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Abstract: In this study, the notion of perfect matrices of Lagrange differences is employed to detect
atrial fibrillation episodes based on three ECG parameters (JT interval, QRS interval, RR interval). The
case study comprised 8 healthy individuals and 7 unhealthy individuals, and the mean and standard
deviation of age was 65.84 ± 1.4 years, height was 1.75 ± 0.12 m, and weight was 79.4 ± 0.9 kg.
Initially, it was demonstrated that the sensitivity of algebraic relationships between cardiac intervals
increases when the dimension of the perfect matrices of Lagrange differences is extended from
two to three. The baseline dataset was established using statistical algorithms for classification by
means of the developed decision support system. The classification helps to determine whether the
new incoming candidate has indications of atrial fibrillation or not. The application of probability
distribution graphs and semi-gauge indicator techniques aided in visualizing the categorization of
the new candidates. Though the study’s data are limited, this work provides a strong foundation for
(1) validating the sensitivity of the perfect matrices of Lagrange differences, (2) establishing a robust
baseline dataset for supervised classification, and (3) classifying new incoming candidates within
the classification framework. From a clinical standpoint, the developed approach assists in the early
detection of atrial fibrillation in an individual.

Keywords: atrial fibrillation; perfect matrix of Lagrange differences; statistical indicator; decision
support system

1. Introduction
1.1. Existing Diagnostics Techniques for Atrial Fibrillation

Atrial fibrillation (AF) is linked to an increased risk of cardiovascular events such as
cardiovascular mortality, major cardiovascular events, heart failure, ischemic heart disease,
sudden cardiac death, and stroke [1,2]. Numerous symptoms, such as fatigue, palpitations,
shortness of breath, and chest pain, are experienced by AF patients. Some patients have
no symptoms, which is known as asymptomatic or “silent” AF. Asymptomatic AF has
serious clinical consequences. Patients with undiagnosed AF may develop life-threatening
thromboembolic complications or tachycardia-mediated cardiomyopathy [3,4]. People
with AF disorders often have no symptoms or vague signs because AF is frequently
intermittent. This combination consequently makes detection and diagnosis challenging.
Most of the time, AF is not noticeable until a person experiences a serious health issue
and seeks therapy [2]. One of the key tactics for enhancing AF identification and possibly
lowering AF-related stroke, mortality, and healthcare expenditures is screening for AF [4].
The rhythm disturbance’s frequent silence makes it difficult to detect AF early, which
is a serious concern. The so-called asymptomatic AF is unknown to patients in around
one-third of those who have this arrhythmia. Much earlier detection of the arrhythmia
may enable the prompt introduction of medicines to protect patients not only from the
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consequences of the arrhythmia, but also from the progression of AF from a treatable illness
into an untreatable issue [5].

There are various heart health monitoring tools available on the market, such as
AliveCor [2], that show promise, particularly for patients with intermittent AF. However,
this equipment is expensive and unable to identify those with AF condition symptoms.
Today, a variety of methods, including Single Lead, Holter Monitoring, Mobile Telemetry
Monitoring, and Implantable Loop Recorders, are available for use in AF detection outside
of the hospital setting. Spot single-lead ECG monitors, such as the AliveCor, need the
patient to identify symptoms, document them, and discuss them with their clinician [2].
It can be concluded that current heart health monitoring methods are either excessive or
call for specialized, pricey equipment that must be used in conjunction with substantial
signal processing to produce better quality findings. People with known or potential
cardiovascular problems must have access to a low-cost heart health monitoring system
in order to lower the expense of medical examinations, lessen their worry, and receive
timely care.

The electrocardiogram (ECG) visual examination is the gold standard for identifying
AF. An ECG is required to identify AF; nevertheless, an erratic pulse can increase the
suspicion that it may be present [6,7]. A 12-lead ECG can be used to confirm the presence
of AF, a frequent persistent arrhythmia that is frequently asymptomatic [2]. In addition
to the severe irregularity of the RR interval, P waves vanish and are replaced by irregular
fibrillation waves (f waves) of various sizes and forms [8,9].

1.2. Perfect Matrices of Lagrange Differences as a Method for ECG Signal Analysis

ECG signals have been examined over time to detect and examine various cardiovascu-
lar diseases [9]. Before delving into the analysis techniques of the ECG signal, it is important
to recall that the ECG signal is a complex signal in its behavior [10,11]. The complexity
explicates how the various ECG parameters [12] have significant variation between them,
which is caused by various physiological and pathological factors, so therefore, no definite
mathematical model can characterize the relationship between ECG parameters, even for a
specific individual [11,13].

There is always an attempt to analyze the ECG signal in such a way that the data
with the vast bulk of the extraction of clinically relevant features are available, which
contain all the important information of the original ECG signal and thus operate as the
signal’s substitute for further analysis. Several computational approaches including deep
learning methods, such as feature extraction and dimensionality reduction, are well known
for conducting the analysis of ECG. These techniques are helpful for increasing clinical
research by gaining a better understanding of medical challenges [14,15]. Feature extraction
technique can occur in the frequency domain, time domain, or frequency–time domain
analysis [16]. Noujaim et al. [17–19] propose that the behavior of the cardiovascular system
is “fractal-like”, attempting to retain adaptive variability demonstrating non-linearity in
the cardiovascular system rather than stability. As a result, it makes more sense to seek a
solution to dynamic processes that are complicated in nature [11]. A range of well-known
nonlinear analytic techniques for analyzing ECG data have been used due to their robust-
ness. For instance, reconstructed phase space analysis [20], Lyapunov exponents [21,22],
correlation dimension [23–25], detrended fluctuation analysis (DFA) [26], recurrence plot
and Poincaré plots [27], and possibly additional nonlinear analytic approaches for ECG
analysis are becoming increasingly popular.

It is essential to surpass the boundaries of conventional nonlinear computation tech-
niques to determine potentially accurate, faster, and more reliable solutions for the analysis
of the ECG parameter. The idea of the perfect matrices of Lagrange differences has been
proposed and proved for the different nonlinear time series analysis applications in several
studies [10,11,28]. One of the objectives of this paper is to show that the expansion of the
matrix dimension does result in the increased sensitivity of the algebraic relationships
between cardiac intervals, which provides a more accurate platform for the early detection
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of atrial fibrillation. First, the architecture of the third-order perfect matrices of Lagrange
differences is introduced. Then, the sensitivity of the proposed architecture is demonstrated
by comparing the proposed architecture to the second-order perfect matrices of Lagrange
differences used in previous studies. The rest of the structure of the paper is as follows. The
notion of the perfect matrices of Lagrange differences is explained (this part is basically a
recall from the work [10,11] and is hence named “Preliminary Synopsis”). The perfect matri-
ces of Lagrange differences are used to explain how to interpret the relationships between
the three cardiac intervals (JT interval, QRS interval, RR interval). It is demonstrated (and
validated) that the expansion of the dimension of the matrix serves as an accurate platform
for assessing the ECG signal. Subsequently, using the one sigma rule, statistical operations
are performed on the dataset to establish an observation window for the classification
purposes. In addition to the statistical analysis, it is shown how the generated probability
index and the semi-gauge representation help to serve as the decision support instrument
for the detection of early AF episodes.

2. Methods
2.1. The Description of the Experimental Setup

The three cardiac intervals, (i) JT interval, (ii) QRS interval, and (iii) RR interval, are
registered as three time series, as shown in Figure 2. The ECG signal is recorded under the
“No Load” condition, which indicates that the participants did not exercise or perform any
stress tests while the ECG recordings were registered.

2.2. Participants

Participants in this study were divided into two groups: healthy and unhealthy
individuals. It is worth mentioning that the ECG data collected for both groups showed
a proclivity for atrial fibrillation (AF). Antiarrhythmic medication was not reported to be
used by either group of subjects; therefore, the cohorts were divided and categorized as
healthy or unhealthy. The cohort of healthy individuals comprised 8 people, whereas the
cohort of unhealthy individuals comprised 7 people. The mean and standard deviation
of age was 65.84 ± 1.4 years; of height, 1.75 ± 0.12 m; and of weight, 79.4 ± 0.9 kg. For
purposes of confidentiality, the candidates’ names were labeled as H1–H8, which indicate
healthy candidates, and UH1-UH7, which denote unhealthy candidates (see Tables 3–6).

2.3. Ethics Statement

The research met all applicable standards for the ethics of experimentation in ac-
cordance with the Declaration of Helsinki as reflected in prior approval by the Regional
Biomedical Research Ethics Committee of the Lithuanian University of Health Sciences
(ID No. BE-2-4, 17 March 2016). The permit to perform biomedical investigation was
granted by the LUHS Bioethics Committee (see the Institutional Review Board Statement).
Participants provided written informed consent prior to the experiment.

2.4. The Description of the Proposed Algorithm
2.4.1. Preliminary Synopsis

Let us begin by presenting a brief overview of the three cardiac intervals examined in
this study (JT interval, QRS interval, and RR interval). Figure 2 depicts a time series of the
three cardiac intervals for one of the candidates. In Figure 2, the x-axis represents the time
in minutes, whereas the y-axis represents the time series recorded for the each of the three
cardiac intervals. Let us denote each of these three time series as x = (x1, x2, x3, · · · · · · , xi),
y = (y1, y2, y3, · · · · · · , yi), and z = (z1, z2, z3, · · · · · · , zi), where i is the total number of
heartbeats recorded throughout the experiment.

The key concept, notion, and underlying conditions for the generation of 2-by-2
perfect matrices of Lagrange differences and the corresponding algebraic relationship have
been previously thoroughly explained and verified [10,11,28]. Furthermore, the fact that
derivatives tend to amplify noise, as well as the implications of reasonable mathematical
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manipulations for the extraction of the most relevant information from the ECG signal,
have already been addressed in [10,11,28] and will not be explained in this work. What
makes this research distinct from previous approaches is that (1) the order of the matrices
is increased, thus enhancing the sensitivity of the proposed algorithm, and (2) the idea of
employing this method for early detection of AF from a cohort of healthy and unhealthy
individuals. The next section discusses the architecture of the 3-by-3 perfect matrices of
Lagrange differences and then reflects on its potential sensitivity.

2.4.2. The Architecture of Third-Order Square Matrices of Lagrange Differences

The definition of 2-by-2 perfect matrices of Lagrange differences is given in [10,11,28].
Each element of the matrix can be either a zeroth-order difference or a first-order difference.
The following conditions must hold true for the matrix in order be a perfect matrix of
Lagrange differences [10,11,28]:

1. All elements of the matrix must be different.
2. Zeroth-order differences are located on the main diagonal.
3. First-order differences are located on the secondary diagonal.
4. The matrix is balanced with respect to time (the sum of all time lags is equal to zero).
5. The matrix is balanced with respect to lexicographic variables (the number of different

symbols must be the same).

Let us assume that index n denotes the current moment and δ represents the time lag (δεN).
Then, the structure of the 2-by-2 perfect matrix of Lagrange differences reads [10,11,28]:[

xn xn+δ − yn+δ

xn−δ − yn−δ yn

]
(1)

The schematic representation of this 2-by-2 perfect matrix of Lagrange differences
can be illustrated by the diagram in Figure 1. The diagonal elements of the matrix are
shown in circles. The first-order Lagrange differences are depicted by arrows connecting
respective elements.
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Let us consider the three different time series x, y, and z (Table 1) also shown in
Figure 2. The architecture of the 3-by-3 matrix can be naturally expanded by scaling the
structure of Equation (2). xn yn+δ − xn+δ zn+δ − xn+δ

yn−δ − xn−δ yn zn+δ − yn+δ

zn−δ − xn−δ zn−δ − yn−δ zn

 (2)
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Table 1. The nine different elements of the time series x, y, and z with current, time-backward, and
time-forward indexes.

xn−δ xn xn+δ

yn−δ yn yn+δ

zn−δ zn zn+δ
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Figure 2. The three recorded cardiac intervals are plotted as time series (the time is in minutes):
(a) the RR interval; (b) the JT interval; (c) the QRS interval.

It can be observed that all requirements for perfect matrices of Lagrange differences
hold true for Equation (2). Therefore, the matrix defined by Equation (2) is also a perfect
matrix of Lagrange differences. The schematic representation of the 3-by-3 perfect matrix of
Lagrange differences is depicted in Figure 1. Again, the diagonal elements (the zeroth-order
Lagrange differences) are shown in circles; all first-order Lagrange differences are depicted
by arrows connecting respective elements.

The algebraic relationship between two cardiac intervals (sequences x and y) is defined
by a mapping function F : R(2∗2) → R1 , which transforms each perfect matrix of Lagrange
differences to a scalar variable. Different mapping functions are used in [10,11,28] (the
discriminant of the matrix, the modulus of the maximal eigenvalue of the matrix, the norm
of the matrix). The same mapping function F : R(3∗3) → R1 should be defined for the
3-by-3 perfect matrix of Lagrange differences. The norm of the matrix is set at the mapping
function in all further computations. Internal and external smoothing of the mapped
scalar algebraic relationship between cardiac intervals are executed after the mapping
procedure [28]; the same radiuses of internal and external smoothing are adapted from [28].

2.4.3. The Sensitivity of the Proposed Algorithm

After illustrating the structure of the 3-by-3 perfect matrices of Lagrange differences,
the sensitivity of the proposed architecture is explored. To this end, one of the candidates
from the cohort of individuals is employed as an example. The ECG signal is recorded
for the candidate (Figure 2). Initially, all computations are performed with 2-by-2 perfect
matrices of Lagrange differences, as described in Section 2. The algebraic relationship
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between JT and QRS intervals is shown in Figure 3a; the algebraic relationship between JT
and RR intervals is shown in Figure 3b; the algebraic relationship between QRS and RR
intervals is shown in Figure 3c.
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for the 2-by-2 (a–c) and 3-by-3 (d) matrix combination for the cardiac intervals JT, QRS, RR. (a) The
2-by-2 matrix algebraic relation is computed for the combination of cardiac intervals JT, QRS. (b) The
2-by-2 matrix algebraic relation is computed for the combination of cardiac intervals JT, RR. (c) The
2-by-2 matrix algebraic relationship is computed for the cardiac intervals QRS, RR. (d) The 3-by-3
matrix algebraic relationship is computed for the combination of cardiac intervals JT, QRS, RR.

These computations are repeated with all recorded cardiac intervals (JT, QRS, RR
intervals). Three scalar time series are mapped into a sequence of 3-by-3 matrices, as shown
in Figure 1. It is to be noted that the order of the parameter also has an important role
in defining the sensitivity of the proposed algorithm. The order of the parameters in this
study is fixed with JT interval as x, QRS interval as y, and RR interval as z (see Section 3
for more details). Once the three parameters are according to the proposed architecture,
they are evaluated by using computational techniques discussed above. (1) The recorded
time series are mapped into the trajectory matrices. (2) With the mapping (F ) technique,
the trajectory of the matrices is transformed into a scalar time series (F : R(3∗3) → R1) .
As noted previously, the mapping function F is defined as the norm of the 3-by-3 perfect
matrix of Lagrange differences. Finally, the internal and external smoothing techniques are
applied to smooth the mapped scalar sequence.

The sensitivity of the algebraic relationship revealed by the 2-by-2 and 3-by-3 perfect
matrices of Lagrange differences is measured by the variability (the variance) of the scalar
mapped signal depicted in Figure 3. The algebraic relationship between JT and QRS inter-
vals yields the variance value of 0.0218 (Figure 3a). Analogously, the JT–RR relationship
yields 0.0059 (Figure 3b); the QRS–RR relationship yields 0.0186 (Figure 3c). The 3-by-3
algebraic relationship between JT, QRS, and RR intervals yields the variance value of 0.0244
(Figure 3d). This increase in the sensitivity of the algebraic relationship can be explained by
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the following reasoning. Only two of four terms represented differences in the structure of
a 2-by-2 perfect matrix of Lagrange differences. However, six of nine terms represented
differences in the structure of a 3-by-3 perfect matrix of Lagrange differences. As men-
tioned previously, the differences better reflect the changes in the inter-connected system
represented by related synchronized cardiac intervals representing every consecutive heart
contraction. Moreover, the information fed into the algorithm is much larger (three cardiac
intervals instead of two). Therefore, a higher sensitivity of the 3-by-3 matrix architecture is
not surprising.

The values of the variances obtained from the second- and third-order perfect matrices
of Lagrange differences are tabulated in Table 2. With the comparison between the variance
values for both second- and third-order matrices, the sensitivity of the proposed algorithm
is highly exhibited by the 3-by-3 perfect matrices of Lagrange differences. The results
tabulated in Table 2 and shown in Figure 3 confirm the hypothesis of this study. Before we
delve into the results and discussions, we review the number of computations performed
on our dataset to determine (1) which combination patterns exhibit more sensitivity from
the 3-by-3 perfect matrices of Lagrange differences and (2) which combination patterns
produced the most likely statistical outcomes for the statistical computations.

Table 2. The comparison between the sensitivity of 2-by-2 and 3-by-3 matrices. The variance value
for each of the combination is tabulated for one of the candidates (see also Figure 2).

Candidate

Variance Values

Combination of
JT–QRS Interval

Combination of JT–RR
Interval

Combination of
QRS–RR Interval

Combination of
JT–QRS–RR Interval

0.0218 0.0059 0.0186 0.0244

2.4.4. Trials Computed upon the Dataset with Different Combination Patterns

This section explores different combinations of the parameters to determine which
combination is more sensitive in characterizing the algebraic relationship between the
parameters and which statistical parameters should be chosen for the subsequent compu-
tations. With the number of vectors as three, k = 3, the possible number of combinations
that could be made is 2k = 23 = 8. The computations are performed on all the possible
combinations (i.e., 2k = 23); a few of them are highlighted in Tables 3–6. As mentioned
before, the computations were conducted with two main objectives: (1) by altering the
parameters’ order, it is intended to assess the sensitivity of the proposed algorithm, and
(2) to look for the most suitable statistical analysis parameter for further computations,
whether it is variance (σ2), mean (σ), median (x ∼), or standard deviation (σx). In Table 3,
the computational techniques are performed for the combination parameters (QRS interval,
RR interval, and JT interval). First, the variance (σ2), mean (σ), median (x ∼), and standard
deviation (σx) are computed for the sequence representing the algebraic relationship be-
tween cardiac intervals (see Table 3). To obtain more statistically significant results, the one
sigma rule is applied to the smoothed sequence for the cohort of both healthy and unhealthy
people. Note that the one sigma rule approach applied here must not be confused with the
one sigma rule used subsequently in the study for the variance data. At this point in the
study, the goal of employing the one sigma rule is to identify the variability in the algebraic
relationship between the various combinations of parameters. In addition, the one sigma
rule is applied to the median and standard deviation of the smoothed algebraic sequence,
but later in the study, the one sigma rule will be applied to the variance data when the
statistical manipulations and computer-generated procedures are applied to it.
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Table 3. Statistical analysis outcome for the combination of parameters QRS interval, RR interval, and JT interval.

Healthy Candidates (H) Unhealthy Candidates (UH)

Variance σ2
H Mean µH

Median
x~H

Standard
Deviation

σH

Upper
Limit

(x~H+σH)

Lower
Limit

(x~H−σH)
Area AH

Variance
σ2

UH
Mean µUH

Median
x~UH

Standard
Deviation

σUH

Upper
Limit

(x~UH+σUH)

Lower
Limit

(x~UH−σUH)
Area AUH

0.00080583 0.736 0.734 0.028 0.763 0.707 0.359 0.0003 1.168 1.164 0.018 1.182 0.004 0.769
0.0016751 0.827 0.821 0.041 0.863 0.781 1.100 0.0002 1.281 1.279 0.015 1.294 1.264 0.875
0.0015197 0.917 0.916 0.039 0.956 0.878 −0.376 0.0061 1.018 1.012 0.078 1.091 0.935 2.062

0.00073806 1.031 1.031 0.027 1.059 1.004 0.254 0.0006 0.932 0.936 0.025 0.962 0.912 −1.217
0.0015323 1.024 1.027 0.039 1.067 0.989 −1.307 0.0141 1.422 1.409 0.119 1.528 1.291 1.461
0.0010183 0.875 0.875 0.032 0.907 0.843 0.148 0.0027 0.822 0.811 0.052 0.864 0.760 2.422
0.010428 1.317 1.307 0.102 1.41 1.206 1.508 0.0015 1.011 1.006 0.039 1.045 0.967 1.466
0.0060534 0.899 0.881 0.078 0.959 0.804 4.437

Table 4. Statistical analysis outcome for the combination of parameters RR interval, JT interval, and QRS interval.

Healthy Candidates (H) Unhealthy Candidates (UH)

Variance σ2
H Mean µH Median x~H

Standard
Deviation

σH

Upper
Limit

(x~UH+σUH)

Lower
Limit

(x~UH−σUH)
Area AH

Variance
σ2

UH
Mean µUH

Median
x~UH

Standard
Deviation

σUH

Upper
Limit

(x~UH+σUH)

Lower
Limit

(x~UH−σUH)
Area AUH

0.000792 0.736 0.736 0.028 0.764 0.708 0.242 0.0003 1.168 1.164 0.018 1.182 1.146 0.775

0.001677 0.827 0.821 0.041 0.862 0.780 1.147 0.0002 1.282 1.279 0.015 1.294 1.264 0.896

0.001713 0.921 0.922 0.041 0.963 0.880 −0.494 0.0061 1.016 1.011 0.078 1.089 0.932 2.051

0.000767 1.033 1.033 0.026 1.061 1.005 0.310 0.0006 0.933 0.937 0.025 0.962 0.911 −1.264

0.001689 1.031 1.034 0.041 1.075 0.999 −1.086 0.0141 1.424 1.411 0.119 1.529 1.292 1.477

0.001000 0.881 0.879 0.032 0.911 0.848 0.231 0.0027 0.823 0.812 0.052 0.864 0.759 2.434

0.01042 1.319 1.310 0.102 1.412 1.208 1.525 0.0015 1.012 1.006 0.039 1.046 0.967 1.478

0.006422 0.906 0.891 0.080 0.976 0.810 4.392



Diagnostics 2022, 12, 2919 9 of 19

Table 5. Statistical analysis outcome for the combination of parameters JT interval, RR interval, and QRS interval.

Healthy Candidates (H) Unhealthy Candidates (UH)

Variance
σ2

H
Mean µH

Median
x~H

Standard
Deviation

σH

Upper
Limit

(x~H+σH)

Lower
Limit(x~H−σH)Area AH

Variance
σ2

UH
Mean µUH

Median
x~UH

Standard
Deviation

σUH

Upper
Limit

(x~UH+σUH)

Lower
Limit

(x~UH−σUH)
Area AUH

0.0013 0.698 0.694 0.037 0.731 0.658 1.565 0.0006 1.397 1.393 0.025 1.418 1.367 0.9204
0.0030 0.882 0.880 0.055 0.934 0.825 0.527 0.0004 1.539 1.535 0.019 1.554 1.516 1.1994
0.0025 1.039 1.032 0.050 1.082 0.982 1.427 0.0090 1.051 1.043 0.095 1.138 0.948 2.2968
0.0014 1.165 1.168 0.037 1.206 1.131 −0.806 0.0014 1.070 1.077 0.037 1.114 1.040 −2.2801
0.0043 1.169 1.184 0.066 1.250 1.119 −5.280 0.0067 1.293 1.283 0.082 1.365 1.201 1.1756
0.0029 0.905 0.909 0.054 0.963 0.856 −0.469 0.0031 0.900 0.900 0.056 0.956 0.845 0.6442
0.0031 1.441 1.446 0.055 1.502 1.391 −1.105 0.0014 1.140 1.139 0.038 1.177 1.101 0.5454
0.0021 1.003 0.998 0.046 1.044 0.953 1.300

Table 6. Statistical computations for the cohort of healthy and unhealthy individuals for the combination of parameters JT interval, QRS interval, and RR interval.
The variance, mean, median, and standard deviation values are tabulated.

Healthy Candidates (H) Unhealthy Candidates (UH)

Variance σ2
H Mean µH

Median
x~H

Standard
Deviation

σH

Upper
Limit

(x~H+σH)

Lower
Limit

(x~H−σH)
Area AH

Variance
σ2

UH
Mean µUH

Median
x~UH

Standard
Deviation

σUH

Upper
Limit

(x~UH+σUH)

Lower
Limit

(x~UH−σUH)
Area AUH

0.0012 0.692 0.689 0.035 0.724 0.654 1.370 0.0006424 1.397 1.393 0.025 1.418 1.367 0.904

0.0030 0.881 0.880 0.055 0.934 0.825 0.435 0.0003502 1.538 1.535 0.019 1.553 1.516 1.219

0.0023 1.032 1.025 0.048 1.073 0.978 1.565 0.0082 1.038 1.031 0.091 1.122 0.940 2.147

0.0014 1.161 1.164 0.037 1.201 1.127 −0.773 0.0015 1.065 1.073 0.039 1.112 1.034 −2.483

0.0040 1.162 1.176 0.064 1.240 1.113 −5.041 0.0064 1.285 1.274 0.080 1.354 1.194 1.532

0.0025 0.894 0.895 0.050 0.945 0.845 0.042 0.0030 0.897 0.900 0.055 0.955 0.844 0.355

0.0031 1.431 1.437 0.056 1.493 1.382 −1.224 0.0014 1.135 1.134 0.038 1.172 1.096 0.548

0.0018 0.991 0.987 0.042 1.029 0.945 1.159
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As the implication of the one sigma rule, the upper boundary (x ∼H +σH) and lower
boundary (x ∼H −σH) are defined. Subsequently, the areas (A) above and below the
boundaries are computed. With the boundaries defined, statistical conditions are applied
to the smoothed sequence. If the smooth sequence is greater than the upper limit, then the
area above the upper limit is computed, and if the smoothed sequence is less than the lower
limit, the area below the lower limit is computed. The final outcome of the overall area
computed is denoted by A (see Tables 3–5). It makes sense to conduct computational trials
to determine the extent of the variability that exists while defining the algebraic relationship
between the three parameters. For the combination (QRS interval, RR interval, JT interval),
we do see the variability, as shown by the statistical outcomes tabulated in Table 3. The
same statistical techniques have been performed for the other three sequences (RR interval,
JT interval, and QRS interval; JT interval, RR interval, and QRS interval; JT interval, QRS
interval, and RR interval—see Tables 4–6). It is worth noting that while variability exists
in all of these combinations, upon close inspection of the statistical data, it is particularly
significant for the parameter combination of JT interval, QRS interval, and RR interval (see
Tables 3–6).

Furthermore, upon the comprehensive review of the mean (σ), median (x ∼), and
standard deviation (σx) data for the cohort of healthy and unhealthy individuals, it is
revealed that the variance (σ2) data are considerably distinctive and sensitive in their
conclusions for both cohorts in all combinations (see Tables 3–6) and can be utilized to
generate a reliable baseline dataset for the classification, which can then be used to classify
new incoming candidates. Therefore, the variance (σ2) data are chosen for generating
the Gaussian distribution graphs and producing the baseline dataset. In the next section,
the discussion on the statistical analysis techniques and the subsequent outcomes are
elaborated in detail.

2.4.5. The Development of the Decision Support System

Following the sensitivity assessment of the 3-by-3 matrices based on the variance
values (highlighted and underlined in Table 6), the statistical computations are performed
for the cohort of healthy and unhealthy individuals. The retrieved knowledge from the
algebraic relationship is employed to conduct the statistical analysis. For example, the
variance values are used to perform the statistical analysis for further computations. The
variance values will be employed to estimate the Gaussian distribution plot for both
cohorts (see Figure 4). The distribution will help to determine how evenly the data are
distributed along the x-axis. Since the distribution graph will assist in establishing the
foundations for classification, the one sigma rule is applied to the Gaussian distribution plot
for classification (see Figure 5a). The data fitted to the classification serve as the foundation
for classifying the new incoming individual in order to determine whether he/she falls
into the category of a healthy or unhealthy individual based on the classification rules
established in Table 7. To strengthen the visualization of classification of the new candidate,
a graphical representation of the probability distribution graph is proposed, followed by
a gauge representation with coloring indication for generating the warning system. If
an incoming person within the classification demonstrates either healthy or unhealthy
behavior, the classification approach will single out the individual according to his/her
ECG registering, and the warning gauge will provide a graphical depiction via a color on
the gauge that might be green, yellow, or red (based on the individual’s behavior). For
example, if a person enters the classification and exhibits the behavior of a healthy person,
the gauge arrow will point towards the green color, indicating that the incoming person is
healthy. On the other hand, if the incoming person indicates that he/she falls even slightly
towards the unhealthy category, the indication gauge arrow will point towards yellow,
which means that the incoming person may have indications of atrial fibrillation based on
his/her ECG registering. Finally, if the approaching individual falls far towards the right
of the distribution graph, it strongly indicates that the incoming person has a higher risk
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of having atrial fibrillation episodes and will be indicated by the color red. Each of these
scenarios are discussed more extensively in Section 3.

Table 7. Classification rules specified for the new incoming candidate into the variation interval.

Condition 1 Condition 2 Condition 3

If C ≤ µh − σh C ≥ µuh + σuh µuh − σuh ≤ C ≤ µh + σh
Then, indicator is IND = 0 IND = 1 IND = C−(µuh−σuh)

(µh+σh)−(µuh−σuh)
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Figure 5. (a) The construction of the variation interval between the mean of the healthy distribution
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double arrow and is used for the classification of a new incoming candidate. (b) The decision support
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3. Results and Discussion

First, the sensitivity of the proposed architecture is analyzed to assess the three ECG
parameters (JT interval, QRS interval, RR interval). As said earlier, the dataset comprises a
cohort of eight healthy individuals and seven unhealthy individuals. For each candidate,
the ECG signal is presented as a time series and is characterized as scalar vectors; x, y, and
z. According to the architecture shown in Figure 1 and tabulated in Table 1, each of these
scalar vectors is passed through the routine of perfect matrices of Lagrange differences. In
other words, the three scalar vectors are transferred onto a trajectory of matrices. Figure 3
depicts the algebraic relationship between the vectors x, y, and z for one of the candidates,
but the computations were performed for the entire cohort of 15 people (see Table 6).

The matrix trajectory for each individual in the cohort is translated into a scalar time
series using the norm of the matrix, where mapping is represented as F : R(3∗3) → R1 .
Finally, the signal is smoothed using internal and external smoothing techniques. The entire
computation resulted in the final smooth singular scalar vector, which contains most of the
original signal’s information. Table 6 illustrates the outcomes of the matrix’s sensitivity
analysis (as mentioned in Section 2.4.3, our attention is entirely focused on the variance
data for both cohorts). Up to this point, mathematical computations are performed for each
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individual in the cohort in order to determine the algebraic relationship between the JT,
QRS, and RR intervals according to the architecture proposed earlier. In the next section,
the statistical computational techniques are discussed in detail.

3.1. Performing the Statistical Analysis

The statistical analysis is performed on the variance dataset presented Table 6. To be-
gin with, the Anderson–Darling goodness-of-fit hypothesis test is conducted to determine
whether the data values for the healthy and unhealthy individuals are of a normal distri-
bution. Once the Anderson–Darling goodness-of-fit hypothesis test confirms the normal
distribution of the dataset, the estimates of the mean (mu), standard deviation (sigma), and
95% confidence intervals are determined using the computer-generated built-in algorithms.
Finally, the distribution graphs are created using the machine-provided probability density
function. In Figure 4, the x-axis represents the distributed data (which are variance values
produced from the proposed matrix architecture) for the cohort of healthy and unhealthy
individual, whereas the y-axis shows the probability density of the dataset. To distinguish
between the healthy and unhealthy cohorts, different color schemes are employed, such as
blue for healthy individuals and red for unhealthy people. In the next section, the criterion
for generating the observation interval is employed, which is used to classify the new
incoming individual.

3.2. Generation of the Variation Interval

Figure 4 indicates that the distribution has an optimal fit for the cohort of healthy and
unhealthy individuals. The observation interval is defined for classification purposes. The
one sigma rule is applied on the normally distributed data shown in Figure 4. For this,
the variation interval’s boundaries must first be defined. The boundaries are indicated as
right µuh + σuh and left µh − σh ends of the interval. This is indicated in Figure 5a by a
double arrow linking the two boundaries. The new entrants into the observation window
will be classified using this variation interval. After defining the observation interval, it
is essential to build the probability distribution graphical representation and develop the
semi-gauge indication tool. A set of statistical conditions is required for this purpose, as
shown in Table 7. Before defining the conditions, a few variables must be defined. For
example, the new candidate is denoted by C, and the variable IND (indicator) is introduced
to represent the new person’s location within the variation interval. The indices “h” and
“uh” denote healthy individuals and unhealthy individuals, respectively. The right side of
the variation interval is denoted as µuh + σuh and the left end is denoted as µh − σh. The
location of the new arriving candidate may be identified by the asterisk sign located along
the x-axis depending on its ECG registration (see Figure 5). The conditions defined for the
classification of the new incoming candidate are discussed below.

3.2.1. Condition 1

If the incoming candidate’s ECG registering value is less than or equal to the left
side of the variation interval, which is denoted as C ≤ µh − σh (see Table 7), the indicator
(IND) will be zero, and the person will fall towards the left side of the variation interval,
indicating that he/she is a healthy candidate.

3.2.2. Condition 2

If the incoming candidate’s ECG registering value is larger than or equal to the right
side of the variation interval, which is referred to as C ≥ µuh + σuh (see Table 7), then the
person will fall towards the right side of the variation interval, indicating that he/she is a
unhealthy candidate.



Diagnostics 2022, 12, 2919 14 of 19

3.2.3. Condition 3

If the incoming candidate’s value falls between the variation interval, which is codified
as uh − σh ≤ C ≤ µuh + σuh (see Table 7), the arriving candidate C falls in between the
variation interval.

Because the effect of atrial fibrillation is not expressed during ECG registration, the
distribution function is wide and the standard deviation is high. This implies that the
subjects may have experienced asymptomatic atrial fibrillation. There could have been
some “silent” AF candidates even among the healthy people. As a result, we created an
algorithm that could aid in their classification.

To supplement the visual representation, we incorporate a semi-gauge indication
tool for designing a warning system. This is accomplished by adopting a color scheme
that is solely dependent on the conditions specified in Table 7. Depending on the ECG
registering of the new candidate within the variation interval, the gauge arrow will point
towards either green, yellow, or red (see Figures 6d and 7d). In the next section, the two test
applicants are analyzed to determine where their ECG recordings fall after classification
within the variation interval.

Diagnostics 2022, 12, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 6. Test candidate #1. (a) The algebraic relation is shown for the combination of JT, RR, and 
QRS intervals. (b) The classification of the candidate is marked with an asterisk indicator. (c) The 
decision support system recommends the probability of the AF equal to 0.07. (d) The semi-gauge 
representation is exhibited for the candidate with the arrow of the gauge pointing towards green, 
indicating that the person is classified as a healthy individual. 

 

(d) 

Figure 6. Test candidate #1. (a) The algebraic relation is shown for the combination of JT, RR, and
QRS intervals. (b) The classification of the candidate is marked with an asterisk indicator. (c) The
decision support system recommends the probability of the AF equal to 0.07. (d) The semi-gauge
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Figure 7. Test candidate #2. (a) The algebraic relation is shown for the combination of JT, QRS, and
RR intervals. (b) The classification of the candidate is marked with an asterisk indicator. (c) The
decision support system recommends the probability of the AF equal to 0.54. (d) The semi-gauge
representation is exhibited for the candidate with the arrow of the gauge pointing towards yellow,
indicating that the person is classified as an unhealthy individual.

3.3. First Test Candidate

Figure 6 depicts the example of one of the test candidates. In Figure 6a, the x-axis
represents the time (minutes) and the y-axis represents the algebraic relationship between
the three parameters (JT interval, QRS interval, RR interval). The computational techniques
resulted in a variance value of 0.0018, as shown in Figure 6a. The resulting variance
value is subjected to the classification conditions described in Table 7, and it is noted that
the candidate appears to fall on the left side C ≤ µh − σh of the variation interval. The
location of the test candidate is indicated by the asterisk sign in Figure 6b. Furthermore,
when the candidate’s value is passed through the routine of the probability distribution
graph, it is found that the candidate had the lowest likelihood (0.07) of having an atrial
fibrillation prediction, as this can be seen in Figure 6c. In Figure 6c, the x-axis represents
the variance values, and the y-axis represents the probability (0–1). Finally, by using a
semi-gauge visualization tool, the color indication scheme is used to indicate where the
gauge’s arrow points out. It can be seen that arrow direction is towards the green, indicating
that the individual is healthy (see Figure 6d). In the next section, we look at another test
candidate’s scenario.
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3.4. Second Test Candidate

Figure 7 illustrates the example of another test candidate subjected to the proposed
techniques described in the previous sections. In Figure 7a, the x-axis represents the time
in minutes, and the y-axis shows the algebraic relationship between the parameters (JT
interval, QRS interval, and RR interval). The mathematical computations generated a
variance value of 0.0040 after passing through the proposed algorithm. When the variance
value is compared to the data in Table 7, it is noticed that the test applicant falls into the
category of healthy individuals. However, when the variance value is subjected to the
classification conditions, it appears that the person is falling towards the extreme right
C ≥ µuh + σuh of the observation interval (see Table 7). The probability distribution
graphical representation revealed that the test candidate has a likelihood of 0.54 to have
the indication atrial fibrillation, indicated by the asterisk sign (Figure 7c). To demonstrate
the severity of the warning, the semi-gauge arrow directed towards the yellow indicates
the risk that the individual has an indication of having atrial fibrillation (see Figure 7d).

In the examples of test candidates presented above, it is seen that the candidates
initially exhibit the behavior of being a healthy individual, but when their ECG recordings
are passed through the entire computation techniques proposed, it is discovered that one
of the candidates, despite having a normal ECG, may have indications of atrial fibrillation.
As mentioned in the introduction section, some people may not exhibit symptoms of AF,
which is known as asymptomatic or “silent” AF and has major clinical repercussions. This
was discovered to be the case for our study’s second test candidate.

AF is a pathology, and the identification of an arrhythmia on an ECG is necessary for
the diagnosis. Unfortunately, prompt diagnosis of PV might be challenging due to the brief
arrhythmic paroxysms and frequent asymptomatic state. To distinguish between paroxys-
mal and persistent AF in the ECG, signal-averaged parameters were not used when looking
for unhealthy and healthy people. Electrocardiography signal-averaged parameters and
changes in their relationships between AF patients and healthy people were used to identify
significant ECG parameters. Due to the fact that this electrocardiography technology is
being used to analyze ECG parameters in patients with AF for the first time, there is no way
to compare the study’s findings to those of previous investigations. Bright ECGs were seen
throughout the examination, but after more research using this methodology, the trends
in the disparities between the parameters and their links suggest that the signal-averaged
electrocardiography parameters may be useful for screening in patients with risk factors for
stroke, for whom a more thorough examination for asymptomatic AF is appropriate. The
surface electrocardiogram (ECG) is the primary tool used for the clinical diagnosis of atrial
fibrillation (AF), and AF is distinguished by the absence of a P wave due to the electrical
activity being disorganized. The RR interval, which reflects the ventricular interbeat, was
proposed as a significant biomarker for AF detection, despite the P wave’s relatively low
amplitude and challenging baseline that make its detection difficult [29]. Several publica-
tions investigate how the complexity of RR intervals changes as different cardiovascular
disorders progress [30,31]. A suitable level of RR interval fluctuations within an organism
denotes both healthy function and natural self-regulatory flexibility or resilience. JT interval
and myocardial metabolic rate are related (when heart activity is the highest, JT interval is
the shortest, and vice versa). The JT range, which is divided into the JTa interval (from point
J to the peak of the T wave) and the Te interval, regulates certain electrophysiological events
(from the T wave peak to the end of T) [32]. ECG leads with a shorter JT interval, showing
earlier repolarization and quicker metabolic changes in particular cardiac areas. The JT in-
terval was found to be the more significant indicator of AF risk than the QT interval, which
has been linked to the development of AF. This suggests that ventricular repolarization
rather than ventricular depolarization is a better predictor of future AF events (e.g., QRS
duration). As previous reports have mainly concentrated on the AF risk associated with
the entire QT interval, which includes components of both ventricular depolarization and
repolarization, the results of this analysis offer significant insight into the pathophysiology
of AF [29]. The interventricular synchronization aspects of the QRS duration parameter
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may be linked to the intrinsic regulatory system of the heart. The QRS complex, which is a
component of the heart’s regulatory system, depicts the spreading of depolarization inside
the ventricle and the synchronization of the spreading of depolarization between ventricles.
Slower conduction is visible in the heart ventricle in the larger QRS complex. In normal
conditions, the duration of the QRS complex can range from 80 to 120 ms. This index
is sensitive to changes in sympathetic and parasympathetic nervous system tone. This
parameter could be observed shortening in a healthy heart during sympathetic activation,
as well as during load. It is prolonged in some heart diseases, such as ischemic heart disease.
Patients with prolonged QRS had a higher prevalence of AF, according to the authors of a
cross-sectional study involving 25,000 people with left ventricular dysfunction [29]. The
majority of methods employed by physicians rely on the analysis of discrete values such
as heart rate, blood pressure, or the duration of a single cardiac interval. Comparing ECG
features in relation to one another can provide more clinical data, which is oftentimes more
insightful than evaluating features alone.

4. Limitations

The current research had some limitations. For instance, the study sample was rather
modest to start with. In order to evaluate atrial shape and potential connections with
P-wave ECG parameters, participants were not subjected to cardiac imaging. Additionally,
it makes sense to assess the dynamics of ECG parameter and interface values in addition to
their instantaneous values when assessing each subject as a separate complex system.

5. Conclusions

In this novel work, it is hypothesized, demonstrated, and proved that increasing the
dimensions of the perfect matrices of Lagrange differences from two to three enhances
the sensitivity of the proposed architecture and provides sufficient grounds for analyzing
the algebraic relationship between the ECG parameters. The idea of perfect matrices of
Lagrange differences is exploited to determine the early detection of atrial fibrillation
episodes using the ECG parameters JT, QRS, and RR. The computations were carried out
on 8 healthy individuals and 7 unhealthy individuals. Despite the modest sample size, the
analysis of this study showed solid evidence for defining the algebraic relationship between
the parameters. Moreover, several mathematical computational tests were conducted to
determine if the mean, median standard deviation, or variance could be employed for
classification, and we identified that the variance parameter stood out the most. We
decided to choose the variance as a computing tool for generating a baseline dataset.
The observation window was then built using the one sigma rule. Furthermore, a set of
conditions was also developed based on machine learning techniques to classify the new
arriving candidate inside the variation interval. The idea for probability distribution graphs
is proposed to indicate whether the new incoming person has the least or greatest likelihood
of developing atrial fibrillation symptoms. In addition, a semi-gauge indicator tool was
developed in order to construct a warning system based on the classification conditions. We
evaluated two test candidates, both of whom initially displayed the behavior of a healthy
individual, but when categorized using the classification, it was discovered that one of the
test candidates stood out as having an indication of atrial fibrillation.

6. Future Work

Since the proposed method is sensitive to describing the algebraic relationship between
the ECG parameters, changing the parameters’ order may provide significantly different
results. As a result, different ECG parameter combinations are encouraged for further
research and experimentation. Nonetheless, this work has the potential to establish a
reliable foundation for future research investigating ECG parameters using 3-by-3 perfect
matrices of Lagrange differences. As the sample size of the proposed study was modest
to begin with, it is encouraged to expand the sample size of the experiment and perform
the computations.
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