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Abstract: The abnormal growth of cells in the skin causes two types of tumor: benign and malignant.
Various methods, such as imaging and biopsies, are used by oncologists to assess the presence of skin
cancer, but these are time-consuming and require extra human effort. However, some automated
methods have been developed by researchers based on hand-crafted feature extraction from skin
images. Nevertheless, these methods may fail to detect skin cancers at an early stage if they are
tested on unseen data. Therefore, in this study, a novel and robust skin cancer detection model
was proposed based on features fusion. First, our proposed model pre-processed the images using
a GF filter to remove the noise. Second, the features were manually extracted by employing local
binary patterns (LBP), and Inception V3 for automatic feature extraction. Aside from this, an Adam
optimizer was utilized for the adjustments of learning rate. In the end, LSTM network was utilized
on fused features for the classification of skin cancer into malignant and benign. Our proposed
system employs the benefits of both ML- and DL-based algorithms. We utilized the skin lesion
DermIS dataset, which is available on the Kaggle website and consists of 1000 images, out of which
500 belong to the benign class and 500 to the malignant class. The proposed methodology attained
99.4% accuracy, 98.7% precision, 98.66% recall, and a 98% F-score. We compared the performance
of our features fusion-based method with existing segmentation-based and DL-based techniques.
Additionally, we cross-validated the performance of our proposed model using 1000 images from
International Skin Image Collection (ISIC), attaining 98.4% detection accuracy. The results show that
our method provides significant results compared to existing techniques and outperforms them.

Keywords: deep learning; benign; malignant; skin cancer; skin lesion; HCI

1. Introduction

Skin melanoma is a life-threatening disease that appears on areas of the body more
exposed to sunlight. To analyze the abnormal growth of cells on skin, biomedical imaging
plays a vital role. Moles are assessed through imaging techniques, which aid in the early
detection and treatment of chronic diseases [1]. Cells and biological tissues are examined to
investigate illness of the human organs. These organs are scanned with the help of medical
imaging modalities such as X-ray, immunohistochemistry images, ECG, and MRI [2].
CT (SPECT), PET scan, X-ray and MRI are some of the medical imaging modalities that are
= frequently utilized by medical experts and physicians. The physiological functions and
biological structure of various organs can be analyzed by using these imaging modalities [3].
Moreover, numerous types of tumor, i.e., brain, blood, skin, and lungs are mostly analyzed
and detected using CT scans. Dysplasia is clinically visualized with autofluorescence
imaging (AFI), high-resolution endoscopy (HRE), narrow-band imaging (NBI), and confocal
laser endo-microscopy (CLE) and optical coherence tomography (OCT) [4]. Tumor tissues,
adipose tissues, and breast cancer can be easily diagnosed by X-ray mammography [5,6].
X-ray mammography is painful; therefore, advanced microwave imaging techniques are
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used for breast cancer detection [7]. Cardiovascular and dental health analysis is performed
by CT [8,9]. These imaging modalities are used to diagnose the aforementioned diseases;
however, we are concerned about how skin lesions can be detected using these biomedical
imaging modalities.

Dark or red pigments on the skin are recognized as skin lesions [10]. These can be
classified into primary and secondary types. Primary skin lesions are present on the body
at birth. Secondary skin lesions are produced by abnormal cells growth. Skin lesions that
are produced by the abnormal growth of cells are known as tumors or cancer. Alteration
in normal cells and uncontrolled growth produces cancer in the body. Skin cancers are
of two categories, i.e., melanoma and non-melanoma. Malignant melanoma is the most
dangerous type of skin cancer and can cause death; however, it is 20 times less common
than other type of skin cancer [11]. Annual cases of malignant melanoma have been
increased in the last few decades, although it is uncommon for them to be caused by
a change in lifestyle and consuming unhealthy food. Skin cancer occurrence continues to
rise globally [12]. In India, more than 5000 patients are admitted with skin cancer every
year, among which 4000 die [13]. Skin cancer diagnosis performed by clinical screening
with the naked eye is difficult due to the heterogeneous appearance and irregular shape of
tumors [14]. Four features are used for skin lesion analysis: mole diameter, color uniformity,
asymmetry of the mole, and border irregularity of the mole. These features cannot be
observed accurately with manual detection methods. Due to the increase in skin cancer,
computer-aided methods are needed for accurate and timely detection, and dermatologic
ultrasound is mostly used for the diagnosis of skin lesions [11]. However, skin cancer can
also be diagnosed by histopathology analysis. Biopsy in histopathology is a painful process,
which limits its usage in clinical practices [15]. Therefore, image analysis techniques
are preferred due to their low cost and timely detection, such as laser scanning, MRI,
ultrasound, and optical coherence tomography. Therefore, there is room for automated
skin cancer detection that can identify cancer in its early stages.

Various techniques have been developed to detect the diseased portion of the skin due
to melanoma. Several traditional machine learning-based techniques have been proposed
such as [16,17]. However, these techniques do not provide significant results due to moles’
varying size, shape, and color. Moreover, the features were extracted manually, which is
a tiring task and requires extra human effort. Some segmentation-based methods have also
been developed, such as [18], using thresholding. The methods based on segmentation
performed better than classical machine learning approaches. Moreover, these techniques
are employed on the segmented part of the image named as the region of interest (ROI).
The non-affected part of the skin is excluded in the segmentation-based method, as it may
cause formation of the weak feature vector. Many other techniques based on segmentation
have been developed due to their better detection results [19,20]. However, the ROI-based
techniques provided better detection accuracies, but the thresholding methods performed
significantly for non-varying contrast, illuminations, and chrominance. Consequently, deep
learning-based techniques [21] were formed for automated skin cancer detection. These
methods are able to compute the most valuable features from the affected part of the skin,
considering variations such as illumination and intensity. They are capable of automatic
features extraction and overcoming the challenges of localization and detection.

In this study, we propose a features fusion-based method for the early detection of
skin cancer. The features were fused after extraction using a traditional machine learning-
based and deep learning-based algorithm. The suggested model effectively detected and
classified skin cancer due to its hybrid architecture. The model comprises three steps,
namely pre-processing using Gaussian filtering (GF), features extraction (FE), and classifi-
cation. The local binary patterns (LBP) algorithm was employed for hand-crafted features
extraction. Then, DL-based features were extracted using the Inception v3 technique. To
optimize the detection accuracy, a learning rate scheduler, i.e., Adam was employed in
the proposed model. In the end, a multi-layer perceptron was trained to classify images
into two classes: melanoma and benign. The experimental assessments showed that our
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proposed model attained the best detection accuracy compared to existing techniques. The
main contributions of the proposed technique are given below.

• To propose a novel features fusion-based technique for the early detection of skin
cancer. First, images were pre-processed using GF to remove the noise. Second, we
extracted features from the images using LBP and Inception V3. Then, we fused these
features and employed an LSTM network for the binary classification into malignant
and benign. Additionally, we used an Adam optimizer to adjust the learning rate for
Inception V3.

• Our proposed model is an efficient technique due to its hybrid architecture that extracts
most representative features and employs Long Short-Term Memory (LSTM) for the
classification.

• We trained our classifier on 75% dataset and performed various experiments for the
assessment of the proposed system, demonstrating its efficacy

• We cross-validated our proposed model, and the experiments showed that it signifi-
cantly outperformed the existing techniques.

• Our proposed features fusion-based model is simple and easy to execute.

The remaining paper is organized as follows: Section 2 presents related work, Section 3
explains our proposed method, Section 4 demonstrates various experiments, and Section 5
is the conclusion.

2. Related Work

Initially, traditional machine learning-based techniques were introduced for melanoma
detection and classification. Codella et al. developed a traditional ML-based features
extraction method employing the color and edge histogram along with local binary pattern
(LBP). The shades of gray algorithm is used for image pre-processing in [1]. Moreover,
Mask R-CNN, a deep learning approach, is used for the segmentation of skin lesions.
Morphological operations were performed to remove noise in the images. The detection
of skin lesions from dermoscopy images consisting of three steps was performed in [22],
such as: (1) image pre-processing to improve the performance of the model dividing them
into negative and positive classes, (2) image augmentation applied on data to protect the
model from overfitting, (3) the use of Densnet-121 to extract the features and the proposal
of a U-net architecture-based lightweight CNN model for skin lesion detection. The results
of the proposed method are not mentioned in terms of confusion matrix and accuracy.

H. A. Hasan proposed a framework, i.e., hybrid detection techniques for skin cancer
detection, in which images were converted from RGB to grayscale. The list of arrays
was converted into NumPy array, and benign images were labeled as 0 and malignant
images as 1. The dataset was divided into train and test samples, and the CNN model
was trained with K-fold validation. The Xception model achieved 85.303% accuracy [23],
whereas other tested models such as MobileNet-v2, Resnet 50, and VGG19 achieved lower
accuracy, with MobileNet-v2 producing the lowest at 54.54%. The lower accuracy was due
to using a dataset with low-quality images. In [24], skin cancer detection was performed
by employing a machine learning model, i.e., Support Vector Machine (SVM). Features
were extracted by the gray level co-occurrence matrix (GLCM) method and fed to SVM
for the detection of skin lesions. The method achieved 95% accuracy; however, it could be
improved by utilizing some image pre-processing methods on the dataset to remove noise
and improve the training process.

In [25], M. R. Ibraheem performed the contrast-limited adaptive histogram equaliza-
tion (CLAHE) technique to enhance the images of lesions, employing bilinear interpolation
and threshold equalization methods. Moreover, the pixel-based method was applied for
the segmentation of lesions and feature extraction. The classes were named as 0 to 2,
where 0 represented a background object, 1 indicated the benign lesion, and 2 represented
melanoma. Gradient Boosted Tree (GBT) gave 97.5% accuracy. In [26], Rahajeng, M. Nuh
used different techniques, such as median filter, threshold and automatic cropping as image
pre-processing operations. Furthermore, active contour and Sobel filters were applied for
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skin lesion segmentation based on shape, color, and texture features, which were obtained
using the GLCM method. SVM was employed as a classifier to identify the type of skin le-
sion, achieving 85% accuracy. The performance of the system was lacking in high precision
and accuracy.

G. S. Jayalakshmi and V. S. Kumar initially resized images into 400 × 400 pixels and
fed these into an image input layer. A convolution layer with 32 filters was used for feature
extraction, changing the parameter of input distribution, and adaptive re-parameterization
was applied using a batch normalization layer to overcome the internal covariant shift [27].
ReLU was used as an activation function after max-pooling and fully connected layers.
Accuracy, recall, F1-score, and precision were calculated as performance metrics. The
learning rate was set as 0.001, and 89.3% accuracy with a loss factor of 0.2633 was attained;
however, the accuracy can be improved by improving the training options and customizing
the layers of the proposed method. The authors of [28] used CNN to classify an image
as benign or malignant. The International Skin Collaboration (ISIC) 2016 dataset was
used for training, which consisted of images with dimensions of 1024 × 767 pixels. These
images comprised three types, i.e., melanoma was classified as malignant, whereas nevus
and seborrhea keratosis were classified as benign. The generalized Gaussian distribution
method was used for image segmentation with a convolution neural network employing
ReLU as an activation function to classify the images. The performance of the model was
calculated in terms of accuracy, specificity, and sensitivity. The accuracy of the proposed
method was 98.32%; however, the model is not validated on other datasets.

Y. Filali, H. El Khoukhi focused on classification of a skin lesion by decomposing the
images into object component and texture. Segmentation was applied on objects to obtain
the desired area; then, the segmented area and texture were combined. A convolutional
layer was used for feature extraction to learn the hidden patterns [29] requiring high
computational resources. A pooling layer was used after the convolution layer to reduce
the spatial size, and fully connected layers were added to use the extracted features for
classification of the skin lesion. Softmax was used as an activation function to classify
melanoma as malignant and nevus as benign. The classification results were evaluated
through accuracy, specificity, and sensitivity. The proposed method achieved an accuracy of
93.50%, which can further be increased. N. Rezaoana classified nine classes—NV, DF, MEL,
VASC, BCC, AKIEC, BKL, squamous carcinoma, and seborrhea keratosis—using the CNN
model. Data augmentation on images such as flip, rotation, shear, etc., were performed
to increase the volume of data for training. Convolutional layers were used for feature
extraction, the max pooling layer was utilized to reduce the dimensionality, and softmax
was used after the pair of fully connected layers as an activation function [30]. Precision,
F1-score, recall, and accuracy were used as the performance measurements of the model.
VGG-16 and VGG-19 were also analyzed and achieved an accuracy of 69.57% and 71.19%,
respectively, whereas the proposed model achieved an accuracy of about 79.45%; however,
this accuracy could be increased by improving the model architecture. Various existing
techniques are reported in Table 1.

Table 1. Summary of some existing techniques with their challenges.

Ref. Year Dataset Used Classes of Skin
Lesion

Activation
Function

Used
Model Model Type Accuracy

(%) Issues

[31] 2013 176 dermoscopy
images Binary Classification -

Gradient
Histogram,
and BOF

Supervised 96 Generalization
problem

[32] 2020 ISIC 2019 NV, DF, MEL, VASC,
BCC, AKIEC, BKL RELU CNN Supervised 96

Low-level
features are not

considered

[33] 2020 ISIC Benign, malignant -
SVM, KNN,
and CNN
(Hybrid)

Supervised KNN:57.3
SVM:71.8

Less detection
accuracy
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Table 1. Cont.

Ref. Year Dataset Used Classes of Skin
Lesion

Activation
Function

Used
Model Model Type Accuracy

(%) Issues

[34] 2019 ISIC 2017, PH2 Melanoma,
non-melanoma RELU CNN Supervised 95

Low-level
features are not

considered

[35] 2021 HAM10000 Benign, malignant SIGMOID CNN Supervised 90.93 Less detection
accuracy

[36] 2020 ISIC2018,
HAM10000

Melanoma, nevus,
seborrheic keratosis SOFTMAX CNN Supervised 86 Less detection

accuracy

[23] 2020 ISIC Benign, malignant RELU CNN Supervised 80 Less detection
accuracy

[37] 2020 PH2
Melanoma, atypical

nevus, common
nevus

SOFTMAX CNN Supervised 95.0 Overfitting
issue

[38] 2020 HAM1000 NV, DF, MEL, VASC,
BCC, AKIEC, BKL RELU CNN Supervised 90 Low precision

and accuracy

[39] 2019 SLC 2017, ISBI
2016, and PH2

Melanoma,
non-melanoma RELU ResFCN Supervised 94.29

High
computational

resources

3. Materials and Methods

In Figure 1, the workflow of the proposed system is presented. The figure demonstrates
that the proposed model consisted of pre-processing utilizing the Gaussian Filtering method
to minimize the noise present in the images. Then, features extraction was performed
using LBP and the deep learning model, i.e., the Inception V3 algorithm. Moreover, an
Adam optimizer was exploited to optimize the rate of learning for the Inception technique.
Ultimately, Long Short-Term Memory (LSTM) was utilized to detect and classify the skin
images into melanoma and benign.
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Figure 1. Architecture of the proposed skin cancer detector.

3.1. Gaussian Filtering:

To improve the images and remove the noise, 2D Gaussian filters were employed.
These required high computational resources; however, they provide a new area to conduct
research. In this sub-stage, Gaussian operators represent convolutional operators, and
smoothing is recommended by convolution. The one-dimensional Gaussian operator is
given below as:

G1d
(x) =

1√
2π
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The significant filter for the smoothing of images passes through localization in the fre-
quency and spatial domains, whereas the relation of uncertainty is executed as shown below:

∆x∆W ≥ 1
2

, (2)

Two-dimensional operator for Gaussian filter is given below:

G2d(x, y) =
1

2π
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) is the standard deviation for a Gaussian function. If the value is
maximum, the smoothing will be highest, whereas x and y exhibit the Cartesian coordinates
of the image, demonstrating the window dimensions.

3.2. Features Extraction (FE)

Features extraction was performed after pre-processing the data using the fusion of
algorithms, i.e., local binary patterns (LBP) and a histogram of orientation gradients (HOG)
with the Inception v3 method. Moreover, we utilized the learning rate scheduler along
with the Adam optimizer to improve the detection performance.

3.3. Local Binary Patterns:

LBP has been utilized in various domains, such as knee disease detection [40], eye
disease detection [41], etc. As a separate vector, the histograms were integrated in LBP,
namely as a pattern vector. The LBP texture features were integrated along with a self-
organizing map (SOM), which finds an alternative use in assessing the efficacy of the
proposed technique. LBP is a method for texture description depending upon the dif-
ferential symptoms from central and neighboring pixels. A binary code was attained by
employing the threshold technique on all pixel values utilizing the mid pixel. The binary
code is known as the binary pattern. The value of the neighbor pixel was set as 1 where the
value of the pixel became greater than the value of the threshold. This was set as 0, where
the value of the pixel was less than the value of the threshold. Succeeding this, a histogram
was utilized to compute the occurrence of BP, and each pattern exhibited the possible value
for the pattern in an image.

The LBP module uses the intermediate pixel’s value as a threshold to the neighboring
3 × 3 pixel. The threshold was employed by deploying a binary pattern that referred to
texture features. The LBP procedure is defined in equation form below:

LBP(vc ,uc) =
7

∑
i=0

2ig(Ii − I(vc, uc)), (4)

LBP(vc ,uc) exhibits the LBP value for the middle pixel (vc, uc). I(vc, uc) and Ii represents
the central and neighboring pixel values, whereas index i demonstrates the index of the
neighbor pixel as for v < 0 the g(v) = 0 and g(v) = 1 for v ≥ 0. Consequently, the nearest
pixels may be 0, if the value of the score is less than the threshold. On the other side, it may
be set to 1, where the value of the pixel is greater than the value of the threshold. LBP is
computed through scalar multiplication among weight and binary matrices. In the end, the
results are used to exhibit the value of LBP.

3.4. Inception V3 Using Adam Optimization

Convolutional neural networks (CNN) consist of five layers: the input layer, convolution
layer, pooling layer, fully connected layer, and classification layer, which is known as the
output layer. Google Net is a network installed in Google. It utilizes the Inception model as
it bounds the attributes of layers and improves the depth. Consequently, it has been widely
used for classification purposes. The general attributes of CNN were explained in [42].
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Convolutional Layer: Convolutional layers may have variations when all pixels are
not linked to previous layers through parameters and bias. The image is split into small
regions and then parameters and biases are utilized. These biases and parameters are
known as filters which are convolved with the tiny regions on the input image and provide
feature maps. The filters are known as simple features that may be analyzed in images
fed into the input layer, in that specific layer. Moreover, the number of parameters is
important during convolutional operation and can be small, as the same filter is employed
for a complete image against a single feature. The hyper-parameters of a convolutional
layer include the size of the local region, the number of filters, padding, and stride. To
attain optimal outcomes, the hyper-parameters are fine-tuned depending upon the size of
the input image.

Pooling Layer (PL): PL is utilized to minimize the spatial dimensions of images, the
number of parameters, and the complexity. It employs a constant method for an input
without parameters. There are various types of PL, such as max, average, and stochastic
pooling. The most common type is max pooling, which is applied when i x i slides through
and reduces the input, according to stride ‘s’. The size of the input becomes limited and the
maximum value in the i × i region is utilized. It provides translational invariance when
a tiny difference in a position is used to assess an input image. Therefore, the location
disappears while minimizing the size.

Fully Connected Layer: In this layer, the result from the final PL is provided as input.
It works as a convolutional neural network with all neurons connected to the present layer.
Therefore, the convolutional layer contains the maximum number of parameters. Then, the
fully connected layer is attached to the final layer, which is known as the classification layer.

Activation Function (AF): Various AFs are employed for various types of CNN. The
optimal output is attained through non-linear activation functions than tangent or sigmoid
functions. These functions are employed to increase the speed of training. Therefore, differ-
ent activation functions are employed, whereas ReLU demonstrates better performance
than other models. Convolutional neural network (CNN) utilizes vector computation and
the chain rule. Let us suppose that x is a scalar as x cR, and y cRh as a vector, where
x is a function of y, representing the partial derivative of x in the context of y, which is
mathematically described as: (

∂x
∂Y

)
=

∂x
∂Yi

(5)

More specifically,
(

∂x
∂Y

)
represents the vector comprising an equal size to Y, and the

ith number component is represented by
(

∂x
∂Y

)
i. It is noteworthy that

(
∂x
∂Yt

)
=

(
∂x
∂Y

)
t.

Additionally, z cRw represents a different vector, whereas Y is a function of z. Moreover,
the fractional derivative of Y in terms of z is represented by:(

∂x
∂Yt

)
ij
=

∂Y
∂zi

(6)

In the fractional derivative h × w matrix, it is accessed at the interval of the i and j row
and column, respectively, such as (∂Y_i)/(∂z_i). It is clearly shown that x is a task of z in
chain arguments. Thus, one method maps z to Y, while another method maps Y to x. The
chain method was employed for the computation presented below.(

∂x
∂zt

)
, as

(
∂x
∂zt

)
=

(
∂x
∂Yt

) (
∂x
∂zt

)
, (7)

The loss computation function is used to compute the difference among the predicted
value of the Convolutional Neural Network xl and the goal g, z1→w1, z2→, . . . . . . ,zl→wl =
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x. The loss function is simple, as x = ||target-zl||2. The predicted output is represented as
argmaxi zi

l. Therefore, a convolutional operation is computed as below:

Yl+1
i , jl+1, d =

h

∑
i=0

w

∑
j=0

D

∑
d=0

fijd × zl
il+1+, i,jl+1,d (8)

where f represents the filter with the size (h × w × dl). Therefore, the conv. layer
maintains the size (hl-h + 1) × (wl – w + 1), comprising d slices that represent Y(zl+1)
in Rhl+1 × wl+1 × wl+1

, hl+1 = hl − h + 1, wl + 1 = wl − w+1, and d l + 1 = d.
The likelihood of all labels k c{1, . . . ,k} is employed for the training of instance that is

computed through P(k|z) = exp(xk)

∑k
i exp(xi)

; here, x refers to the non-normalized log possibility.

The ground truth is s(k|z), which is normalized in a way that ∑
k

s(k|z) = 1, where loss is

computed using cross-entropy and is represented as below:

l =
n

∑
k=1

log(p(k))s(k), (9)

The value of cross-entropy is based on differentiation in the context of xk, and it is com-
puted as the gradient training of deep functions as it has the easiest form

∂l
∂xk

= p(k) − s(k), which varies from −1 to 1. The cross-entropy decreases due to the
possibility of a maximum value of probability for an accurate label. Inception version 3 is
referred to as mutual for the labels that are free of trained instances v(k) with a parameter
€ representing a training sample; then, the share label s(k|z) is easily returned as:

s′(k|z) = (1− ε)δk,z +
ε

K
(10)

In another case, the cross-entropy is computed as below:

h
(
s′, p

)
= −

K

∑
k=1

log(p(k))s′(k) = (1− ε)h
(
q′, p

)
+ εh(v, p), (11)

Therefore, the regularization for label smoothing is similar for the implication of
cross-entropy loss h(s,p) and losses as h(s,p) and h(v,p).

Google Net is known as an Inception network due to its aim of acting similarly [43].
It comprises various versions, such as V1, V2, V3, V4, and Incep-ResNet. Moreover,
the Inception network consists of three varying sizes of max-pooling and convolutional
layers. Various channels pass through the network layers and, after convolutional op-
eration, the non-linear fusion method is employed. In Figure 2, the basic architecture
of the Inception network is shown. Version 3 of the Inception network employed by
Keras is pre-trained on ImageNet. The size required for images is 299 × 299 with three
channels. Comparatively, Inception V3 utilizes a convolutional kernel method to split
integrals into the tiniest convolution. In any instance, 3 × 3 conv. is split into 1 × 3 and
3 × 1 convolutions. The number of attributes is limited; therefore, the network speed is
enhanced while effectively extracting spatial features. The three different grid sizes are
8 × 8, 17 × 17, and 35 × 35. The structure of the basic Inception model is presented in
Figure 3.
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3.5. Learning Rate Scheduler

During the deep learning training stage, limiting the learning rate ∇t is suggested
when the training accuracy increases. The number of parameters is improved during
training, which is referred to as the learning rate (LR) or step size. More particularly, LR
adjusts the hyper-parameter, which is employed to train the neural network, utilizing values
from 0 to 1. The minimum values for the learning rate require more epochs for training, and
the weights alterations are reduced. On the other hand, the more variations there are in LR,
the less training epochs that are required by the neural network. The maximum LR creates
a divergent training procedure, whereas minimum LR causes a slow convergence process.
The procedure used to schedule LR is known as learning rate scheduling. There are various
general LR schedulers, such as step, time, and exponential decay. An Adam optimizer
is an estimator for moments that employ a method based on first-order gradient. It also
relates to the adaptive prediction of low-order moments. Where gT refers to gradients, ϑT
represents the weight at time T, βi and β j are 0 and 1, and Q represents LR. g2

T represents
the square of gT × gT . The initial settings were Q = 0.001, βi = 0.98, β j = 0.999, and c= 10−7.

3.6. Fusion Process

Features fusion is utilized in various machine learning and computer vision applica-
tions, such as medical imaging [40,41]. It provides a vital process that incorporates most of
the features’ maps. The proposed method is based on entropy for features fusion. Addition-
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ally, the attained features are merged to form a single vector. We computed three vectors
here, as below:

f IncepV3 × m = {IncepV31×1, IncepV31×2, IncepV31×3, IncepV31xn}, (12)

fLBP1 × p = {LBP1×1, LBP1×2, LBP1×3, . . . . . . , LBP1xn} (13)

Features fusion was applied as below:

Fusion(Featurevector)1 × s =
2

∑
i=1

{
f InceptionV31 × m, f LBP1 × p

}
, (14)

Here, f denotes a fused feature vector. Afterwards, an entropy is computed for
selective features based on the value, as shown below.

Lhe = −Nheb

n

∑
i=1

p( fi), (15)

Fsel = Lhe(max( fi, 1186)), (16)

Here, p presents the probability of features and Lhe refers to an entropy. In the end, the
selected features are fed to the classification network to distinguish the affected images.

3.7. Classification Using LSTM

A convolutional neural network is one of the most popular artificial neural networks
(ANN) that performs mathematical linear operations on feature vectors known as convolu-
tional [44]. CNN operates in two phases, i.e., the forward phase and the back propagation
phase during training. Input and weights are multiplied with a matrix of the filter; then,
a convolutional operation is performed to calculate the output, and this output is used
for error computation in the forwarding phase. The parameters are adjusted during the
back propagation phase to overcome the final prediction errors. Ground truth and output
are compared to find errors using the cost function [45]. The gradient of the parameter is
computed, and parameters are updated to minimize the error.

There are multiple layers in convolutional neural networks, such as the convolutional
layer, pooling layer, normalization layer, fully connected layer, activation layer, and classifi-
cation layer. CNN performs significantly in the problems related to image data. The layers’
detail is shown in Table 2.

Table 2. Details of the proposed LSTM classifier.

Type Learnable Activation

Feature input - 7

LSTM-1
Input weights 512 × 7

Recurrent weights 512 × 128
Bias 512 × 1

128

5 × [Batch Normalization] Offset 128 × 1
Scale 128 × 1 128

8 × [RELU] - 128
addition - 128

7 × [LSTM-2]
Input weights 512 × 128

Recurrent weights 512 × 128
Bias 512 × 1

128

Fc_1 Weights 22 × 128
Bias 22 × 1 22

Fc_2 Weights 22 × 22
Bias 22 × 1 22

SOFTMAX - 22
Class output - 22
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4. Experimental Evaluation

In this section, we discuss the environmental setup, the metrics employed for the
assessment, and the various experiments used to analyze the performance of the pro-
posed model.

4.1. Dataset

The dataset was collected from the skin lesion DermIS dataset, which is available on the
Kaggle website [46]. There are two classes in the dataset: benign and malignant. Seventy-
five percent of the images of each class were used to train the model, and the remaining 25%
were used for validation purposes. There were 1000 images in total; 500 images belonged to
the benign class and 500 to the malignant class, with dimensions of 600 × 450 pixels. Image
pre-processing was performed to resize the images to dimensions of 227 × 227, and the
resized images were provided as input to the image input layer. The images of the benign
and malignant classes used to train our model are provided in Figure 4. The employed
LSTM classifier’s approach is shown in Figure 5.
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4.2. Metrics

To assess the proposed model, we utilized various metrics, such as precision, recall,
accuracy, and F1-score. These metrics relied on true-positive (TP), false-positive (FP),
true-negative (TN), and false-negative (FN). TP refers to the number of correctly classified
images by our proposed model; FP refers to the number of images that were incorrectly
classified as other malignant images; FN denotes the number of diseased images that were
incorrectly classified as normal; and TN refers to the number of images that were correctly
classified as a negative class, such as normal or benign. Furthermore, precision refers to the
fraction of TP over the total images classified as positive. The mathematical equation is
given below.

Precision =
TP

TP + FP
(17)

The accuracy of the system indicates the correctly classified images by the proposed
system. The equation is presented below.

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

The recall is the fraction of the classified positive class images to all images of the
positive class, whether they were classified as a negative class by the system. The recall
value closer to 1 refers to the better model. The recall equation is given below.

Recall =
TP

TP + FN
(19)

Another metric used for the proposed system was the F1-score. This is defined as a
measure of the accuracy of the proposed model over the dataset. It is employed for binary
classification models. The equation of the F1-score is given below.

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(20)

4.3. Environmental Setup

We performed the experiments using a GPU NVIDIA card, i.e., GEFORCE GTX with
4 GB memory. The details of the employed hardware are shown in Table 3. The operating
system was Windows 10 with a 16 GB RAM. The experiment was performed on the
Anaconda framework.

Table 3. System Specifications of the proposed method.

Hardware Specifications

Computer GPU Server
CPU Intel Core i5
RAM 16 GB
GPU NVIDIA GEFORCE GTX × 4

4.4. Results

In this section, we discuss the results achieved by our proposed model during the
testing phase. As shown in Figure 6, the ROC curve exhibits the significant performance
of the proposed model. We attained 99.4% accuracy, 98.7% precision, 98.66% recall, and
a 98% F-score. More specifically, we employed 750 images to train the proposed technique,
including 375 images from the malignant class and 375 images from the benign class. As we
employed transfer learning-based algorithms, we achieved considerable results while only
using a small number of training samples. Then, we tested our proposed model over the
remaining 30% of test data, i.e., 250 images belonging to the malignant and benign classes,
respectively. We achieved 99.4% accuracy over the testing data, which demonstrates the
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tremendous performance of the proposed system. The number of TPs were 123, and TNs
were also 123 by our proposed system. In particular, we believe that our proposed model
has a significant ability to detect skin cancer in images and classify it into the malignant
class. Furthermore, it also classifies non-affected images as benign images.
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4.5. Comparison with Segmentation-Based Methods

The aim of [47] was the detection of skin cancer from images using segmentation and
feature extraction methods. Image pre-processing was employed to improve the quality
of images, and a median filter was applied to reduce the noise. A median filter of a 5 × 5
windows size was used after morphological operations erosion, and dilation was performed
to remove extra artifacts such as hair and skin color. Binary mask and threshold techniques
were applied to obtain the desired area of the image. The asymmetry, border irregularity,
color, and diameter of the area were selected for the detection of skin cancer. The proposed
method detected skin cancer with 90.83% accuracy. Manu Gofal [48] performed lesion
boundary segmentation from dermoscopic images with the deep learning method. The
PH2 and ISIC 2017 datasets were used for the segmentation of skin lesions, and image pre-
processing was performed to reduce the computational cost and improve performance. The
performance measures were sensitivity, specificity, and accuracy, achieving: 98%, 92%, and
93% respectively. The goal of [49] was the automatic melanoma class segmentation of skin
cancer using deep learning. The U-Net architecture of the convolutional neural network
was applied for better segmentation of skin lesions. Holes, disconnected regions, and
loose objects were still present after U-Net segmentation; therefore, post-processing was
performed by applying morphological operations dilation. Noise and extra artifacts such
as hair and skin color were removed from images for better segmentation. The proposed
methodology achieved 96% accuracy, 98% specificity, and 93% sensitivity, whereas our
proposed model attained 99.4% accuracy, 98.7% precision, 98.66% recall, and a 98% F-
score. A comparison of the proposed CNN with existing segmentation-based and other
techniques is presented in Figure 7. The figure clearly shows that our proposed model
achieves remarkable results compared to existing segmentation-based techniques.
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4.6. Comparison with DL-Based Methods

In this section, we compare our proposed features fusion method for skin cancer detec-
tion with existing DL-based methods. N. Rezaoana classified nine classes—NV, DF, MEL,
VASC, BCC, AKIEC, BKL, squamous carcinoma, and seborrhea keratosis—using the CNN
model. Data augmentation on images, such as flip, rotation, shear, etc., were performed
to increase the volume of data for training. Convolutional layers were used for feature
extraction, a max pooling layer was utilized to reduce the dimensionality, and softmax
was employed after pairing of the fully connected layer as an activation function [30].
Precision, F1-score, recall, and accuracy were used as performance measurements of the
model. VGG-16 and VGG-19 were also analyzed and achieved an accuracy of 69.57% and
71.19%, respectively, whereas the proposed model achieved an accuracy of about 79.45%.
The objective of [50] was the detection of skin lesions from skin images using an artificial
neural network. The PH2 dataset was utilized, containing 40 images from the melanoma
class and 160 images from the benign class. Image pre-processing was performed for the
removal of noise and accurate segmentation. Moreover, area, shape, and centroid features
were extracted from the images, and these features were fed to the artificial neural network
for the detection of skin cancer, attaining 98% accuracy. Y. Filali and H. El Khoukhi focused
on the classification of a skin lesion by decomposing the images into object components and
texture. Segmentation was applied to objects to obtain the desired area, then the segmented
area and texture were combined. A convolutional layer was used for feature extraction
to learn the hidden patterns [29]. A pooling layer was used after the convolution layer to
reduce the spatial size. Furthermore, fully connected layers were added to use the extracted
features for the classification of skin lesions. Softmax was employed as an activation func-
tion to classify melanoma as malignant and nevus as benign. The classification results were
evaluated through accuracy, specificity, and sensitivity. The proposed method achieved an
accuracy of 93.50%. A comparison of accuracy with the existing DL-based and ML-based
models is shown in Table 4. The plot of the comparison is shown in Figure 7.
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Table 4. Comparison with existing techniques.

Ref Model Type Specificity (% True
Negative Rate) Precision (%) Recall (%) Accuracy (%)

[51] ML 84 - 97 96
[49] Segmentation 98 93 96
[13] ML 85 - 86 97
[47] Segmentation 97 - 87.5 90
[30] DL - 76 78 79
[52] ML - - - 90
[50] DL 98.75 - 95 98
[48] Segmentation 97 - 89 94
[29] DL - - - 93.5%
Our proposed
model ML+DL 99.2 98.7 98.66 99.4

4.7. Cross-Validation

In this section, we performed cross-validation on our proposed system for skin le-
sion detection. We employed a different dataset from Kaggle for this purpose, namely
International Skin Image Collection (ISIC). The dataset consists of 1800 images from the
malignant class and 1497 images from the benign class. We utilized 500 images from each
class to analyze the performance. Our proposed techniques classified 493 images from
the malignant class and 491 images from the benign class. The confusion matrix is shown
in Figure 8. The figure clearly shows that our proposed model achieved 98.4% accuracy
over cross-validation. The results show that our proposed model is a robust technique
that can detect skin cancer in images at an early stage and with high precision. There-
fore, it is concluded that our proposed model outperforms the existing methods for skin
disease detection.
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4.8. Discussion

The above-mentioned experimental results indicate that our proposed skin lesion
detector is a more effective system than existing techniques. In [53], the authors employed
the fast random forest (FRF) algorithm to identify the area affected by malignant melanoma.
They achieved 17% precision discordance with the pathologist’s results. Contrastingly,
in [54], the swarm optimization technique was utilized to extract the region of interest from
the dermoscopy images. Then, speeded-up robust features were extracted and images were
classified by employing CNN. The classification accuracy was 98.42% and the precision
was 97.73%. Both methods achieved significant results; however, they failed in the case of
unseen tiny skin lesions. Moreover, our proposed model attained 99.4% detection accuracy
and 5% discordance with the pathologist’s results. We believe that the hybrid nature of our
proposed system for feature extraction—i.e., ML and DL-based methods—make our system
capable of extracting the most representative features from skin lesions. We used an Adam
optimizer to adjust the learning rate that optimized the training phase of the proposed
classifier. Furthermore, the LSTM classifier reduces the complexity by minimizing the
requirement to update the weights rather than convolution-based neural networks. Thus,
our proposed model is an efficient skin lesion detector achieving 98.7% precision, 98.66%
recall, and a 98% F-score. The proposed system identifies skin lesions with significant
accuracy and outperforms the existing skin lesion detection methods.

5. Conclusions

In this study, a novel and robust skin cancer detection model was proposed based on
features fusion. In the first stage, our proposed model pre-processed the images using a GF
filter to remove the noise from the skin images. Then, features were extracted by employing
LBP for manual features extraction and Inception V3 for automatic features extraction.
Aside from this, an Adam optimizer was utilized for the adjustments of the learning rate.
In the end, an LSTM network was utilized on fused features for the classification of skin
cancer into two classes: malignant and benign. We utilized the skin lesion DermIS dataset
available on the Kaggle website, consisting of 1000 images, out of which 500 belong to
the benign class and 500 to the malignant class. The proposed methodology attained
99.4% accuracy, 98.7% precision, 98.66% recall, and a 98% F-score. We evaluated our
proposed model and compared the performance with existing segmentation-based and
DL-based techniques. The results show that our method provided significant results
compared to existing techniques. In the future, we aim to employ our proposed model for
multi-classification for skin cancer detection, such as squamous cell carcinoma, basal cell
carcinoma, Kaposi’s sarcoma, Merkel cell carcinoma, etc.
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