclusions

In conclusion, the nomogram, which combined the radiomics score with the PI-RADS
V2.1 category and age, is an effective and noninvasive approach for predicting PCa, and
showed good calibration and clinical usefulness, which could reduce unnecessary prostate
biopsies in patients with PSA in the gray zone. The addition of the rad score could
improve the discrimination performance of the clinical model. Radiomics characteristics
are obviously valuable in diagnosing PCa in the PSA gray zone.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics12123005/s1, Table S1: The details of MR imaging acquisition parameters, Table S2:
Rad-scores and 25 radiomic features, Table S3: The diagnostic performance of radiomics model in
SMOTE-training set and validation set.
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