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Abstract: The early detection of hepatic fibrosis is of critical importance. Ultrasound backscattered
radiofrequency signals from the liver contain abundant information about its microstructure. We
proposed a method for characterizing human hepatic fibrosis using one-dimensional convolutional
neural networks (CNNs) based on ultrasound backscattered signals. The proposed CNN model was
composed of four one-dimensional convolutional layers, four one-dimensional max-pooling layers,
and four fully connected layers. Ultrasound radiofrequency signals collected from 230 participants
(F0: 23; F1: 46; F2: 51; F3: 49; F4: 61) with a 3-MHz transducer were analyzed. Liver regions of interest
(ROIs) that contained most of the liver ultrasound backscattered signals were manually delineated
using B-mode images reconstructed from the backscattered signals. ROI signals were normalized
and augmented by using a sliding window technique. After data augmentation, the radiofrequency
signal segments were divided into training sets, validation sets and test sets at a ratio of 80%:10%:10%.
In the test sets, the proposed algorithm produced an area under the receive operating characteristic
curve of 0.933 (accuracy: 91.30%; sensitivity: 92.00%; specificity: 90.48%), 0.997 (accuracy: 94.29%;
sensitivity: 94.74%; specificity: 93.75%), 0.818 (accuracy: 75.00%; sensitivity: 69.23%; specificity:
81.82%), and 0.934 (accuracy: 91.67%; sensitivity: 88.89%; specificity: 94.44%) for diagnosis liver
fibrosis stage≥F1, ≥F2, ≥F3, and≥F4, respectively. Experimental results indicated that the proposed
deep learning algorithm based on ultrasound backscattered signals yields a satisfying performance
when diagnosing hepatic fibrosis stages. The proposed method may be used as a new quantitative
ultrasound approach to characterizing hepatic fibrosis.

Keywords: ultrasound backscattered signal; convolutional neural network; deep learning; hepatic
fibrosis; ultrasound tissue characterization

1. Introduction

Hepatic fibrosis is reversible in the early stage, so early detection of it is of critical
importance. The evaluation of hepatic fibrosis stages is essential for prognosis, surveillance,
and treatment decisions in patients with chronic liver disease [1]. Currently, liver biopsy [2]
is the gold standard for liver fibrosis assessment. However, it has some limitations. First,
it is an invasive test with the possibility of severe complications [3]. In addition, biopsy
specimens represent a limited area of the whole liver, and a sampling error may occur.

Diagnostics 2022, 12, 2833. https://doi.org/10.3390/diagnostics12112833 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12112833
https://doi.org/10.3390/diagnostics12112833
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-1054-1583
https://orcid.org/0000-0003-0570-8473
https://doi.org/10.3390/diagnostics12112833
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12112833?type=check_update&version=1


Diagnostics 2022, 12, 2833 2 of 11

Thus, a noninvasive detection method for liver fibrosis is highly desired. Among different
medical imaging modalities, ultrasound imaging is frequently used because of its real-time
performance, low cost, easy access, and absence of ionizing radiation.

B-mode ultrasound imaging is widely available for hepatic fibrosis assessment. As
an important branch of machine learning [4], deep learning uses computational models
to extract high-throughput features from a large amount of raw data. In recent years, the
continuous improvement in computer hardware has broadened the applications of deep
learning. Convectional machine learning techniques usually used hand-crafted features
to train the prediction models. In contrast, deep learning techniques could automatically
extract abundant features for prediction in an end-to-end way. Deep learning [5] models
based on convolutional neural networks (CNNs) have been used for the analysis of B-
mode ultrasound images [6–9]. Lee et al. [10] used CNNs to assess patients’ fibrosis stages
by processing 13,608 B-mode images from 3446 liver fibrosis patients. Their networks
obtained an accuracy of 76.4% and an area under the receive operating characteristic curve
(AUC) of 0.857 on the test set. However, B-mode ultrasound imaging is limited by its
qualitative nature.

A tissue can be modeled as an ensemble of scattering particles (i.e., scatterers), and
the interaction of incident ultrasound waves with tissue scatterers can be characterized
by the backscattered radiofrequency signals [11,12]. Compared with B-mode imaging and
image post-processing strategies, ultrasound backscattered radiofrequency signals are the
most original information-carriers with regard to the analyzed tissue. The correlations be-
tween backscattered signals and tissue microstructures can be utilized to identify structural
alterations in tissues that are not evident on B-mode ultrasound images [11]. Ultrasound
backscattered signals have been analyzed for tissue characterization or disease diagno-
sis [13], e.g., for the diagnosis of breasts [14] or for monitoring the response of tumors to
chemotherapy [15]. Ultrasound backscattered signals are the original echo signals received
by the ultrasound transducer and contain more information than conventional B-mode
ultrasound images.

Recently, deep learning based on ultrasound backscattered radiofrequency signals has
been investigated. Luo et al. [16] analyzed 274 cases of patients’ ultrasound backscattered
signals with CNNs to assess their osteoporosis, and the performance of their algorithm
is much higher than that of traditional diagnostic methods. Han et al. [17] used one-
dimensional CNNs [18] to analyze 204 patients’ fatty liver signals and gained an accuracy
of 96% on the test set. Nguyen et al. [1] obtained fatty liver ultrasound backscattered
signals of 52 rabbits and utilized one-dimensional CNNs to extract features and implement
classification with an accuracy of 74% on the test set, exceeding 59% by the support vector
machine [19]. Sanabria et al. [20] conducted a comparative experiment on 31 patients’
fatty liver backscattered signals. They utilized one-dimensional, two-dimensional, and
three-dimensional CNNs to analyze the different representations of signals and concluded
that different representations of data have an impact on the performance of the networks.
However, only 31 cases of data were involved. Cheng et al. [21] used one-dimensional bidi-
rectional recurrent neural networks [22] to analyze 160 rats’ hepatic fibrosis backscattered
signals and gained accuracies of above 83% and 80% on the training set and the test set,
respectively. However, the feasibility of using ultrasound backscattered signals and deep
learning to evaluate human liver fibrosis remains unknown.

In this study, we proposed a method to evaluate human liver fibrosis using ultra-
sound backscattered radiofrequency signals and one-dimensional CNNs. The proposed
CNN models were trained and evaluated on ultrasound radiofrequency signals collected
from 230 participants. Experimental results showed that the proposed method yielded a
satisfying performance for diagnosing human liver fibrosis.

2. Materials and Methods

Figure 1 shows the algorithmic steps of the proposed method. B-mode ultrasound
images were reconstructed from backscattered radiofrequency signals. The region of interest
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(ROI) was manually outlined to obtain the signals within the ROI, i.e., ROI signals. The
data normalization technique was introduced to normalize the ROI signals, which can
improve the performance and training stability of the model. Specifically, for a frame of
ROI signals, X, the min–max normalization method was used:

X′ = (X− Xmin)/(X− Xmax), (1)

where X’ is the normalized signal, and Xmin and Xmax are the minimum and maximum
values of X. Data augmentation [23] has been frequently used in deep learning. In this
study, a data augmentation method was introduced to balance the dataset distribution of
different hepatic fibrosis stages, which will be described in Section 2.2. The preprocessed
signals of training sets were fed into the one-dimensional CNN to train different CNN
models. The preprocessed signals of testing sets were input to the trained CNN models
to predict the classification. In this study, we trained four kinds of one-dimensional CNN
models corresponding to four kinds of hepatic fibrosis classification experiments: (i) ≥F1,
namely binary classification of F0 vs. F1–F4; (ii) ≥F2, namely, binary classification of F0–F1
vs. F2–F4; (iii) ≥F3, namely, binary classification of F0–F2 vs. F3–F4; and (iv) ≥F4, namely,
binary classification of F0–F3 vs. F4.
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Figure 1. Algorithmic steps of the proposed method. Signal preprocessing was conducted to obtain
training samples of ROI signals. The preprocessed signals are fed into the CNN for model training or
testing. Conv = convolution; RF = radiofrequency; ROI = region of interest; CNN = convolutional
neural network.

2.1. Clinical Data

Clinical ultrasound backscattered radiofrequency data of liver fibrosis, used in our
previous study [24], were revisited. The data collection was approved by the Institutional
Review Board of Chang Gung Memorial Hospital in Taiwan. All participants signed an
informed consent form, and the experimental method was performed in accordance with
the approved guidelines. A clinical ultrasound scanner (Model 3000, Terason, Burlington,
MA, USA) was used to collect the ultrasound radiofrequency signals of the participants. The
center frequency of the convex-array transducer was 3 MHz, and the sampling frequency
was 12 MHz. Each frame of backscattered signal consisted of 256 A-lines. Each A-line
contained 1247 sampling points. Liver fibrosis was semi-quantitatively evaluated using the
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liver biopsy and the METAVIR scoring system, which was the clinical gold standard for
staging liver fibrosis: F0 = no fibrosis, F1 = portal fibrosis with no septa, F2 = portal fibrosis
with few septa, F3 = bridging fibrosis with many septa, and F4 = cirrhosis (nodular stage).
The METAVIR scores of F0–F4 were used as the reference standard for diagnosing the liver
fibrosis stages when using the proposed method. A total of 230 cases of radiofrequency
data (F0 = 23, F1 = 46, F2 = 51, F3 = 49, F4 = 61) were included in this study.

2.2. Data Augmentation

Data augmentation methods were introduced to solve the unbalanced data distribution
problem and avoid overfitting [25] when training models. Taking ≥F1 as an example, the
amount of F0 signals, N0, was far less than that of F1–F4, N1. To avoid overfitting, the scale
of F0 data needed to be augmented by Naug times to match that of F1–F4, i.e., Naug = N1/ N0.
Figure 2 shows the process of our data augmentation. The ROI was automatically set to
1100*256 (axial*lateral). We extracted signals from the ROI and used a sliding window sized
1024*256 (axial*lateral) to obtain Naug frames of augmented radiofrequency data sized
1024*256 (axial*lateral). The window (purple window in Figure 2) was slid Naug times in a
step of (1100–1024)/Naug. One frame of radiofrequency data sized 1024*256 (axial*lateral)
was taken each time, enabling us to obtain Naug frames of augmented radiofrequency data.
Note that the size 1024*256 was experimentally set. After data augmentation, the training
sets, validation sets, and test sets were divided in accordance with a ratio of 80%:10%:10%.
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2.3. Network Structure

In this study, we proposed a one-dimensional CNN algorithm for hepatic fibrosis
evaluation (Figure 1). With the combination of convolutional layers and fully connected
layers, our algorithm could perform feature extraction and classification simultaneously,
simplifying diagnosis workflow and increasing classification efficiency.

Figure 1 shows the structure of the network, which was composed of four one-
dimensional convolutional layers, four one-dimensional max-pooling layers, and four
fully connected layers. Features extracted by convolutional layers and max-pooling layers
were integrated into a one-dimensional feature vector, which was input into the fully
connected layers to output the prediction. Unlike convolutional layers and pooling layers,
fully connected layers [26] specialized in global features.
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Convolutional layers employed different kinds of convolutional kernels to extract
features, the surface layers for superficial features, and deep-seated layers for underlying
features. Moreover, convolutional layers were skilled in generalization. Their capability
was commonly referred to as translation invariance, making them excel at handling local
features and freeing them from worrying about the locations of the features. This would
cost less when training networks.

As a method for down-sampling, the max-pooling layers were mainly used for avoid-
ing overfitting. Too many parameters could lead to a poor generalization ability of the
networks, yet max-pooling layers were capable of decreasing parameters. In addition,
max-pooling layers were also characterized by translation invariance, so they could deal
with local features in cooperation with convolutional layers.

Activation functions brought in non-linearity, which contributed to a more extended
hypothesis space, so networks could produce a more accurate classification. In our net-
works, we used Tanh [27] as the activation function. With a rather fast rate of convergence,
Tanh could effectively avoid loss value vibration.

2.4. Network Configuration

The collected ultrasound backscattered signals were pre-processed using MATLAB
2019. Our deep learning models were trained and tested on a personal computer (PC).
Our PC is equipped with Intel(R) Xeon(R) W-2104 CPU @ 3.20 GHz, Nvidia Quadro P400
GPU, and 16 GB RAM. The deep learning framework was Pytorch (version 1.11.0). In our
experiments, the batch size was set to 256 and the epoch to 100. It took 50 s to run an
epoch. We used Adam [28] (learning rate: 10–3, betas: (0.9, 0.999)) as the gradient optimizer
and the cross-entropy function [29] as the loss function. Our networks had a simplified
structure with only 14,692 parameters. Running one single radiofrequency signal costed
about 0.55 ms. Therefore, the proposed method can be implemented for evaluating liver
fibrosis in real time.

Figure 3 illustrates the prediction process by the trained one-dimensional CNN model.
For a frame of test set of radiofrequency signals sized 1024*256, each of the 256 segments of
signals was input into the trained CNN model, so 256 predictions were obtained. Let nC and
nW denote the correct and wrong predictions. If the overall prediction p = nC/(nC + nW)
was greater than 0.5, the frame of test set was determined correctly predicted.

2.5. Evaluation Metrics

The performance of our algorithm for diagnosing hepatic fibrosis was evaluated using
accuracy (ACC), sensitivity (SEN), specificity (SPE), the receiver operating characteristic
(ROC) curve [30], and the AUC [30]. Classification results of samples were divided into
four categories: (ii) True Positive (TP), namely, an outcome where the model correctly
predicted the positive class; (ii) True Negative (TN), namely, an outcome where the model
correctly predicted the negative class; (iii) False Positive (FP), namely, an outcome where
the model incorrectly predicted the positive class; and (iv) False Negative (FN), namely, an
outcome where the model incorrectly predicted the negative class.

ACC is a metric that summarizes the performance of a classification model as the
number of correct predictions divided by the total number of predictions:

ACC = (TP + TN)/(TP + TN + FP + FN). (2)

SEN is defined as
SEN = TP/(TP + FN). (3)

SPE is defined as
SPE = TN/(TN + FP). (4)

ROC analysis is a graphical approach to analyzing the performance of a classifier.
It uses a pair of statistics—true positive rate and false positive rate—to characterize the
classifier’s performance. AUC measures the entire two-dimensional area underneath the
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entire ROC curve from (0,0) to (1,1). It provides an aggregate measure of performance
across all possible classification thresholds. The higher the value of the AUC, the better the
ability to perform classifications. The ROC analysis using the 95% confidence interval was
performed to calculate the AUC in diagnosing each stage of hepatic fibrosis.
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3. Results

Figure 4 shows the loss values as a function of training epochs for the training sets
and validation sets. It can be seen that both the training loss and the validation loss were
decreasing for increasing epochs and reached convergence when the number of epochs
was equal to 100. This implied that overfitting was effectively suppressed by the proposed
data augmentation method, even though the number of cases was limited.

Table 1 shows the number of training sets, validation sets, and test sets for different
fibrosis stage classifications after data augmentation.

Table 1. Number of training sets, validation sets, and test sets for different fibrosis stage classifications.

Training Sets Validation Sets Test Sets

≥F1 307 46 46
≥F2 243 35 35
≥F3 189 24 24
≥F4 280 36 36

Table 2 shows the hepatic fibrosis classification performance of the proposed method
on the test set. For fibrosis stage ≥F1, our algorithm obtained an AUC of 0.933 (ACC:
91.30%; SEN: 92.00%; SPE: 90.48%). For fibrosis stage ≥F2, our algorithm obtained an AUC
of 0.997 (ACC: 94.29%; SEN: 94.74%; SPE: 93.75%). For fibrosis stage ≥F3, our algorithm
obtained an AUC of 0.818 (ACC: 75.00%; SEN: 69.23%; SPE: 81.82%). For fibrosis stage
≥F4, our algorithm obtained an AUC of 0.934 (ACC: 91.67%; SEN: 88.89%; SPE: 94.44%). It



Diagnostics 2022, 12, 2833 7 of 11

can be seen that the proposed method yielded an improved performance compared to the
networks of Han et al. [17] and Nguyen et al. [1]. Figure 5 shows the ROC curves of the
four classifications of hepatic fibrosis stages. These results demonstrated that our algorithm
could yield an accurate classification of hepatic fibrosis stages.

Diagnostics 2022, 12, x FOR PEER REVIEW 7 of 12 
 

 

3. Results 

Figure 4 shows the loss values as a function of training epochs for the training sets 

and validation sets. It can be seen that both the training loss and the validation loss were 

decreasing for increasing epochs and reached convergence when the number of epochs 

was equal to 100. This implied that overfitting was effectively suppressed by the proposed 

data augmentation method, even though the number of cases was limited. 

 

Figure 4. The values of training and validation loss as a function of training epochs for fibrosis stage 

≥F1 (a), ≥F2 (b), ≥F3 (c), ≥F4 (d). 

Table 1 shows the number of training sets, validation sets, and test sets for different 

fibrosis stage classifications after data augmentation. 

Table 1. Number of training sets, validation sets, and test sets for different fibrosis stage classifica-

tions. 

 Training Sets Validation Sets Test Sets 

≥F1 307 46 46 

≥F2 243 35 35 

≥F3 189 24 24 

≥F4 280 36 36 

Table 2 shows the hepatic fibrosis classification performance of the proposed method 

on the test set. For fibrosis stage ≥F1, our algorithm obtained an AUC of 0.933 (ACC: 

91.30%; SEN: 92.00%; SPE: 90.48%). For fibrosis stage ≥F2, our algorithm obtained an AUC 

of 0.997 (ACC: 94.29%; SEN: 94.74%; SPE: 93.75%). For fibrosis stage ≥F3, our algorithm 

obtained an AUC of 0.818 (ACC: 75.00%; SEN: 69.23%; SPE: 81.82%). For fibrosis stage 

≥F4, our algorithm obtained an AUC of 0.934 (ACC: 91.67%; SEN: 88.89%; SPE: 94.44%). It 

can be seen that the proposed method yielded an improved performance compared to the 

networks of Han et al. [17] and Nguyen et al. [1]. Figure 5 shows the ROC curves of the 

four classifications of hepatic fibrosis stages. These results demonstrated that our algo-

rithm could yield an accurate classification of hepatic fibrosis stages. 

Figure 4. The values of training and validation loss as a function of training epochs for fibrosis stage
≥F1 (a), ≥F2 (b), ≥F3 (c), ≥F4 (d).

Table 2. Hepatic fibrosis classification performance of the proposed method on the test set, compared
to the networks of Han et al. [17] and Nguyen et al. [1].

Fibrosis Stage Model ACC SEN SPE AUC

Ours 91.30% 92.00% 90.48% 0.933
≥F1 Han et al. [17] 89.13% 92.00% 85.71% 0.903

Nguyen et al. [1] 86.96% 92.00% 80.95% 0.897

Ours 94.29% 94.74% 93.75% 0.997
≥F2 Han et al. [17] 91.43% 94.74% 90.00% 0.980

Nguyen et al. [1] 88.57% 100.00% 75.00% 0.990

Ours 75.00% 69.23% 81.82% 0.818
≥F3 Han et al. [17] 66.67% 45.45% 84.62% 0.706

Nguyen et al. [1] 66.67% 54.54% 76.92% 0.517

Ours 91.67% 88.89% 94.44% 0.934
≥F4 Han et al. [17] 88.89% 77.78% 100.00% 0.892

Nguyen et al. [1] 86.11% 88.89% 83.33% 0.880
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4. Discussion

In this study, we proposed an approach that used one-dimensional CNN models to
analyze liver ultrasound backscattered signals collected from participants. By considering
the radiofrequency signal as a one-dimensional signal segment, a large number of segments
were extracted from 230 cases of backscattered data to train and test the deep learning
networks. The algorithm showed promising performance in the test set. The ACC of
our CNN model for ≥F1, ≥F2, ≥F3, and ≥F4 was 91.30%, 94.29, 75.00%, and 91.67,
respectively, with an improved performance compared to the networks of Han et al. [17]
and Nguyen et al. [1] (Table 2). It was demonstrated that using CNNs trained on ultrasound
backscattered signals is feasible when evaluating human liver fibrosis. This may be due to
the fact that ultrasound backscattered radiofrequency signals are the original information-
carriers regarding the propagated tissue and CNNs can automatically extract abundant
information from radiofrequency signals. However, we also observed that the performance
of our algorithm on fibrosis stage ≥F3 is below the average, the exact cause of which is not
yet well understood. A possible explanation is that our method could be insensitive to liver
fibrosis changes between F0–F2 and F3–F4. Note that the number of training sets of ≥F3 is
relatively smaller (Table 1). Except for that, our algorithm presented a better performance
for diagnosing fibrosis stage ≥F1, ≥F2, and ≥F4.

It should be noted that directly classifying liver fibrosis stages into one of F0–F4 is
quite challenging. We conducted corresponding experiments and found that the best
average accuracy for the direct classification was only 25%. That is why we used four
binary classifications in this study, i.e., ≥F1, ≥F2, ≥F3, and ≥F4.

Currently, the feasibility of using one-dimensional CNNs and ultrasound backscat-
tered signals to evaluate human liver fibrosis stages remains unclear. Cheng et al. [21]
applied bidirectional long short-term memory networks to analyze hepatic fibrosis signals
from rats and then staged the severity of their liver fibrosis. Ultrasound backscattered
signals were collected using the L6-15 linear array transducer with a center frequency of
12.0 MHz [21]. Cheng et al. [21] collected 160 cases of signals (F0: 16; F1: 30; F2: 34; F3: 32;
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F4: 48). They used 120 cases for training the model, 30 for validation, and 10 for testing.
Their algorithm achieved accuracies of 80.7%, 90.0%, 89.7%, 93.3% and AUCs of 0.935, 0.949,
0.978, 0.990 on the test set for diagnosing fibrosis stage ≥F1, ≥F2, ≥F3, ≥F4, respectively.
In this study, we used a convex-array transducer with a center frequency of 3 MHz, and
the ultrasound backscattered signals were collected from liver fibrosis patients.

Our network was inspired by Han et al. [17] and Nguyen et al. [1]. The network of
Han et al. [17] consisted of three convolutional layers, three max-pooling layers, and two
fully connected layers. The network of Nguyen et al. [1] consisted of four convolutional
layers, four max-pooling layers, and three fully connected layers. In accordance with our
experiments, our network was set to contain four convolutional layers, four max-pooling
layers, and four fully connected layers. Compared to the network of Han et al. [17], our
network may extract deeper features with more convolutional layers, and the reception
field may be improved by more max-pooling layers. Compared to the networks of Han
et al. [17] and Nguyen et al. [1], the more fully connected layers of our network may help
in improving the nonlinearity of the model. Another difference from the networks of Han
et al. [17] and Nguyen et al. [1] was that we used a smaller convolutional kernel. Such a
smaller kernel may reduce the amount of model parameters, and the receptive field of the
CNN model may be expanded when deeper convolutional layers are used.

Compared to B-mode ultrasound images, ultrasound backscattered signals have
several potential advantages. Firstly, ultrasound backscattered signals contain more in-
formation than B-mode images [31] or the envelope data. In addition, they are also less
dependent on system settings and postprocessing operations, which can contribute to their
high robustness. For instance, backscattered signals are not influenced by the dynamic
range setting and filtering operations that affect the presentations of B-mode images. Al-
though training the one-dimensional CNN models takes a considerable amount of time,
the trained models can be run in real time to analyze new data.

A quantitative analysis of hepatic fibrosis is a challenging task due to its special
pathology condition. Our study indicated that, with the powerful mapping capability
of deep learning models, liver fibrosis can be quantitatively assessed by using patients’
ultrasound backscattered signals as the model input. Since the ability to process huge
amounts of data was developed, deep learning has shown advantages in classification
tasks [32]. In contrast to the conventional tissue characterization methods [33], there are
several advantages of the proposed method. Firstly, instead of performing a qualitative
analysis of liver fibrosis, deep learning methods are designed to conduct a quantitative
analysis. Secondly, conventional methods are often learnt for computer-vision-based
detection and characterization, which can be easily influenced by the presentation and
post-processing of ultrasound images. On the contrary, the backscattered signals are the
original signals before such operations as envelope detection, logarithmic compression,
and scan conversion. Thirdly, deep learning models do not require the manual calculation
and selection of features of the training data, but automatic extraction of the features of
the data. Moreover, our networks have the characteristics of a simplified structure, a small
number of parameters, and less computational consumption.

This study has limitations. Firstly, the experimental data were acquired from a single
scanner. The cross-platform generalizability of the proposed algorithm remains to be tested.
Secondly, our algorithm produced a relatively worse performance for diagnosing fibrosis
stage ≥F3. In future work, we would collect data from other scanners for validation of the
proposed method, and try to improve the performance of ≥F3.

5. Conclusions

In conclusion, one-dimensional CNN models can be developed and trained to accu-
rately identify liver fibrosis using raw ultrasound backscattered data as model input. Our
preliminary results indicate that deep learning methods based on ultrasound backscattered
signals are promising in the evaluation of liver fibrosis. The proposed method may serve
as a new quantitative ultrasound approach to characterizing hepatic fibrosis. However, the
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performance of diagnosing liver fibrosis stage ≥F3 should be improved, and automatic
ROI location methods should be explored in future work. Our code will be made publicly
available at https://github.com/bmehuangy (accessed on 16 November 2022).
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