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Abstract: Parkinson’s disease (PD) currently affects approximately 10 million people worldwide. The
detection of PD positive subjects is vital in terms of disease prognostics, diagnostics, management
and treatment. Different types of early symptoms, such as speech impairment and changes in writing,
are associated with Parkinson disease. To classify potential patients of PD, many researchers used
machine learning algorithms in various datasets related to this disease. In our research, we study the
dataset of the PD vocal impairment feature, which is an imbalanced dataset. We propose comparative
performance evaluation using various decision tree ensemble methods, with or without oversampling
techniques. In addition, we compare the performance of classifiers with different sizes of ensembles
and various ratios of the minority class and the majority class with oversampling and undersampling.
Finally, we combine feature selection with best-performing ensemble classifiers. The result shows that
AdaBoost, random forest, and decision tree developed for the RUSBoost imbalanced dataset perform
well in performance metrics such as precision, recall, F1-score, area under the receiver operating
characteristic curve (AUROC) and the geometric mean. Further, feature selection methods, namely
lasso and information gain, were used to screen the 10 best features using the best ensemble classifiers.
AdaBoost with information gain feature selection method is the best performing ensemble method
with an F1-score of 0.903.

Keywords: PD; ensembles decision tree; feature selection; classification; imbalanced class; lasso;
information gain; predictors

1. Introduction

Parkinson’s disease (PD) is a progressive neurological disorder with symptoms rang-
ing from trouble with movement to dementia, autonomic dysfunction, depression, and
visual hallucinations [1]. Between seven and 10 million people worldwide are affected
currently by PD. The disease affects anywhere from 41 persons per 100,000 in their forties
to more than 1900 people per 100,000 in their eighties and beyond. The disease’s incidence,
or the rate at which new cases are identified, normally increases with age, but it can be
stable in adults over the age of 80. Only about 4% of people diagnosed with PD are under
50 years old. PD affects 1.5 times more men than women [2].

PD significantly impairs patients’ quality of life, family relationships, and social
functions, and imposes considerable economic costs on both individuals and societies [3–5].

PD is often diagnosed by a physician based on the patient’s complaints and the
neurological examination that follows the disease history [6]. Although certain expensive
methods such as CT scan, X-ray imaging, dopamine transporter scan, Single Photon
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Emission Computerized Tomography (SPECT), and others are available, these techniques
are useful at detecting PD only if disease is widespread across the brain [7,8]. There are
a few unique computer-aided tests that may be used to diagnose PD, such as the finger
touch and handwriting laboratory tests [9–14]. In recent years, establishing speech tests
has emerged as a potential study topic that analyzes phonation and vocal signals in order
to classify people with PD. Over 90% of PD patients show a unique pattern of atrophy and
speech problems, which is one of the early signs of early-stage PD [15–17].

The early detection of PD can have a big impact on the disease’s progression and the
patient’s quality of life. Machine learning, together with knowledge detection from medical
libraries, has long been touted as a possible technique for addressing early diagnostic and
prediction problems. Machine learning, as the term implies, is the ability of software to
automatically learn and extract meaningful representations from data. A variety of data
sets have been used to train machine learning models. The data modalities, which include
handwritten patterns, that can be used to aid in the diagnosis of PD [18,19] and are: based
on movement-based features [20–22]; neuro image-based datasets [23–25]; voice-based
features [26,27] ; the cerebrospinal fluid (CSF) dataset [28,29]; cardiac scintigraphy [30];
serum-based datasets [30]; and the optical coherence tomography (OCT) dataset [31].
Machine learning enables the integration of data from multiple modalities such as magnetic
resonance imaging (MRI) and single-photon emission computed tomography (SPECT)
in the diagnosis of PD [32,33]. While past research indicated that recognizable speech
signals develop about 84 months following PD onset, recent prospective investigations
reveal that objective, accurate assessments can identify speech patterns. [34]. Detecting PD
significantly improves when non-invasive, easily accessible, and low-cost patient-generated
speech data is used. The present work uses a publicly available dataset that contains speech
features extracted from 188 patients, and 64 healthy controls, using a variety of speech
signal processing techniques [35]. The dataset used in earlier studies had a problem of
class imbalance, where records belonging to people with disease are greater or less than
the records belonging to people who are healthy. The unbalanced dataset does not help
the machine learning model perform successfully. Various machine learning methods
and applications have been developed to handle the class imbalance problem for these
datasets [23,24]. Specific model evaluation metrics must be used to evaluate models built
using imbalanced datasets. This is true especially for medical datasets, where the target
class is in minority. Therefore, in such cases the false negatives are penalized excessively
more than the false positives to prevent the model from committing type 1 and type II errors,
respectively [25]. An ensemble classifier has been applied to solve various classification
problems [26–28]. A decision tree classifier is one of the most popularly used machine
learning algorithms to build simple interpretable models for decision-making [6]. Certain
machine learning algorithms namely, bagged decision trees [31], eXtreme gradient boosting
(XGBoost) [30], and random forest [29], are some of the most popular examples of a decision
tree ensemble. The ensemble of a decision tree is quite robust and accurate in selecting
parameters from small to large dimensional datasets. Decision tree ensemble models have
been used to learn from imbalanced data and perform effective classification tasks [32,33].
Various PD speech datasets are imbalanced datasets. Studies have shown that ensemble
methods can produce very efficient prediction when the data is properly preprocessed and
oversampled [36]. Not many researchers [36–40] have analyzed the data by considering it as
imbalanced. In this paper, we have performed an extensive study on an imbalanced dataset
using the algorithms developed for imbalanced data. Following are the contributions of
our present work.

1. We considered an imbalanced dataset and performed automatic classification between
PD patients and healthy controls to evaluate the robustness of different ensemble
methods for class imbalance.

2. Decision tree ensembles have been shown to have excellent performance in different
domains. In this study, we carried out extensive performance evaluations of different
types of decision tree ensembles such as RUSBoost, isolation forset, RUSBagging,
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balanced bagging etc.; developed for imbalanced data. To the best of our knowledge,
this has never been used by other researcher in this area.

3. We carried out the feature selection using lasso and the information gain method, to
achieve the best set of features.

There are different approaches to analyze an imbalanced data set, including deep
learning, machine learning, and time series analysis. However, in this paper, we concentrate
only on decision tree ensembles. Ensemble methods have shown very good result and
very robust result. As per literature, ensemble methods were used to explore imbalanced
dataset in various domain. However, these ensemble methods have not been applied to PD
dataset. Therefore, we intend to extensively explore the decision tree ensembles such as
balanced random forest (RUS), the synthetic minority oversampling technique (SMOTE),
bagging, RUS bagging, SMOTEBoost, RUSBoost, and so forth, to predict the PD in its earlier
stages. Moreover, various oversampling and undersampling techniques will be used to
address the issue of class imbalance in the current PD speech dataset. In a classification task
using imbalanced data, accuracy alone is insufficient to compare performance for various
individual classifiers and ensembles of classifiers. Therefore, in our study, geometric mean,
the area under the precision-recall curve, the area under the receiver operating characteristic
curve, sensitivity (SN), specificity (SP), precision, and F1-score performance measures, were
used to evaluate and compare the performance for various decision tree-based ensemble
models. The methodology in our study to compare the performance of ensemble classifiers
and selection of the subset of features is shown in Figure 1.
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Figure 1. The methodology implemented in this research for comparative performance evaluation of
ensemble classifiers (oversampling, undersampling), feature selection, model building.

The rest of the paper is organized as follows: Section 2 examines several comparable
research works, as well as their relationship with the current work. The following section
discusses the methodology that has been proposed. The next section describes the speech
dataset that was used in this study. Then, Section 4 discusses the experimental findings.
Section 5 concludes the paper.
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2. Related Work

The recent research has demonstrated that abnormalities in speech can be utilized as
a quantifiable indicator for the early detection of PD [41]. In the early stages of PD, most
people experience vocal problems. Voice signals are oscillatory signals that are non-linear
and non-stationary. Because around 90% of patients have voice abnormalities early in
the disease’s progression, these symptoms can be helpful in detecting the disease [42].
In this section, we discuss the research works that have been carried out to predict PD
using a speech signal dataset that is collected at the neurology department of Istanbul
University [35].

Sakar et al. [35] compared the effectiveness of Tunable Q-factor Wavelet Transform
(TQWT) with the recent feature extraction methods used in diagnosis of PD from voice
data. Their study revealed that TQWT has a higher frequency resolution than the classical
wavelet transforms and the TQWT feature-based model is more effective than the existing
models.

I. Nissar et al. [43] detected Parkinson’s disease using several machine learning algo-
rithms. The proposed model used two types of feature selection techniques, namely, RFE
(Recursive Feature Elimination) and mRMR. Different machine learning models have been
used and investigated for PD detection, including logistic regression, naive bayes, KNN,
random forest, decision tree, SVM, MLP, and XGBoost. Of these, XGBoost with mRMR
feature selection technique achieved highest accuracy on all feature subsets, outperforming
all state-of-the-art methods.

Yücelbaş [44] proposed the Simple Logistic Hybrid System (SLGS) as a new technique
that employs feature analysis to identify PD by gender. The proposed system’s performance
was evaluated using a range of statistical metrics.

Lavalle [45] et al. proposed a method for speech-based PD detection that involves
selecting feature subsets and applying four different classifiers to voice recordings from
five datasets (gender-based, balanced, and unbalanced) obtained from the largest publicly
available dataset for voice-based PD detection. One of the contributions is a performance
and complexity improvement over previous work on voice-based PD detection using the
same dataset. In the gender-based dataset, the highest detection performance achieved in
the female dataset.

Gunduz [46] suggested a classification method for individual voice recordings based
on vocal features collected from audio, as well as a hybrid feature reduction approach for
extracting robust features. The approach was developed using Variational-Auto Encoders
(VAE), and feature selection models were employed. The Fisher-Score and Relief were used
as filter-based techniques due to their efficiency in dealing with data with noise, while
VAE was selected as a feature extractor due to its ability to retain the latent space’s normal
properties during feature creation. Compared to the results obtained without dimension
reduction, the results of the proposed model were of increased accuracy.

Mohammadi [42] et al. used speech data sets to build PD models. They effectively
predicted PD using vocal features from the Machine Learning Repository database, which
has a limited sample size and imbalanced features. Their technique uses autoencoder
training and the encoder section to extract nonlinear information. Stacking the models
produced more accurate predictions. The result of their study shows that the use of
autoencoders as feature extractors may be beneficial when the total samples are smaller
than the number of features, especially when the input is imbalanced. Experiments show
that traditional classification models outperform deep learning techniques.

Ashour et al. [47] proposed a unique two-stage feature selection framework for identi-
fying PD patients with voice loss. An SVM classifier was used to calculate the suggested
weighted hybrid selected features. The suggested approach employs a cubic kernel-SVM
with best performance in detecting voice loss in PD.

Yücelbaşn et al. [48] created the Information Gain Algorithm-based K-Nearest Neigh-
bors (IGKNN) diagnostic system to accurately identify PD using speech data. The dataset
was received from UCI, and the characteristics were derived from 252 people’s speech
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signals. This approach identified Tunable Q-factor Wavelet Transform (TQWT) datasets.
This approach was applied to TQWT feature data sets. To obtain the result, the 12 sub
feature datasets that make up the TQWT feature sets were evaluated separately, then
the sub feature dataset with the best performance was added to the IGKNN model. The
IGKNN system’s performance was compared to other studies using the same dataset, and
the method presented in this paper outperformed all earlier methods.

By including relevance feature weighting into the Gaussian Mixture Model (GMM),
Bchir [49] suggested a novel method for handling the problem of higher dimensionality. To
compare the obtained results to the GMM findings and to the most current research in the
literature, the GMM with a relevance feature weights technique is employed. The findings
demonstrated the usefulness of the suggested technique, produced best accuracy.

Suvita et al. [50] proposed binary Rao PD classification techniques. The suggested
method uses Rao algorithms, which do not require parameter tuning. A hyperbolic tangent
V-shaped transfer function converted continuous Rao techniques to binary. Binary Rao
is also used to optimize KNN’s ‘k’ value. The recommended methods were evaluated
using PD data sets. Using the Friedman rank test, the suggested method’s relevance was
determined. The suggested binary Rao algorithms were compared against state-of-the-art
algorithms.

Younis Thanoun and Yaseen [51] proposed two types of ensembles learning approaches
for PD detection via machine learning: stacking classifiers and voting classifiers. Subse-
quently, they compared the outcomes of the two approaches. The Stacking Classifier
approach outperformed the voting classifier.

Gemci and Ibrikci [52] employed a Feed-Forward Neural Network (FFNN) built with
Python’s Keras in the experiment. In epoch 30, the deep learning algorithm successfully
classified the PD data set with best accuracy.

Prasad et.al. [53] predicted PD using a set of 753 vocal features and a two-step classifi-
cation framework. They proposed a novel technique for PD classification by employing
multiple one-way ANOVA on independent vocal features. They proposed to classify
PDs using an XGBoost classifier trained on the extracted data. The proposed framework
achieves best classification accuracy.

An effective feature vector extraction pipeline, devised by Xiong and Lu [54], consisted
of an Adaptive Grey Wolf Optimization Algorithm and a sparse auto encoder neural
network that classified the PD samples from the healthy with high accuracy. The speech
dataset was used to evaluate how well the adaptive WSO-sparse auto encoder-LDA model
performed in comparison to the benchmarked algorithms.

Schellhas et al. [55] created a technique called Distance Correlation Sure Independence
Screening (DC-SIS), which employs a correlation measure to identify features that are most
dependent on the response. On PD vocal diagnosis data, this method produces statistically
indistinguishable results 90 times faster than the method of mRMR selection.

The research discussed above are not addressed the imbalanced nature of the dataset [35].
The imbalanced dataset will not help the machine learning model perform successfully.
Many academics have overlooked this problem, but it has an impact on the classification
system’s performance. Oversampling and undersampling approaches can be used to tackle
this problem. In some research, the Synthetic Minority Oversampling Technique is utilized
to address this problem. Minority samples in SMOTE are created artificially from existing
dataset examples. The research that addressed the dataset’s imbalance nature are discussed
in the next section.

Related Literature Which Addresses the Imbalance Problem

Polat [36] proposed a method for detecting an imbalanced class distribution in a PD
dataset by combining SMOTE and random forest classifiers. The RF classifier built using
balanced data achieved high accuracy. Jain et al. [56] employed deep neural networks with
SMOTE oversampling for the prediction problem and achieved best performance in PD
detection.
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Lamba et al. [57] proposed a hybrid PD diagnosis system based on speech signals to
aid in the disease’s early detection. They used numerous feature selection methodologies
and classification algorithms and created the model that produced the best results. The best
performance was achieved by combining a random forest classifier and a genetic algorithm.

Hoq et al. [37] created a pair of hybrid models for predicting PD patients using voice
data that include the SVM, PCA, and Sparse Auto Encoder (SAE), wherein PCA was
used to extract voice feature main components. The secondary model uses a deep neural
network of a Sparse Auto Encoder with L1 regularization to compress voice features. Both
models sent reduced features to SVM, which categorized the data by learning hyperplanes
and projecting it to a higher dimension. The SAE-SVM model outperformed not only the
previous PCA-SVM model, but also other standard models such as MLP, KNN, XGBoost
and random forest.

Pramanik et al. [38] investigated two newly developed decision forest algorithms: the
Systematically Developed Forest and the Decision Forest by Penalizing-Attributes. The
Forest by Penalizing Attributes (ForestPA) proved to be a promising PD detector with a
minimum number of decision trees and a highest detection accuracy.

We note that not many researchers have used the state-of-the-art algorithm for over-
sampling and undersampling data and decision tree ensemble for PD detection. Therefore,
in the present study, it will be interesting to conduct PD prediction studies by applying
algorithms that have been developed for imbalanced datasets.

3. Materials and Methods

This section will discuss the PD dataset speech vocal signal, decision tree, ensemble
decision tree, features selection methods, and imbalanced evaluation metrics included in
the current study.

3.1. Parkinson’s Diseases Speech Vocal Dataset

The PD speech signal dataset is collected at the Department of Neurology in Cerrah-
pasa Faculty of Medicine, Istanbul University, Istanbul, Turkey. The PD speech signal data
used in the present study was obtained from the UCI machine learning repository [35].
The PD dataset consists of 188 patients (81 Females and 107 males) with PD, and the rest,
64 samples, were healthy subjects (41 females and 23 males). The ratio of the majority class
to the minority class was 2.93, which makes the data imbalanced. In addition, the age of
healthy subjects varied between 41 to 82 years, whereas the age of PD patients ranged from
33 and 87 years. All throughout the data collection, the microphone’s frequency response
was set to be centered at 44.1 kHz.

All participants were asked to perform the sustained phonation of the vowel “ah” three
times. Speech disorders are an earlier sign for PD patients; therefore, speech characteristics
are essential in evaluating the PD. The PD speech dataset comprises 753 features (752 speech
features + 1 gender) related to speech characteristics [39], presented in Table 1. In the next
section, we will discuss classifier ensembles.

Table 1. Parkinson’s speech dataset features.

Features Measure Number of Features

Baseline features

Jitter variants 5

Shimmer variants 6

Fundamental frequency parameters 5

Harmonicity parameters 2
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Table 1. Cont.

Features Measure Number of Features

Recurrence Period Density Entropy (RPDE) 1

Detrended Fluctuation Analysis (DFA) 1

Pitch Period Entropy (PPE) 1

Time-Frequency Features

Intensity Parameters 3

Formant Frequencies 4

Bandwidth 4

Tunable Q-factor Wavelet Transform (TQWT) TQWT features related to F0 432

Wavelet Transform based Features Wavelet Transform (WT) features related to F0 182

Vocal fold features

Glottis Quotient (GQ) 3

Glottal to Noise 6

Vocal Fold Excitation Ratio (VFER) 7

Empirical Mode Decomposition (EMD) 6

Mel Frequency Cepstral Coefficients (MFCCs) MFCCs 84

3.2. Decision Tree Classifier

The decision tree classifier is based on the recursive partition method, where the
sample points are split based on a specified split criterion. The C4.5 algorithm employs the
information gain ratio as a splitting principle from top to down, reducing the bias towards
multivalued attributes [40]. In addition to the information gain ratio, various other splitting
criteria have been proposed for the decision tree. The base classifier for this study is the
C4.5 classifier (J48) for every ensemble of classifiers.

On the other hand, an ensemble is a method that combines several base classifiers to
produce a best classifier for better prediction and stability by reducing individual classifier
errors such as variance, noise, and bias [58]. The PD speech signal dataset was imbalanced,
and therefore we used various decision tree-based ensembles built for imbalanced class
datasets.

3.3. Decision Tree Ensembles

This study uses some general ensemble methods, namely AdaBoost [59] and bag-
ging [60]. These ensembles can also combine with any other classifier. In addition, we use
some specific type of a decision tree, namely that of a random forest (RF) [61]. Finally, XG-
Boost [62] implements scalable gradient tree boosting ensemble methods used to enhance
the speed and performance of the ensemble model.

3.4. Decision Tree Ensembles for Imbalanced Datasets

There are many methods to handle imbalanced datasets. Oversampling and undersam-
pling are two essential techniques to reduce the class imbalance problem. Oversampling
is associated with the minority class and undersampling is associated with the majority
class [63,64]. Synthetic Minority Oversampling Technique [65] and Random Undersam-
pling (RUS) [63,64] are two important techniques for undersampling and oversampling.
Here, RUS is the undersampling method that selects the sample points from the major-
ity class (more instances) associated with the minority class (less instances). Similarly,
SMOTE is the oversampling method which increases the minority class in different ratios.
In oversampling data generated through SMOTE technique with k = 5 (default) nearest
neighbor. SMOTE select random data from the minority class, then select k-nearest neigh-
bors from the data. Artificially data would then be generated between the random data
and the randomly selected k-nearest neighbor. For categorical features smote use different
interpolation method such as selects the most common class of the nearest neighbors or
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different distance metric instead of euclidean distance in the encoded space [65]. The
RUSBoost algorithm [66] performs the random undersampling with a boosting algorithm.
While the RUSBagging [67] performs random undersampling technique using the bagging
algorithm. Likewise, the SMOTEBoost [68] algorithm uses SMOTE oversampling with
boosting, and SMOTEBagging [69] employs SMOTE oversampling with bagging. The
balanced random forest [70] uses random undersampling of the majority class with random
forest to imbalanced data. Moreover, balanced bagging combines bagging with random
undersampling of the majority class. This study used packages such as weka [71], Im-
blern [67], and XGBoost [72] for performing various experiments. The experimental setup
mentioned in Section 3 and all experimental results are presented in Section 4.

3.5. Feature Selection Methods

We have used two feature selection methods: Information gain [73] and Least Absolute
Shrinkage and Selection Operator [74,75].

3.5.1. Feature Selection Using Information Gain (IG)

Information gain is the most popular feature selection method in bioinformatics that
uses a filtering approach to select relatively essential features [76]. In Weka, feature selection
is achieved by a combination of an attribute evaluator and a search method. In this study,
we have applied InfoGainAttributeEval with the ranker search method for feature selection.
InfoGainAttributeEval provides the information of features with respect to a class. The
ranker search method provides rank to features based on attributes. In addition, we
evaluate the performance of the set of attributes extracted from various feature selection
methods using different ensembling techniques, namely AdaBoost, random forest, and
RUSBoost.

3.5.2. Least Absolute Shrinkage and Selection Operator (Lasso) or L1 Regularization

Lasso is an embedded feature selection method. Lasso selects the important feature
from the dataset by reducing the less important feature’s coefficient to precisely zero or to
some negative values. The current study also applied the lasso [74] feature selection method
on the Parkinson Dataset to find the best subset of features. We use L1 penalty function
optimization using a 10-fold cross validation (CV) to select the best subset of features for
model building. In addition, measures for the performance of various ensembles, namely
AdaBoost, random forest, and RUSBoost, were evaluated using multiple evaluation metrics.
Sixteen best features were obtained using the lasso feature selection method. The list of
features obtained using lasso is presented in Section 4.

3.6. Evaluation Metrics

Different metrics are used to evaluate classifiers’ performance, such as accuracy, preci-
sion, recall, Geometric Mean, SN, SP, and F1-score [77]. However, for the class imbalance
problem, accuracy is not enough to evaluate the classifier. Therefore, in addition, recall,
G-mean, precision, and F1-score were used for model evaluation. Precision, Recall, and
F1-score are discussed in detail in this section. In the current study, we use metrics, namely
the Geometric Mean, the area under the precision-recall curve, the AUROC, SN, and SP, to
evaluate the performance of the decision tree-based ensemble models [78].

3.6.1. The Area under the Receiver Operating Characteristic (ROC) Curve

The AUROC curve is plotted between TPR (SN/Recall) and false positives rate
(FPR = 1 − SP) at various decision thresholds. The AUROC determines the classification
model quality and differentiates the two classes in the dataset. The range of AUROC [79]
varies from 0 to 1. The baseline random classifier has an AUC value of 0.5.
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3.6.2. Area under the Precision-Recall (PR) Curve (AUPRC)

The AUPRC is an important metric to evaluate the performance of classifiers using
an imbalanced dataset. The AUPRC curve is plotted between precision and recall at
various decision thresholds. Moreover, AUPRC [80] has no baseline value. The AUPRC
value ranges from 0 to 1, where 0 denotes a worst-performing model while 1 represents a
best-performing model.

3.6.3. Geometric Mean (G-Mean)

G-Mean is a standard metric to compute the performance of a model built using
an imbalanced dataset. The G-mean [81] is a square root of the product of SN and SP.
Maximizing the G-Mean gives an optimal classification boundary particularly for an
imbalanced dataset. The range of the G-mean extends between 0 and 1, where 0 indicates
the worst performing model and 1 represents the best performing model. In this experiment,
we use the G-Mean to evaluate the performance of decision tree ensembles.

3.6.4. Sensitivity

SN is one of the most popular metrics to evaluate the classifier’s performance trained
and tested on an imbalanced dataset [82]. It is the ratio of true positives to the sum of true
positives and false negatives. The maximum value of SN is 1 and minimum value is 0. In
this study, to calculate the SN, we use the Equation (1).

SN =
TP

TP + FN
(1)

3.6.5. Specificity

It is the ratio of true negatives to the sum of true negatives and false positives. SP is an
important metric to evaluate the performance of model built using an imbalanced dataset.
The maximum value of SP is 1 which indicates the best model whereas 0 represents the
worst model [83–85]. The SP of the model is calculated using Equation (2), as shown below:

SP =
TN

TN + FP
(2)

4. Experimental Setup, Results, and Discussion

This section will represent the experimental setup and the results of our investigation.

4.1. Experimental Setup and Software Packages

Experiments were carried out using Weka tools and the Python (scikit-learn) program-
ming language. In this study, we used the Imblern and XGBoost packages. The default
parameters of all the classifiers were used to train and test different predictive models.
We used 10-fold cross-validation using participant and we ensured that each participant’s
recordings were either in the training set or in the test set and a fixed ensemble size of
50 was used for all the experiments. Our study used standard decision tree ensembles
and some already developed ensemble classifiers tabulated in Table 2 with corresponding
software packages. This experiment oversampled the minority class, and we utilized the
SMOTE technique using Weka. Similarly, for random undersampling, we used Spreadsub-
Sample supervised filter (Weka) and the Imblearn (python) package. We implemented RUS
undersampling using the Weka and Imblearn packages with the majority class to change
the ratio of the majority class to the minority class.
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Table 2. Experimental setup using packages and classifier.

Classifier (Decision Tree Ensembles) Software Package

Bagging Weka tool

C4.5 Decision tree Weka tool

AdaBoost Weka tool

Random forest (RF) Weka tool

Balanced random forset Imblearn (Python)

XGBoost Python

Balanced Bagging Imblearn (Python)

RUSBoost Isolation Forset

Isolation Forset Weka tool

Random under sampling with bagging
(RUSBagging) Filter (SpreadsubSample) (Weka), Weka tool

Random under sampling with Random Forest
(RUS random forest) Filter (SpreadsubSample) (Weka), Weka tool

Random under sampling with XGBoost (RUS
XGBoost) Imblearn (Python), XGBoost

Random under sampling with AdaBoost (RUS
AdaBoost) Filter (SpreadsubSample) (Weka), Weka tool

Oversampling with Random Froest (SMOTE
RF) SMOTE, Weka Tool

Oversampling with Bagging (SMOTE Bagging) SMOTE, Weka Tool SMOTE, Weka Tool

Oversampling with XGBoost (SMOTE
XGBoost) Imblearn (Python), XGBoost (Python)

Oversampling with AdaBoost (SMOTE
AdaBoost) SMOTE, Weka Tool

4.2. Comparative Study of Various Decision Tree Ensemble Models Built Using the
Imbalanced Dataset

Different types of decision tree ensembles were compared by using various perfor-
mance measures. The results are tabulated in Table 3. For example, the decision tree
ensemble built using imbalanced datasets performs best in SP. However, standard clas-
sifiers performance was the best in terms of Accuracy, AUROC, and SN. Random forest
[RF] is best for two performance measures: AUROC and SN. RUSBoost measures best
performance in SP. AdaBoost perform best in Accuracy. Similarly, a Balanced random
forest is best in SP. The AUROC, SN, and SP are broadly used performance measures for
imbalanced datasets. The AUROC for random forest is 0.952, the SN 0.983, and the SP
0.622. This means that the classifier is very confident about the correctly classified samples
(high AUROC), but it diagnoses many of the HC as PD patients (low SP) while RUSBoost
performed best for SP with the values of 0.792 respectively. This means that the RUSBoost
classifier is very confident about diagnoses many of the HC (high SP). By contrast, the
balanced random forest also provided the best SP with the value 0.792. The study shows
that decision tree ensembles for imbalanced class problems obtained better results for this
Parkinson speech dataset.
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Table 3. The comparative study of different ensemble classifiers. Various types of performance
metrics are used to measure ensembles performance. (Best results are shown in bold numbers).

Ensemble Accuracy AUROC SN SP

Single decision tree [J48] 0.855 0.848 0.896 0.730

Bagging 0.882 0.940 0.948 0.676

Random forest [RF] 0.895 0.952 0.983 0.622

XGBoost 0.800 0.928 0.972 0.625

AdaBoost 0.901 0.895 0.965 0.703

Ensembles for imbalanced datasets

Balanced random forest 0.820 0.897 0.844 0.792

BalancedBagging 0.780 0.883 0.794 0.750

RUSBoost 0.830 0.897 0.979 0.792

Isolation forest 0.750 0.567 0.974 0.541

4.3. Decision Tree Ensembles Using Various Sampling Techniques

In this study, we used different sampling techniques such as SMOTE and RUS. Sam-
pling is a technique to overcome imbalanced class datasets [86]. We used for our study the
performance metrics AUROC, SN, SP, G-Mean, and AUPRC, which measure imbalanced
datasets performance. In Tables 4 and 5, the outcomes of the SMOTE oversampling method
are tabulated. In this experiment, we used various ratios of majority class data points
and minority class ones. The experimental results on the actual data points are tabulated
in Tables 4 and 5. The outcomes recommend that the best G-Mean was achieved as 0.87
by AdaBoost with a ratio of 0.75 datasets, whereas the best SN was achieved as 0.983 by
RF with the actual dataset. Similarly, the best SP was acquired as 0.784 by AdaBoost and
random forest.

Table 4. The performance metric of ensembles (standard decision tree) along with oversampling
method (SMOTE) of minority and majority class points for different ratios. SN, SP, and G-Mean
performance metrics are considered for this experiment. (Best results are shown in bold numbers).

Ensemble
Original Ratio = 1 Ratio = 0.75 Ratio = 0.50

SN SP G-Mean SN SP G-Mean SN SP G-Mean SN SP G-Mean

Single decision tree 0.896 0.730 0.810 0.861 0.568 0.690 0.878 0.541 0.690 0.896 0.649 0.760

Bagging 0.948 0.675 0.800 0.930 0.784 0.850 0.922 0.703 0.800 0.913 0.676 0.790

Random forest 0.983 0.622 0.780 0.913 0.730 0.820 0.939 0.703 0.810 0.939 0.784 0.860

XGBoost 0.972 0.625 0.780 0.915 0.667 0.780 0.950 0.667 0.830 0.957 0.604 0.760

AdaBoost 0.965 0.703 0.82 0.948 0.703 0.820 0.957 0.784 0.870 0.948 0.757 0.850

In addition, the best AUPRC was achieved as 0.988 by random forest with the pro-
portion of 0.50 dataset, whereas the best AUROC was achieved as 0.963 by random forest
with the ratio of 0.50 dataset. Thus, the AUROC and AUPRC results were improved with
bagging and AdaBoost concerning oversampling except for a single decision tree. Similarly,
in terms of G-mean, AdaBoost and RF improved the outcome for oversampling except
for the single decision tree. On the other hand, the SMOTE oversampling method nega-
tively affected the performance of various ensembles. The poor performance of SMOTE
oversampling process is due to the presence of noisy minority class points.
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Table 5. The performance metric of ensembles (standard decision tree) along with oversampling
method (SMOTE) of minority and majority class points for different ratios. AUROC and AUPRC
performance metrics are considered for this experiment. (Best results are shown in bold numbers.).

Ensemble Original Ratio = 1 Ratio = 0.75 Ratio = 0.50

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Single decision tree 0.848 0.914 0.752 0.871 0.727 0.848 0.760 0.875

Bagging 0.940 0.978 0.953 0.986 0.943 0.983 0.946 0.984

Random forest 0.952 0.984 0.949 0.982 0.953 0.984 0.963 0.988

XGBoost 0.928 0.974 0.940 0.980 0.930 0.976 0.927 0.974

AdaBoost 0.895 0.941 0.951 0.981 0.940 0.967 0.925 0.959

In the case of undersampling, the AdaBoost achieved the best outcomes in terms of
AUROC and AUPRC. The best AUPRC was 0.986 with the data with a proportion (ratio) of
0.75, whereas the best AUPOC was 0.954. Random forest achieved the best outcome for the
original data, whereas AdaBoost achieved the best outcome for the data with a proportion
of 0.5. The best outcomes (SN, SP, and G-Mean) were obtained with random forest and
bagging. Results with the RUS undersampling method are presented in Tables 6 and 7.
The best outcomes of SP and G-mean were 0.892 and 0.87, respectively, with the data with
a ratio of one (1) whereas the best SN was 0.939 with the data with a proportion of 0.50.
Similarly, random forest, single decision tree, and AdaBoost achieved best with the original
dataset. The outcomes revealed that all the ensembles have no same type of effect due to
the sampling method. In contrast, the best outcomes among all the ensembles (decision
tree classifiers) were gained with the AdaBoost and bagging for the data with a ratio of 0.75
formed with random undersampling.

Table 6. The performance metric of ensembles (standard decision tree) along with the undersampling
method (RUS) of minority and majority class points for different ratios. (Bold numbers show the best
results.) AUROC and AUPRC performance metrics are considered for this experiment.

Ensemble Original Ratio = 1 Ratio = 0.75 Ratio = 0.50

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Single decision tree 0.848 0.914 0.780 0.888 0.869 0.938 0.772 0.884

Bagging 0.901 0.960 0.944 0.983 0.945 0.983 0.919 0.974

Random forest 0.967 0.990 0.928 0.977 0.943 0.981 0.945 0.981

XGBoost 0.928 0.974 0.893 0.963 0.907 0.969 0.917 0.972

AdaBoost 0.937 0.981 0.947 0.983 0.954 0.986 0.922 0.962

Table 7. The performance metric of ensembles (standard decision tree) along with the undersampling
method of minority and majority class points for different ratios SN, SP, and G-Mean performance
metrics are considered for this experiment. (Bold numbers show the best results.).

Ensemble Original Ratio = 1 Ratio = 0.75 Ratio = 0.50

SN SP G-Mean SN SP G-Mean SN SP G-Mean SN SP G-Mean

Single decision tree 0.896 0.730 0.810 0.739 0.811 0.770 0.809 0.784 0.800 0.861 0.622 0.730

Bagging 0.948 0.676 0.800 0.844 0.892 0.870 0.878 0.838 0.800 0.887 0.703 0.790

Random forest 0.983 0.622 0.780 0.844 0.811 0.830 0.870 0.784 0.830 0.939 0.622 0.760

XGBoost 0.972 0.625 0.780 0.804 0.744 0.770 0.902 0.769 0.830 0.920 0.744 0.830

AdaBoost 0.965 0.703 0.820 0.852 0.865 0.860 0.878 0.838 0.860 0.922 0.784 0.850
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4.4. Ensemble Size Effect in Imbalanced Datasets

Ensemble is a combination of the different classifiers. Size of ensemble means several
classifiers. In the current experiment, we carried out different ensemble sizes such as 20, 50,
100 and 200. The performance metrics AUROC, AUPRC, SN, SP, and G-mean are included
in our study. The results, presented in Tables 8 and 9, suggest that performance is slightly
improving or remains constant with ensemble size. For example, random forest (AUROC
and AUPRC) is best, with an ensemble size of 200. Similarly, SN was best with bagging,
and random forest with ensemble sizes of 200 and 50. SP is best with a balanced random
forest with an ensemble size of 100, and G-Mean is best with RUSBoost with 200.

Table 8. The AUROC performance metric of different ensembles of classifiers (decision trees) with
various sizes of ensembles (Bold numbers show the best results.).

Ensemble 20 50 100 200

Bagging 0.941 0.940 0.941 0.941

Random forest 0.940 0.952 0.967 0.969

AdaBoost 0.940 0.895 0.850 0.857

XGBoost 0.919 0.928 0.929 0.927

Balanced random forest 0.872 0.897 0.913 0.910

BalancedBagging 0.892 0.883 0.863 0.872

RUSBoost 0.916 0.922 0.932 0.938

Isolation forest 0.566 0.567 0.571 0.550
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Table 9. The AUPRC, SN, SP, G-Mean performance metrics of different ensembles of classifiers (decision trees) with various sizes of ensembles (Bold numbers show
the best results.).

Ensemble 20 50 100 200

AUPRC SN SP G-Mean AUPRC SN SP G-Mean AUPRC SN SP G-Mean AUPRC SN SP G-Mean

Bagging 0.980 0.965 0.703 0.820 0.978 0.948 0.676 0.800 0.979 0.948 0.649 0.780 0.980 0.957 0.595 0.750

Random forest 0.979 0.966 0.622 0.770 0.984 0.983 0.622 0.780 0.990 0.974 0.595 0.760 0.990 0.965 0.541 0.770

AdaBoost 0.976 0.965 0.649 0.790 0.941 0.965 0.703 0.820 0.916 0.974 0.649 0.790 0.917 0.983 0.703 0.830

XGBoost 0.970 0.955 0.615 0.770 0.974 0.972 0.625 0.780 0.974 0.884 0.718 0.800 0.974 0.893 0.769 0.830

Balanced random forest 0.955 0.773 0.750 0.760 0.963 0.844 0.792 0.820 0.970 0.830 0.813 0.820 0.969 0.837 0.792 0.810

BalancedBagging 0.957 0.837 0.770 0.800 0.959 0.794 0.750 0.790 0.947 0.844 0.771 0.810 0.956 0.851 0.750 0.800

RUSBoost 0.966 0.872 0.770 0.820 0.970 0.979 0.792 0.830 0.973 0.943 0.771 0.850 0.976 0.972 0.771 0.870

Isolation forest 0.819 0.948 0.541 0.230 0.807 0.974 0.541 0.230 0.830 0.965 0.541 0.230 0.815 0.974 0.541 0.230
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4.5. Feature Selection and Comparative Performance Evaluation of Best Ensemble Classifiers with a
Different Subset of Features

In this study, we carried out a further comparative analysis to find out the best per-
forming ensembles in Section 2. First, we compared the performance of various ensemble
methods using sampling techniques (SMOTE and RUS) in Section 4.3. Moreover, we com-
pared the performance of the ensemble with different sizes of ensembles in Section 4.4.
Finally, we achieved the best-performing ensemble, AdaBoost, RF, and RUS Boost, to
further experiment with feature selection in Section 4.4.

Feature selection is a technique to reduce the redundant features and extract the
discriminatory features. We used two popular feature selection methods, information gain
and lasso, to select the optimal features in this experiment. The 10 best subsets of features
obtained using lasso and information gain are presented in Table 10. We can observe from
the table that lasso feature selection achieved baseline features, TQWT features, bandwidth
parameters. By contrast, information gain feature selection achieved bandwidth parameters,
formant frequencies, baseline features, and TQWT features, which are essential features
to classify the PD. In addition, comparative performance evaluation with a different set
of features using information gain was trained and tested on three different ensemble
classifiers (AdaBoost, RF, and RUSBoost), which are shown in Figure 2a–c.

Table 10. The 10 subsets of features using information gain and lasso with rank and coefficient.

Rank 10 Best Feature Selected
with Information Gain Coefficient 10 Best Feature Set with

Lasso
Common Feature in Both

Feature Selection

0.1398 std_6th_delta_delta 3.181598 std_6th_delta_delta std_6th_delta_delta

0.139 std_delta_delta_log_energy 2.406294 × 10−1 std_delta_delta_log_energy std_delta_delta_log_energy

0.1371 mean_MFCC_2nd_coef 2.559498 × 10−2 mean_MFCC_2nd_coef mean_MFCC_2nd_coef

0.1324 std_delta_log_energy 3.515898 × 10−7 tqwt_entropy_log_dec_26

0.1321 tqwt_TKEO_mean_dec_12 2.720495 × 10−1 tqwt_minValue_dec_12

0.1311 tqwt_entropy_log_dec_11 2.045678 std_7th_delta_delta

0.1282 tqwt_entropy_shannon_dec_11 3.281899 std_9th_delta_delta

0.1258 tqwt_stdValue_dec_11 −1.039598 tqwt_stdValue_dec_11 tqwt_stdValue_dec_11

0.1239 std_8th_delta_delta −3.670655 × 10−4 tqwt_kurtosisValue_dec_27

0.1233 tqwt_entropy_shannon_dec_12 −2.894499 × 10−4 tqwt_kurtosisValue_dec_26

AdaBoost performed best with 10 features with the value 0.903 in F1-score using
information gain feature selection methods, whereas random forest performed best with
16 features with 0.883 in AUROC. Similarly, RUSBoost performed best with six features
with the value 0.79 in G-mean. Further, we performed feature selection with lasso. The
comparative evaluation of performance measures is shown in Figure 3a–c. AdaBoost
performed best with 16 features with the value 0.917 in the F1-score using lasso feature
selection methods, whereas RF performed best with 15 features with the value 0.905 in
AUROC. Similarly, RUSBoost performed best with ten features with the value 0.77 in
G-Mean.

Finally, we conclude that AdaBoost performs best with 10 features using information
gain. The comparative performance evaluation shows 10 features versus all features in
Figure 4a,b. From Figure 4a, we can observe that IG with RF, IG with AdaBoost, and IG with
RUSBoost in terms of F1-score measure ten features against all features have marginally
differenced 0.039, 0.034, and 0.037, respectively.
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Similarly, there exist marginal differences in terms of AUROC (0.072, 0.067 and 0.037)
and G-Mean (0.07, 0.08 and 0.11). We can also observe from Figure 4a that lasso with RF,
lasso with AdaBoost, and lasso with RUSBoost in terms of F1-score measure 10 features
against all features to have marginally differenced 0.034, 0.041, and 0.050, respectively.
Similarly, there exist marginal differences in terms of AUROC (0.077,0.070 and 0.056) and
G-Mean (0.06, 0.10 and 0.06).
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5. Conclusions and Future Scope

The present study is a comprehensive study using a machine learning approach,
specifically that of the decision tree-based ensembles used in the imbalanced PD vocal-based
speech dataset. A comparative study was done with oversampling and without it using
the SMOTE technique in different ratios and different ensemble sizes. The performance
metrics in this experiment are the F1-score, Precision, Recall, AUPRC, AUROC, and the
G-Mean. The results of the model evaluation metrics suggest that appropriate performance
metrics must be used to evaluate the performance of a classifier built on datasets with class
imbalance problems; otherwise, results could be misinformative. Furthermore, the results
show that the AdaBoost, randon forest, and RUSBoost ensemble methods performed best.
Further, 10 best-performing features were selected in the present study with two feature
selection methods: lasso and information gain. The baseline features, TQWT features,
bandwidth parameters, and formant frequencies are important features to classify PD.
Finally, the AdaBoost ensemble classifier performing best with the 10 features selected
using the feature selection method of information gain. In the future, we will compare our
present classifiers with some other types of ML classifiers, such as convolutional neural
networks (CNN) and ensemble-based classifiers using Support Vector Machines (SVM).
We will carry out a similar study with other datasets.
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