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Abstract: Background: Long non-coding RNA (lncRNA) participates in the immune regulation of
lung cancer. However, limited studies showed the potential roles of immune-related lncRNAs (IRLs)
in predicting survival and immunotherapy response of lung adenocarcinoma (LUAD). Methods:
Based on The Cancer Genome Atlas (TCGA) and ImmLnc databases, IRLs were identified through
weighted gene coexpression network analysis (WGCNA), Cox regression, and Lasso regression analy-
ses. The predictive ability was validated by Kaplan–Meier (KM) and receiver operating characteristic
(ROC) curves in the internal dataset, external dataset, and clinical study. The immunophenoscore
(IPS)-PD1/PD-L1 blocker and IPS-CTLA4 blocker data of LUAD were obtained in TCIA to predict
the response to immune checkpoint inhibitors (ICIs). The expression levels of immune checkpoint
molecules and markers for hyperprogressive disease were analyzed. Results: A six-IRL signature was
identified, and patients were stratified into high- and low-risk groups. The low-risk had improved
survival outcome (p = 0.006 in the training dataset, p = 0.010 in the testing dataset, p < 0.001 in the
entire dataset), a stronger response to ICI (p < 0.001 in response to anti-PD-1/PD-L1, p < 0.001 in
response to anti-CTLA4), and higher expression levels of immune checkpoint molecules (p < 0.001 in
PD-1, p < 0.001 in PD-L1, p < 0.001 in CTLA4) but expressed more biomarkers of hyperprogression in
immunotherapy (p = 0.002 in MDM2, p < 0.001 in MDM4). Conclusion: The six-IRL signature exhibits
a promising prediction value of clinical prognosis and ICI efficacy in LUAD. Patients with low risk
might gain benefits from ICI, although some have a risk of hyperprogressive disease.

Keywords: immune-related lncRNA; ddPCR; prognosis; immunotherapy; lung adenocarcinoma

1. Introduction

Non-small cell lung cancer (NSCLC) remains the second-most commonly diagnosed
cancer (with an estimated prevalence of 11.4%) and the leading cause of cancer death
(with an estimated prevalence of 18%) in the global population, but incidence declines
and survival increases in the United States of America. The tobacco epidemic, ambient air
pollution, the diagnosis period, and late-stage treatments likely contribute to the remarkable
difference [1]. Lung adenocarcinoma (LUAD), as one of the common and severe lung
cancers, accounts for approximately 50% of NSCLC [2] and has an average 5-year survival
rate of 21% given to the missed diagnosis in an early stage and advanced cancer refractory
to traditional treatments [1]. A large proportion of patients still cannot benefit from current
conventional chemotherapy and targeted treatments because of the resistance, which leads
to a relatively high recurrence rate in LUAD [3].
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Cancer immunologic and immune therapeutic advances seem promising for gaining
a survival benefit for LUAD. Increasing studies focused on tumor microenvironments
reported that infiltrating immune cells and modulating immune pathways have prominent
effects on the progression and aggressiveness of LUAD [4]. Besides, immune checkpoint
inhibitors (ICIs) directed against programmed cell death-1 (PD-1) and its ligand (PD-L1)
have revolutionized the treatment of advanced LUAD without targetable mutations [5].
Unfortunately, the overall response to ICI is modestly low, and a paradoxical acceleration
of tumor growth, defined as “hyperprogressive disease (HPD),” happens in a subset of
patients with NSCLC treated with ICI [6]. Thus, the molecular signature relevant to tumor
immunology is needed to be recognized as prognostic biomarkers to optimize personalized
medicine and improve long-term survival.

Along with advances in immunology, researchers studied the critical regulatory ability
of long non-coding RNA (lncRNA) in different phases of cancer immunity, such as antigen
release and presentation, immune activation, immune cell migration, infiltration, and
killing of tumor cells [7]. Besides, the immune signature can be a conspicuous marker to
evaluate the overall survival (OS) in patients with LUAD [8]. However, few studies have
comprehensively considered prognostic immune-related lncRNAs (IRLs) and their roles in
predicting the efficacy of ICI treatment.

In this study, according to the IRL-based risk model, the subtypes of LUAD were
identified to evaluate prognosis, immune cell infiltration, therapeutic benefit, and HPD
during immune checkpoint blockade via integrative bioinformatics.

2. Materials and Methods
2.1. Data Download

Expression, phenotype, and survival data were downloaded from The Cancer Genome
Atlas (TCGA (RRID:SCR_003193)) cohort of the UCSC Xena database (https://xenabrowser.
net/ accessed on 16 September 2020), in which 513 LUAD samples were obtained as an
entire dataset after removing 13 samples with the missing phenotype (Table S1). Then, gene
symbol names were retrieved from the human gtf file in the Ensembl database (http://www.
ensembl.org/info/data/ftp/index.html accessed on 23 April 2020). A total of 3547 LUAD-
associated IRLs were acquired from Lnc_Immunecell_Sig and Lnc_Pathways_Sig files in
the immLnc database (http://bio-bigdata.hrbmu.edu.cn/ImmLnc/ accessed on 28 March
2021) [9]. The RNA sequencing data and relevant clinical characteristics of GSE120622
of patients with LUAD were downloaded from the Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/ accessed on 4 July 2022) [10]. Besides, the version
22 reference genome data, immunophenoscore (IPS) data [11], and target mRNAs of IRLs
were obtained from The Gencode database(https://www.gencodegenes.org/ accessed
on 27 April 2020), The Cancer Immunome Atlas database(TCIA, https://tcia.at/home
accessed on 10 May 2021) [11], and starbase3.0 (http://starbase.sysu.edu.cn/ accessed on
6 April 2020) database.

2.2. Patients’ Samples

To verify the risk score calculated from the TCGA database, we collected 40 samples of
lung tissue punctured by thoracoscope and relevant clinical information as a retrospective
case-control study in the First Affiliated Hospital of Sun Yat-sen University between October
2020 and June 2021. In accordance with the International Association for the Study of Lung
Cancer tumor–node–metastasis classification [12], 30 and 10 cases were diagnosed with
LUAD and nonlung cancer, respectively. The clinical characteristics of patients with LUAD
are shown in Table S1. This study was approved and supervised by the Research Ethics
Committee of the First Affiliated Hospital of Sun Yat-sen University (No. (2022)049).

2.3. Weighted Gene Coexpression Network Analysis (WGCNA)

The WGCNA (RRID:SCR_003302) R package (version 1.69) was used to analyze the
co-expression network of IRLs [13]. Specifically, the screening criterion was R-square
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> 0.85, and the soft thresholding power of four was selected. By using the power of
four and a merged module threshold < 0.25, highly correlated clusters were merged into
similar modules. Modules were generated, and the hierarchical clustering dendrogram
was plotted.

2.4. Efficacy Analysis of Risk Score

All samples were randomly divided into TCGA training (360 samples) and testing
(153 samples) datasets in accordance with the ratio of 7:3. Combining survival data,
univariate Cox regression was performed on the training dataset by using R package
survival (version 3.2-7) and R package survminer (version 0.4.8), and a p value < 0.05 was
set for screening significantly differentially expressed genes [14]. Afterward, the Lasso
regression was used to further narrow differentially expressed genes via the R package
glmnet (version 4.0-2), in which the minimal lambda was obtained by a cross-validation
procedure and then used to fit the Lasso model [15]. According to RScorei = ∑n

j=1 expji ×β j
(exp represents gene expression; β represents coefficients of genes identified by Lasso
regression; and i and j represent each sample and each gene), we calculated the risk score
of each sample and divided all patients with LUAD into high- and low-risk groups by
using the median risk score [16]. Combined with survival data, the Kaplan–Meier (KM)
curve was plotted between high- and low-risk groups with a p value < 0.05. The receiver
operating characteristic (ROC) curves and area under the ROC curves (AUC) were drawn
and calculated to estimate the 5-year survival probability [17].

2.5. Analysis of Stability and Independence

To validate the stability of the risk score, all patients were stratified into different
subgroups on the basis of age (<60 vs. ≥60 years), gender (male vs. female), and TNM
stage (stage I + II vs. stage III + IV). The survival status between high- and low-risk groups
in KM curves was determined (p value < 0.05 defined as significant). We incorporated
several parameters, including age, gender, M stage, N stage, T stage, and risk score, into
univariate and multivariate Cox regression analyses.

2.6. Construction of a Nomogram

By using the R package rms (version 6.1-0) and survival (version 3.2-7), the prognostic
nomogram was plotted with clinical parameters after establishing the Cox proportional
hazards model and calculating survival probability [18]. The ROC curve was used to
validate and predict the nomogram.

2.7. Assessment of Immune Microenvironment

The gene expression signature matrix of LM22 was obtained (CIBERSORT, RRID:SCR_016955)
to estimate the proportions of 22 types of infiltrating immune cells, and expression levels
were calculated in all samples by using the R package CIBERSORT (version 1.03) [19]. The
R package estimate (version 1.0.13) was used to calculate the stromal score, immune score,
ESTIMATE score, and tumor purity of all samples to compare the difference between high-
and low-risk groups. Besides, univariate and multivariate Cox regression analyses were
used to analyze the clinical traits and risk scores of LUAD.

2.8. Evaluation of Response to ICIs

IPS-PD1/PD-L1 blocker and IPS-CTLA4 blocker data on LUAD from TCGA were
obtained in TCIA for predicting patients’ responses to ICI in high- and low-risk groups.
In addition, the expression levels of immune checkpoint molecules and markers for HPD
were compared in these two groups.

2.9. Gene Set Enrichment Analysis

The Hallmark pathway enrichment analysis was performed using gene expression
profiling data from different groups with LUAD by a GESA software (version 3.0) from
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Sangerbox (http://vip.sangerbox.com/home.html accessed on 27 July 2021) [20] In the
GSEA runs, gene-set sizes were set to between 5 and 5000 and parameters were set to 1000.
A p value < 0.05 and an FDR < 0.25 were considered statistically significant.

2.10. Droplet Digital PCR

The Digital PCR MicroDrop-100 and Reagents (Kitforevergen) were used for droplet
digital PCR (ddPCR) experiments. Primers are shown in Table S3. The cycle parameters
used were as follows: 95 ◦C for 10 min and 95 ◦C for 30 s; 40 cycles of 60 ◦C for 30 s, and
72 ◦C for 1 min, and 72 ◦C for 30 s and final heating at 16 ◦C. The QuantaSoft software was
used to analyze the number of copies of each sample.

2.11. Statistical Analysis

The R software (version 4.0.5) or GraphPad Prism (version 7.0) was used for statistical
computing and graphics. For continuous variables, a t-test was used if data were normally
distributed, whereas the Mann–Whitney test or Wilcoxon was performed for data that did not
follow a normal distribution. For categorical variables, the chi-square test was performed.
The univariate Cox regression analysis was used to examine potential risk factors, and the
multivariate Cox regression analysis was further carried out for covariates whose p value
< 0.05 in the univariate analysis. The KM curve was plotted to analyze the differences in
survival by the log-rank test. Relationships between modules and traits were analyzed by
the Pearson correlation. A p value < 0.05 represented statistical significance in all analyses.

3. Results
3.1. Identification of Prognostic IRLs

Integrative bioinformatics was conducted to explore the prognosis, immune cell infil-
tration, therapeutic benefit, and HPD of LUAD. To obtain relevant IRLs from core modules
in LUAD, we acquired 513 TCGA–LUAD samples with complete clinical information
(Table S1) and 3547 LUAD-associated IRLs. The WGCNA was then conducted to catego-
rize the expression pattern of IRLs in TCGA–LUAD samples into 11 similar modules via
the hierarchical clustering dendrogram at the appropriate soft threshold power of four
(Figure 1A). Module–trait relationships were analyzed by correlating the 11 modules with
clinical characteristics. We found that the brown co-expression network, including 174 IRLs,
had negative associations with TNM stage and clinical events (Figure 1B).

To further narrow significant prognosis-related IRLs, we identified 18 candidate IRLs
(p < 0.05) by investigating the association between the expression levels of 174 IRLs and
survival information in the TCGA training dataset by using univariate Cox regression
(Figure 1C). Afterward, six prognostic IRLs were identified as the key immune signature by
Lasso regression with a minimal λ value (Figure 1D) and clustered in heatmaps (Figure S1).
Based on the coefficients of the six IRLs, an optimized prognostic model for LUAD was
constructed by calculating the risk score as follows: risk score = AC104971.3 × (−0.1592) +
FAM215A × (−0.0697) + AC021678.2 × (−0.0330) + LINC02413 × (−0.0228) + AL161781.2
× (−0.0207) + LY86-AS1 × (−0.0051).

3.2. Predictive Capability and Sensitivity of the Risk Score Model

Aiming to assess the predictive value of the constructed prognostic model with six
IRLs, patients were divided into low-risk and high-risk groups according to the median risk
score of −0.46. The KM curve was plotted to compare the survival time in the TCGA train-
ing dataset, revealing that the median survival time of the high-risk group was shorter than
that of the low-risk group (p = 0.006, Figure 2A). Afterward, KM curves were also drawn
in the TCGA testing dataset (p = 0.010), TCGA entire dataset (p < 0.001), and GSE120622
(p = 0.040) to validate the predictive ability of the prognostic model (Figure 2B–D). These
KM curves showed that patients with LUAD in the high-risk group had a worse prognosis
than those in the low-risk group. The ROC curves of the 5-year OS indicated that the
risk score was essential in predicting prognosis in patients with LUAD (TCGA training
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dataset: AUC = 0.64; TCGA testing dataset: AUC = 0.64; TCGA entire dataset: AUC =
0.64; GSE120622: AUC = 0.62; Figure S2), which indicated a predictive ability based on the
risk score.

Figure 1. Six identified immune-related lncRNAs (IRLs) after weighted gene coexpression network
analysis (WGCNA) and regression analyses. (A) Hierarchical clustering tree on IRL’s coexpression
network. (B) A heatmap of modules and clinical traits, including age, M stage, N stage, T stage,
gender, TNM stage, clinical event, and survival time. The numbers in each box and parenthesis
represented correlation coefficient and p value. (C) Eighteen prognosis-related IRLs screened by
univariate Cox regression. (D) Coefficients of six prognostic IRLs identified by the Lasso model.

Furthermore, we verified the risk score by directly detecting the absolute quantification
of these six IRLs via ddPCR in LUAD samples and controls from a case-control study in
south China. Consistent with the results from the TCGA and GEO datasets, patients
with LUAD and high-risk scores exhibited poor outcomes in our clinical study (Table 1).
Except for the predictive power of the IRL signature, we wondered whether these six
IRLs expressed differently between LUAD and normal controls. Results showed that
AC104971.3 (p < 0.01), AC021678.2 (p < 0.01), LINC02413 (p < 0.05), AL161781.2 (p < 0.05),
and LY86-AS1 (p < 0.01) were significantly downregulated in clinical LUAD tumor tissues,
and that FAM215A expression was not significantly different but slightly increased in
tumor samples (Figure S3). Besides, patients with LUAD from the TCGA dataset, GEO
dataset, and clinical study were divided into high- and low-risk groups to avoid baseline
bias. No difference was observed between the two groups in gender and age (Table S2).
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Figure 2. Survival prognosis of the risk score model. Kaplan–Meier (KM) survival curves of patients
with LUAD in high- and low-risk groups from (A) TCGA training dataset, (B) TCGA testing dataset,
(C) TCGA entire dataset, and (D) GSE120622.

Table 1. Severity of patients with lung adenocarcinoma (LUAD) and a low-risk score vs. patients
with LUAD and a high-risk score in the case-control study.

Low Risk High Risk p Value

TNM
Stage I + II 9 1 0.005 **

Stage III + IV 6 14
T stage

1–2 9 4 0.139
3–4 6 11

M stage
0 11 2 0.003 **
1 4 13

N stage
0 9 2 0.021 *

1–3 6 13
Performance Status

0 13 6 0.021 *
1–4 2 9

Note: ** p < 0.01 is considered statistically significant. * p < 0.05 is considered statistically significant.
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Additionally, to prove the stability and independence of the risk score based on IRLs,
we plotted KM curves on patients with LUAD under different subgroups divided by
baseline characteristics and performed univariate and multivariate Cox regression analysis
on the risk score and various clinicopathological characteristics. Results showed that
patients in the low-risk group had a high chance of survival at a different age (p = 0.019 in
age ≤ 60 years, p = 0.001 in age > 60 years), TNM stages (p = 0.046 in stage I + II, p = 0.011 in
stage III + IV), and male patients (p = 0.001 in male patients; Figure 3A–F). Univariate and
multivariate Cox regression analyses demonstrated that the risk score (p = 0.004) and TNM
stage (p = 0.007) had a remarkable predictive capability when considering potential risk
factors (Figure 3G,H). Hence, the established risk score had an independent and reliable
prognostic performance in predicting patients with LUAD.

3.3. Construction of an IRL Signature-Based Nomogram

A nomogram was established to visualize the above independent factors, including
risk score and TNM stage (Figure 4A), in which the ROC curve showed that the AUC of the
5-year survival probability in the nomogram was 0.75 (Figure 4B). This finding suggested
that the complex nomogram integrating IRLs and clinical characteristics could be effective
in predicting the survival status of LUAD. Besides, we compared several IRL prognostic
models and relevant nomograms of LUAD in a published paper [21–24]. Similarly, the
nomogram AUC values of these four TCGA entire datasets were more than 0.70, but the
nomogram AUC of GSE120622 was between 0.58 and 0.75 (Figure S4).

3.4. Immune Landscape and Efficacy of ICI

In order to characterize the immune environment of patients with LUAD, the pro-
portions of infiltrating immune cells were compared between low- and high-risk groups
in all samples using the CIBERSORT and LM22 signature matrices. The low-risk group
had higher percentages of naive B cells, plasma cells, CD8+ T cells, and activated memory
CD4+ T cells but lower percentages of M0 macrophages, M2 macrophages, and activated
dendritic cells than the high-risk group (Figure 5A). Additionally, the low-risk group was
found to have higher stromal scores (p < 0.001), immune scores (p < 0.001), and ESTIMATE
scores (p < 0.001), but lower tumor purity (p < 0.001) than the high-risk group (Figure 5B–E).

To explore the ability of the IRL signature in the prediction of immunotherapeutic
sensitivity for LUAD patients, IPS values, which were calculated based on immunogenicity
from the TCIA database, were analyzed in the risk model. The outcome showed that
the potentials of the low-risk group to respond to anti-PD-1/PD-L1 (p < 0.001) and anti-
cytotoxic T lymphocyte-associated antigen-4 (CTLA4, p < 0.001) treatment were higher
than those of the high-risk group (Figure 6A,B). In accordance with these results, we found
that the expression levels of PD-1 (p < 0.001), PD-L1 (p < 0.001), and CTLA4 (p < 0.001)
were relatively increased in the low-risk group (Figure 6C–E). Thus, ICI treatment might be
effective for patients with LUAD with low-risk scores. However, the expression profiles of
the amplification of murine double minute (MDM) 2 and 4 (p = 0.002, p < 0.001), which were
markers for HPD, were modestly elevated in low-risk patients (Figure S5), although no
difference in DNA methyltransferase 3 alpha (DNMT3A), Cyclin D1, or Fibroblast Growth
Factor (FGF) 3/4/19 was observed.

After conducting gene set enrichment analysis (GSEA) on the mRNAs of all LUAD
samples, we found that more pathways in the low-risk group were upregulated compared
with those in the high-risk group (Figure S6). Compared with the high-risk group, the
low-risk group had significantly enriched V-Ki-Ras2 Kirsten rat sarcoma viral oncogene ho-
molog (KRAS) signaling, interferon-gamma response, interleukin (IL) 2–signal transduction,
and activator of transcription (STAT) 5 signaling. Moreover, class II major histocompati-
bility complex transactivator (CIITA) and interferon alpha and beta receptor subunit 2, as
target mRNAs of AC104971.3 and LY86-AS1, took part in the interferon-gamma response,
implying that IRLs might regulate the relevant pathways via target mRNAs and play an
essential role in the pathogenesis of LUAD.
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Figure 3. Stability and independence of the prognostic risk model. Survival times of patients
among different (A,B) age, (C,D) gender, and (E,F) TNM stage subgroups. (G) Univariate and
(H) multivariate Cox regression analyses on risk score, age, gender, M, N, T, and TNM stages.
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Figure 4. Nomogram integrating risk score and clinical features. (A) Nomogram for predicting 1-, 3-,
and 5-year overall survival rates of patients with LUAD. (B) ROC curves of the risk score, TNM stage,
and nomogram. AUC, areas under the ROC curve. FPR, false positive rate. TPR, true positive rate.

Figure 5. Immune microenvironment in the whole TCGA–LUAD set. Comparison of (A) 22 immune
cell proportion, (B) stromal score, (C) immune score, (D) ESTIMATE score, and (E) tumor purity.
Note: **** means p < 0.0001. *** means p < 0.001. ** means p < 0.01. * means p < 0.05. - means
no significant.
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Figure 6. Predictive response to immune checkpoint inhibitor (ICI) treatment in patients with LUAD.
Relative probabilities of responding to (A) anti-PD-1/PD-L1 and (B) anti-CTLA4 treatments. The
mRNA levels of (C) PD-1, (D) PD-L1, and (E) CTLA4.

4. Discussion

Infiltrating immune cells in the tumor microenvironment are critical in cancer pro-
gression [25], and the quantitative evaluation of tumor immune infiltrates is still a major
challenge using the traditional immunohistochemistry immunoscoring approach. Ad-
ditionally, ICI has become the first-line treatment for advanced LUAD that is refractory
to targeted therapy [5]. Nowadays. PD-L1 expression, tumor somatic mutation burden,
mismatch repair deficiency, and microsatellite instability have been widely applied to
predict ICI efficacy. However, several concerns, including the poor uniformity of detection
technologies and different cutoff values for positivity across clinical trials, have limited its
utility [26]. In recent years, IRLs have been proven to be indispensable in tumor progression
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and oncogenic pathways by regulating gene expression and can be used as a potential
prognostic biomarker for cancer [27].

Immunologic features, which actively participate in cancer development, can more ef-
fectively predict patients’ survival than traditional intrinsic features of tumors [28]. With the
dramatic development of gene sequencing technology, molecular profiling-based signatures
to infer immune infiltration have become a reality. Several previous studies constructed
risk models with novel IRLs that can predict the prognosis in patients with LUAD. In most
of these studies, IRLs are obtained through different expressions combined with Pearson
correlation or interaction prediction with immune-related mRNA expression profiles from
databases. Another study selected lncRNAs that are upregulated in immune cell lines but
downregulated in NSCLC cell lines as tumor-infiltrating IRLs [29]. LncRNAs are suggested
to participate in the immune response by regulating the expression of target mRNAs and
interacting with chromatin, proteins, and miRNA in various ways [30,31]. Hence, only a
few IRLs have been found to play a role in LUAD so far, and high-throughput methods for
the identification of lncRNAs affecting immune activity are still largely unknown.

Therefore, our study of several novel IRLs is an essential complement to identifying
their roles in immune regulation and immunotherapy targets in LUAD. Here, we assessed
lncRNAs directly related to immune response, which are systematically identified via a
computational algorithm and represent immune pathways and distinct immune cell types
in the immLnc database. Afterward, we extracted IRLs and relevant clinical information
from TCGA–LUAD to construct a risk signature via integrative analysis and then divided
patients with LUAD into low- and high-risk groups. Comparing the survival outcomes of
patients classified by the six IRLs, we supposed that the risk score model and integrated
nomogram have a reliable and stable prediction performance. Moreover, cytotoxic T cells,
Th1 helper cells, B cells, and plasma cells eliminate tumor cells in the antitumor immune
milieu, whereas specific macrophages and regulatory T cells can accelerate immune escape
and tumor growth in the protumorigenic immune milieu [32]. Protective CD8+ T cell
responses can be induced by activated dendritic cells in the inflammation of normal
tissue [33], whereas an immune reaction to lung cancer in the presence of mature dendritic
cells (activated or not) is necessary to organize cytotoxic T cells, which are associated with
a good clinical outcome and response to therapeutics [34]. Similarly, we found that patients
with low-risk immune signatures have long OS; increased B cells, plasma cells, CD8+ T
cells, and CD4+ T cells; and minimal macrophages and activated dendritic cells infiltrated
in tumors.

Some similar published papers studied IRLs by performing coexpression analysis
between lncRNAs from TCGA and immune-related genes from MsigDB, ImmPort, or the
GSEA database, of which only three papers were validated by GEO microarray data [22,23]
or clinical studies [21]. We retrieved IRLs for LUAD from the ImmLnc database, which was
established by integrating tumor purity estimation, GSEA, and powerful algorithms [9],
and uninvestigated IRLs were found by directly retrieving IRLs from ImmLnc and TCGA
and integrating bioinformatics. The risk model and nomogram presented here were
validated by GEO sequencing data and our clinical study, suggesting that the IRL signature
is available in Chinese patients with LUAD.

An effective IRL-based model for patient selection before ICI treatment in LUAD
has not been studied yet. A considerable proportion of patients with NSCLC have a
poor response to immunotherapy despite the high expression of immune checkpoint
molecules [35]. Thus, developing comprehensive predictive biomarkers is indispensable.
The complex interaction between tumor immune infiltrates and the immunotherapy re-
sponse affects NSCLC [36]. For instance, more CD8+ T cell infiltration in lung cancer tissue
is associated with a superior treatment response from pembrolizumab treatment [37]. In
our model, patients in the low-risk group have increased IPS values for PD1/PD-L1 and
CTLA4 blockers, and the expression of immune checkpoint molecules may be associated
with improved sensitivity to ICI treatment, suggesting that their tumors are in a preacti-
vated immune status. Thus, six IRLs can be useful for choosing suitable immunotherapy.
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Additionally, HPD is a novel pattern of tumor progression, with unexpected and rapid
tumor growth, poor prognosis of patients, and high rates of fatality, which have limited
the clinical application of ICI [6]. Considering the limitations of ICI due to HPD incidence,
valid biomarkers are urgently needed to predict the occurrence of HPD to improve ICI
efficacy. To date, several tumor cell biomarkers, including MDM2/4, epidermal growth
factor receptor mutation, DNMT3A, and FGF3/4/19, have been shown to be associated
with HPD [38]. We found that the expression profiles of MDM2 and MDM4, which regulate
p53 and apoptotic responses to cellular injuries when overexpressed [39], are modestly
elevated in low-risk patients. This finding implies that patients with a minimal IRL signa-
ture may gain benefits from ICI treatment, but some patients may have a potential risk of
HPD. Hence, multiple factors influencing the efficacy of ICI should be comprehensively
considered to optimize treatment regimens.

To explore the possible underlying mechanisms, we conducted GSEA on targeted
mRNAs of IRLs. KRAS signaling, interferon-gamma response, and IL2–STAT5 signaling, as
potential positive predictors of antitumor immunity [40], are enriched in the low-risk group.
CIITA, the target mRNA of AC104971, plays an important role in the interferon-gamma
response. Consistent with our result, the loss of CIITA converts lung cancer from anti-PD-1-
sensitive to anti-PD-1-resistant [41]. Our study suggests that these IRLs may regulate target
mRNAs and play a functional role in the sensitivity to ICI treatment for LUAD.

Even with the above promising findings, some limitations remain in this study. First,
the prognostic model is established by public databases, which may increase the bias.
Even though the model has been validated with the internal database, external database,
and single-center case-control study, the optimal cut-off value and predictive capability
of the six IRLs demand further confirmation in prospective clinical trials with complete
survival time based on a large sample size. Second, the functions of the six IRLs have
not been validated. Thus, functional and mechanistic experiments are needed to support
our findings.

In conclusion, the six-IRL signature is a promising biomarker for prognosis prediction
and facilitates the management of immunotherapy in LUAD. Patients with low risk might
gain benefits from ICI, although some have a risk of hyperprogressive disease.
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