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Abstract: This study reviews the recent progress of explainable artificial intelligence for the early
diagnosis of gastrointestinal disease (GID). The source of data was eight original studies in PubMed.
The search terms were “gastrointestinal” (title) together with “random forest” or ”explainable artifi-
cial intelligence” (abstract). The eligibility criteria were the dependent variable of GID or a strongly
associated disease, the intervention(s) of artificial intelligence, the outcome(s) of accuracy and/or
the area under the receiver operating characteristic curve (AUC), the outcome(s) of variable impor-
tance and/or the Shapley additive explanations (SHAP), a publication year of 2020 or later, and
the publication language of English. The ranges of performance measures were reported to be
0.70–0.98 for accuracy, 0.04–0.25 for sensitivity, and 0.54–0.94 for the AUC. The following factors were
discovered to be top-10 predictors of gastrointestinal bleeding in the intensive care unit: mean arterial
pressure (max), bicarbonate (min), creatinine (max), PMN, heart rate (mean), Glasgow Coma Scale,
age, respiratory rate (mean), prothrombin time (max) and aminotransferase aspartate (max). In a
similar vein, the following variables were found to be top-10 predictors for the intake of almond,
avocado, broccoli, walnut, whole-grain barley, and/or whole-grain oat: Roseburia undefined, Lach-
nospira spp., Oscillibacter undefined, Subdoligranulum spp., Streptococcus salivarius subsp. thermophiles,
Parabacteroides distasonis, Roseburia spp., Anaerostipes spp., Lachnospiraceae ND3007 group undefined,
and Ruminiclostridium spp. Explainable artificial intelligence provides an effective, non-invasive
decision support system for the early diagnosis of GID.

Keywords: gastrointestinal disease; early diagnosis; artificial intelligence

1. Introduction
1.1. Gastrointestinal Disease

Gastrointestinal disease (GID) is a major cause of disease burden in the world [1–6].
GID is defined as the disease of the gastrointestinal tract, e.g., the esophagus, liver, stomach,
small and large intestines, gallbladder, and pancreas. Common GIDs are gastroesophageal
reflux disease (GERD), cancer, irritable bowel syndrome, lactose intolerance, and hiatal
hernia. Their common symptoms are bleeding, bloating, constipation, diarrhea, heartburn,
nausea, pain, and vomiting [1]. GID is reported to contribute to 8 million deaths across
the globe every year [2] and USD 120 billion of total expenditure in the United States as
of 2018 [3]. Likewise, its disability-adjusted life years (1730 per 100,000, 5.9%) ranked 8th
among 21 disease groups in Korea for the year 2015 [4], whereas its medical cost amounted
to USD 4 billion or 13% of all medical costs in the country for the year 2007 [5]. GID has a
variety of causes including: (1) bad health behavior, e.g., low-fiber diet, insufficient exercise,
disrupted routine, high-dairy diet, excessive stress; (2) unhealthy bowel habits; (3) excessive
anti-diarrheal/antacid medication; and (4) pregnancy [6].

There are two types of GID, functional and structural. In the case of functional GID, the
gastrointestinal tract looks normal but reveals motility problems in medical examination.
Its common examples include bloating, constipation, diarrhea, gas, GERD, irritable bowel
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syndrome, nausea, and poisoning. In the case of structural GID, the gastrointestinal tract
has the issues of an abnormal outlook and motility at the same time. Colorectal polyps,
colorectal cancers, diverticular disease, hemorrhoids, inflammatory bowel disease, stenosis,
and strictures belong to the category of structural GID. GID can be prevented based on
sound health behaviors, healthy bowel habits, and regular health screening such as regular
colonoscopies from the age of 45. For instance, a majority of colorectal cancers develop
when colorectal polyps, non-cancerous growths of colorectal tissues, begin to invade their
surrounding tissues. Most of these colorectal polyps can be removed with no pain based
on colonoscopy, whereas more advanced colorectal cancers require more complex surgical
operations [1,6].

1.2. Explainable Artificial Intelligence

Recently, the notions of artificial intelligence and machine learning have garnered
global attention. The definition of artificial intelligence is “the capability of a machine to
imitate intelligent human behavior” (the Merriam–Webster dictionary). As a division of
artificial intelligence, machine learning is denoted as “extracting knowledge from large
amounts of data” [7]. The artificial/deep neural network, the decision tree, the naïve
Bayesian predictor, the random forest, and the support vector machine are popular machine
learning approaches (See [7] for a detailed explanation of these approaches). Specifically,
a random forest is a group of decision trees which make majority votes on the depen-
dent variable (“bootstrap aggregation”). Let us take a random forest with 1000 decision
trees as an example. Let us assume that the original data include 10,000 participants.
Then, the training and test of this random forest takes two steps. First, new data with
10,000 participants are created based on random sampling with the replacement, and a
decision tree is created based on these new data. Here, some participants in the original
data would be excluded from the new data, and these leftovers are called out-of-bag data.
This process is repeated 1000 times, i.e., 1000 new data are created, 1000 decision trees
are created, and 1000 out-of-bag data are created. Second, the 1000 decision trees make
predictions on the dependent variable of every participant in the out-of-bag data, their
majority vote is taken as their final prediction on this participant, and the out-of-bag error
is calculated as the proportion of wrong votes on all participants in the out-of-bag data [7].
An artificial neural network is a group of neurons (information units) that are networked
based on weights. It normally has one input layer, one, two, or three intermediate layers,
and one output layer. A deep neural network is an artificial neural network with a large
number of intermediate layers, e.g., 5, 10, or even 1000 [8].

Conventional research covers a limited range of predictors for the early diagnosis of
disease, using logistic regression with an unrealistic assumption of ceteris paribus, i.e., “all
the other variables staying constant”. For this reason, emerging literature employs artificial
intelligence for the early diagnosis of disease, e.g., arrhythmia [8], birth outcome [9,10], can-
cer [11,12], comorbidity [13], depression [14], liver transplantation [15], menopause [16,17],
and temporomandibular disease [18,19]. It is free from unrealistic assumptions of “all
the other variables staying constant”. It delivers the importance values and rankings of
predictors for the early diagnosis of the dependent variable. Moreover, the notion of ex-
plainable artificial intelligence is enjoying immense popularity now. Explainable artificial
intelligence can be defined as “artificial intelligence to identify major predictors of the
dependent variable”, and there are four approaches of explainable artificial intelligence
at this point, i.e., random forest impurity importance, random forest permutation impor-
tance [20,21], machine learning accuracy importance, and Shapley additive explanations
(SHAP) [15,22–32]. Random forest impurity importance calculates the node impurity de-
crease from the creation of a branch on a certain predictor. It is a sum over all trees in a
random forest with the range of 0 and the number of all trees. Random forest permutation
importance measures the overall accuracy decrease from the permutation of data on the
predictor. It is an average over all trees in the random forest with a value of 0 to 1 [20,21].
Machine learning accuracy importance (an extension of random forest permutation impor-



Diagnostics 2022, 12, 2740 3 of 11

tance) calculates the accuracy decrease from the exclusion of data on the predictor. The
SHAP value of a predictor for a participant measures the difference between what machine
learning predicts for the probability of GID with and without the predictor [15,22–32]. For
example, let us assume in a hypothetical figure (Figure 1) that the SHAP values of diabetes
(x033) for GERD have the range of (−0.05, 0.30). Here, some participants have SHAP values
as low as −0.05, and other participants have SHAP values as high as 0.30. The inclusion of
a predictor (diabetes) into machine learning will decrease or increase the probability of the
dependent variable (GERD) by the range of −0.05 and 0.30. In other words, there exists
a positive association between diabetes and GERD in general. Random forest impurity
importance and random forest permutation importance had been the only explainable
artificial intelligence methods before machine learning accuracy importance, and the SHAP
was introduced as their extension or alternative very recently.

Diagnostics 2022, 12, x FOR PEER REVIEW 3 of 11 
 

 

permutation importance measures the overall accuracy decrease from the permutation of 

data on the predictor. It is an average over all trees in the random forest with a value of 0 

to 1 [20,21]. Machine learning accuracy importance (an extension of random forest per-

mutation importance) calculates the accuracy decrease from the exclusion of data on the 

predictor. The SHAP value of a predictor for a participant measures the difference be-

tween what machine learning predicts for the probability of GID with and without the 

predictor [15,22–32]. For example, let us assume in a hypothetical figure (Figure 1) that 

the SHAP values of diabetes (x033) for GERD have the range of (−0.05, 0.30). Here, some 

participants have SHAP values as low as −0.05, and other participants have SHAP values 

as high as 0.30. The inclusion of a predictor (diabetes) into machine learning will decrease 

or increase the probability of the dependent variable (GERD) by the range of −0.05 and 

0.30. In other words, there exists a positive association between diabetes and GERD in 

general. Random forest impurity importance and random forest permutation importance 

had been the only explainable artificial intelligence methods before machine learning ac-

curacy importance, and the SHAP was introduced as their extension or alternative very 

recently. 

 

Figure 1. SHAP summary plot. The SHAP value of a predictor for a participant measures the dif-

ference between what machine learning predicts for the probability of GERD with and without the 

predictor. For example, in this hypothetical figure, the SHAP values of diabetes (x033) for GERD 

have the range of (−0.05, 0.30). Here, some participants have SHAP values as low as −0.05, and 

other participants have SHAP values as high as 0.30. The inclusion of a predictor (diabetes) into 

machine learning will decrease or increase the probability of the dependent variable (GERD) by 

the range of −0.05 and 0.30. In other words, there exists a positive association between diabetes 

and GERD in general. 

In practice, experts in artificial intelligence use random forest impurity importance, 

random forest permutation importance, or machine learning accuracy importance to de-

rive the rankings and values of all predictors for the prediction of the dependent variable. 

Then, they employ the SHAP plots to evaluate the directions of associations between the 

predictors and the dependent variable. Linear or logistic regression used to play this role 

before the SHAP approach took it over. This is because the SHAP approach has a notable 

Figure 1. SHAP summary plot. The SHAP value of a predictor for a participant measures the
difference between what machine learning predicts for the probability of GERD with and without
the predictor. For example, in this hypothetical figure, the SHAP values of diabetes (x033) for GERD
have the range of (−0.05, 0.30). Here, some participants have SHAP values as low as −0.05, and other
participants have SHAP values as high as 0.30. The inclusion of a predictor (diabetes) into machine
learning will decrease or increase the probability of the dependent variable (GERD) by the range
of −0.05 and 0.30. In other words, there exists a positive association between diabetes and GERD
in general.

In practice, experts in artificial intelligence use random forest impurity importance,
random forest permutation importance, or machine learning accuracy importance to derive
the rankings and values of all predictors for the prediction of the dependent variable.
Then, they employ the SHAP plots to evaluate the directions of associations between the
predictors and the dependent variable. Linear or logistic regression used to play this
role before the SHAP approach took it over. This is because the SHAP approach has a
notable strength compared to linear or logistic regression: the former considers all realistic
scenarios, unlike the latter. Let us assume that there are three predictors of GERD, i.e., age,
diabetes, and (calcium channel blocker) medication. As defined above, the SHAP value
of diabetes for GERD for a particular participant is the difference between what machine
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learning predicts for the probability of GERD with and without diabetes for the participant.
Here, the SHAP value for the participant is the average of the following four scenarios
for the participant: (1) age excluded, medication excluded; (2) age included, medication
excluded; (3) age excluded, medication included; and (4) age included, medication included.
In other words, the SHAP value combines the results of all possible sub-group analyses,
which are ignored in linear or logistic regression with an unrealistic assumption of ceteris
paribus, i.e., “all the other variables staying constant”. In this context, the purpose of this
study is to review the recent progress of explainable artificial intelligence for the early
diagnosis of GID.

2. Methods

Figure 2 shows the flow diagram of this study. Eight original studies were selected
for review out of twenty-four original studies in PubMed with the search terms “gas-
trointestinal” (title) together with “random forest” or ”explainable artificial intelligence”
(abstract). The inclusion criteria of this review were: (1) the intervention(s) of the arti-
ficial/deep neural network, the decision tree, the naïve Bayesian predictor, the random
forest, and/or the support vector machine; (2) the outcome(s) of accuracy and/or the area
under the receiver operating characteristic curve for the early diagnosis of GID or a strongly
associated disease; (3) the outcome(s) of variable importance and/or the SHAP for the
early diagnosis of GID or a strongly associated disease; (4) a publication year of 2020 or
later; and (5) the publication language of English. The following summary measures were
adopted: artificial intelligence methods, sample size, data type, performance measures,
and important predictors. Accuracy denotes the proportion of correct predictions over all
observations. The area under the receiver operating characteristic curve (AUC) represents
the area under the plot of the true positive rate (sensitivity) against the false positive rate
(1-specificity) at various threshold settings.
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3. Results
3.1. Summary

The summary of the review for the eight original studies [33–40] is presented in Table 1.
The table includes five summary measures such as artificial intelligence methods, sam-
ple size, data type, performance measures, and important predictors (independent vari-
ables). The ranges of performance measures were reported to be 0.70–0.98 for accuracy,
0.04–0.25 for sensitivity, and 0.54–0.94 for the AUC. The following determinants were
discovered to be top-10 predictors of gastrointestinal bleeding in the intensive care unit:
mean arterial pressure (max), bicarbonate (min), creatinine (max), PMN, heart rate (mean),
Glasgow Coma Scale, age, respiratory rate (mean), prothrombin time (max), and amino-
transferase aspartate (max). In a similar vein, the following factors were found to be top-10
predictors for the intake of almond, avocado, broccoli, walnut, whole-grain barley, and/or
whole-grain oat: Roseburia undefined, Lachnospira spp., Oscillibacter undefined, Subdoligran-
ulum spp., Streptococcus salivarius subsp. thermophiles, Parabacteroides distasonis, Roseburia
spp., Anaerostipes spp., Lachnospiraceae ND3007 group undefined, and Ruminiclostridium
spp. The most important predictors for the prediction of early intestinal resection with
Crohn’s disease were clinical variables of age and disease behavior as well as the single
nucleotide polymorphisms of rs28785174, rs60532570, rs13056955, and rs7660164. However,
artificial intelligence is a data-driven approach, and more research is needed for more
general conclusions.

Table 1. Summary of review.

ID Method Sample
Size

Data
Type Performance Important Predictor

[33]

ANN
DT
LR *
NB
RF *
SVM

731 Numeric

Accuracy
0.79–0.87

AUC
0.54–0.76

RFVI for the prediction of preterm birth, which has a strong
association with GERD: Age, education, upper gastrointestinal

tract symptom, Helicobacter pylori, region

[34] APACHE
XGB * 5691 Numeric

Sensitivity
1.00

Specificity
0.04–0.27

AUC
0.80–0.85

SHAP for the prediction of mortality from gastrointestinal
bleeding in the intensive care unit: mean arterial pressure (max),

bicarbonate (min), creatinine (max), PMN, heart rate (mean),
Glasgow Coma Scale, age, respiratory rate (mean), prothrombin

time (max), aminotransferase aspartate (max), albumin (min),
oxygen saturation (mean), white blood cell, AlkPhos (max),

platelet (min), lactate (max), intubation, bilirubin (max),
international normalized ratio (max), vasopressor, glucose (max),

blood urea nitrogen (max), PTT (max), hemoglobin (min),
potassium

[35] RF * 340 Genomic

Accuracy
0.70

AUC
0.92

RFVI for the prediction of food intake (almond, avocado, broccoli,
walnut, whole-grain barley, whole-grain oat): Roseburia

undefined, Lachnospira spp., Oscillibacter undefined,
Subdoligranulum spp., Streptococcus salivarius subsp. thermophiles,

Parabacteroides distasonis, Roseburia spp., Anaerostipes spp.,
Lachnospiraceae ND3007 group undefined, Ruminiclostridium

spp.

[36] CB * 337 Genomic AUC
0.81–0.84

SHAP for the prediction of early intestinal resection with Crohn’s
disease: age, disease behavior (clinical predictors), rs28785174,

rs60532570, rs13056955, rs7660164 (single nucleotide
polymorphisms)

[37] RF * 71 Radiomic Accuracy
0.78–0.94

RFVI for the prediction of pneumatosis: dissecting gas in the
bowel wall, intramural gas beyond a gas-fluid/fecal level, a

circumferential gas pattern
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Table 1. Cont.

ID Method Sample
Size

Data
Type Performance Important Predictor

[38]
ANN *

LR *
RF *

405,586 Numeric Accuracy
0.93–0.98

RFVI for the prediction of preterm birth, which has a strong
association with GERD: socioeconomic status, age, region (city)

[39] RF * 710 Numeric AUC
0.76–0.80

RFVI for the prediction of COVID-19 hospitalization based on
gastrointestinal factors: aspartate transaminase, diabetes mellitus,

chronic liver disease, alanine transaminase, diarrhea, age,
bloating

[40] RF * 590 Numeric AUC
0.68

RFVI for the prediction of gastrointestinal sequelae months after
COVID-19 infection: acute diarrhea, antibiotics administration

ANN—Artificial Neural Network, AUC—Area under the Receiver Operating Characteristic Curve, CB—CatBoost,
DT—Decision Tree, LR—Logistic Regression, NB—Naïve Bayes, RF—Random Forest, RFVI—Random Forest
Variable Importance, SHAP—Shapley Additive Explanations, SVM—Support Vector Machine, XGB—XGBoost,
* Method with the best performance.

3.2. Numeric Data

This section summarizes original studies with numeric data regarding explainable
artificial intelligence for the early diagnosis of GID or a strongly associated disease. A recent
study [33] used single-center data and random forest permutation importance for the predic-
tion of preterm birth, which has a strong association with GERD. Data on 36 demographic,
socioeconomic, and clinical determinants came from Anam Hospital in Seoul, Korea, with
731 obstetric patients during January 1995—August 2018. In terms of accuracy, the random
forest (0.8681) was similar with the logistic regression (0.8736). Based on random forest
permutation importance, the major predictors of preterm birth were age (0.1211), education
(0.0332), upper gastrointestinal tract symptom (0.0274), GERD (0.0242), Helicobacter pylori
(0.0151), and region (0.0139). Likewise, a follow-up study [38] employed population data
and random forest impurity importance to confirm these findings. Retrospective cohort
data on 29 demographic, socioeconomic, and clinical determinants came from Korea Na-
tional Health Insurance Service claims data for all women who were aged 25–40 years and
gave birth for the first time as a singleton pregnancy during 2015–2017 (405,586 women).
According to random forest impurity importance, the main predictors of preterm birth
during 2015–2017 were socioeconomic status in 2014 (240.28), age in 2014 (221.13), GERD
for the years 2012 (42.24), 2014 (38.86), 2010 (37.76), 2013 (36.64), 2007 (35.01), and 2009
(34.39), region in 2014 (34.36), and GERD for the year 2006 (31.98). These studies conclude
that preterm birth has a stronger association with GERD than it does with periodontitis,
and it would be vital to promote active counseling for general GERD symptoms (neglected
by pregnant women).

A recent study [34] used multi-center data and the SHAP for the prediction of mor-
tality from gastrointestinal bleeding in the intensive care unit. The source of the data on
34 demographic and clinical factors was 5691 patients of gastrointestinal bleeding regis-
tered in the Electronic Intensive Care Unit Collaborative Research Database. The XGBoost
outperformed the APACHE IVa for prediction: specificity 0.27 vs. 0.04 at 1.00 sensitivity;
AUC 0.85 vs. 0.80. Based on the SHAP, the major predictors of mortality from gastroin-
testinal bleeding in the intensive care unit were mean arterial pressure (max), bicarbonate
(min), creatinine (max), PMN, heart rate (mean), Glasgow Coma Scale, age, respiratory rate
(mean), prothrombin time (max), aminotransferase aspartate (max), albumin (min), oxygen
saturation (mean), white blood cell, AlkPhos (max), platelet (min), lactate (max), intubation,
bilirubin (max), international normalized ratio (max), vasopressor, glucose (max), blood
urea nitrogen (max), PTT (max), hemoglobin (min), and potassium. In conclusion, explain-
able artificial intelligence provides an effective, non-invasive decision support system for
the prediction of high-risk gastrointestinal bleeding in the intensive care unit.
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Two recent studies [39,40] highlight the effectiveness of explainable artificial intel-
ligence in investigating strong associations of gastrointestinal factors with COVID-19
hospitalization or infection. The first study [39] employed single-center data and random
forest permutation importance for the prediction of COVID-19 hospitalization based on
gastrointestinal factors. Data on 19 demographic and clinical variables came from the
University Hospital in Martin, Slovakia, with 710 participants in the COVID-19 test during
February 2021–May 2021. The AUC range of the random forest was (0.76, 0.80). Based
on random forest permutation importance, the major predictors of COVID-19 hospitaliza-
tion were aspartate transaminase (0.1451), diabetes mellitus (0.0248), chronic liver disease
(0.0169), alanine transaminase (0.0110), diarrhea (0.0068), age (0.0139), and bloating (0.0011).
In a similar vein, the second study [40] utilized single-center data and random forest per-
mutation importance for the prediction of gastrointestinal sequelae months after COVID-19
infection. The source of data on 23 demographic and clinical variables was the University
Hospital in Martin, Slovakia, with 590 participants in the COVID-19 test during February
2021–October 2021. The AUC of the random forest was 0.68. According to random forest
permutation importance, the main predictors of gastrointestinal sequelae months were
acute diarrhea (0.066) and antibiotics administration (0.058).

3.3. Genomic and Radiomic Data

This section summarizes original studies with genomic and radiomic data regarding
explainable artificial intelligence for the early diagnosis of GID or a strongly associated
disease. A recent study [35] used existing literature and random forest permutation im-
portance for the prediction of intake for almond, avocado, broccoli, walnut, whole-grain
barley, and whole-grain oat. The data on 4375 amplicon sequence variants came from five
randomized control trials with 340 observations on microbiota composition. The accu-
racy and AUC of the random forest were 0.70 and 0.92, respectively. Based on random
forest permutation importance, the top 10 predictors for the intake of almond, avocado,
broccoli, walnut, whole-grain barley, and/or whole-grain oat were Roseburia undefined
(0.097), Lachnospira spp. (0.043), Oscillibacter undefined (0.039), Subdoligranulum spp. (0.039),
Streptococcus salivarius subsp. thermophiles (0.039), Parabacteroides distasonis (0.032), Roseburia
spp. (0.026), Anaerostipes spp. (0.023), Lachnospiraceae ND3007 group undefined (0.022),
and Ruminiclostridium spp. (0.022).

A recent study [36] employed multi-center data and the SHAP for the prediction of
early intestinal resection with Crohn’s disease. The source of the data on seven demo-
graphic/clinical factors and 102 single nucleotide polymorphisms was the IMPACT Study
with 337 Crohn’s disease patients during May 2017–May 2020. The AUC range of the Cat-
Boost was (0.81, 0.84). Based on the SHAP, the major predictors of early intestinal resection
with Crohn’s disease were the clinical variables of age and disease behavior as well as the
single nucleotide polymorphisms of rs28785174, rs60532570, rs13056955, and rs7660164.
Another study [37] utilized single-center data and random forest permutation importance
for the prediction of pneumatosis. The source of data on four radiomic factors was the
radiological reports of 71 pneumatosis patients between 2012 and 2019. The accuracy range
of the random forest was (0.78, 0.94). According to random forest permutation importance,
the main predictors of pneumatosis were dissecting gas in the bowel wall (0.19), intramural
gas beyond a gas–fluid/faecal level (0.15), and a circumferential gas pattern (0.12). These
studies conclude that explainable artificial intelligence, together with genomic or radiomic
data, also provides an effective, non-invasive decision support system for the prediction of
GID or a strongly associated disease.

4. Discussion

Previous studies on the early diagnosis of GID based on explainable artificial intelli-
gence had some limitations. Firstly, existing literature was characterized by single-center
data with small sample sizes. Using multi-center or population data (e.g., national health
insurance claims data) will further the horizon of research in this direction. Secondly,
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the AUC of some studies (0.68) might not be optimal as a diagnostic test yet. Thirdly,
the four approaches of explainable artificial intelligence at this point (i.e., random forest
impurity importance, random forest permutation importance, machine learning accuracy
importance, and SHAP) can lead to different results in certain circumstances. Random
forest impurity importance can vary depending on how variables are categorized, whereas
random forest permutation importance is relatively free from this possible variation [21].
This would explain why only one of the eight original studies reviewed here used random
forest impurity importance. It can be noted, however, that the random forest has a unique
strength of incorporating sequential information and that this strength is much more ap-
parent with impurity importance than with permutation importance. In this context, a
comprehensive comparison for the four approaches of explainable artificial intelligence
would be a great contribution for this line of research. Fourthly, the eight original studies
reviewed above were selected with the search terms “gastrointestinal” (title) together with
“random forest” or ”explainable artificial intelligence” (abstract). These terms would be
quite specific or broad. Employing a greater variety of search terms and comparing their
results would make a great contribution to this line of research. Fifthly, this review did
not consider other types of explainable artificial intelligence including local interpretable
model-agnostic explanations (LIME) [41].

Indeed, some suggestions for this line of research are presented here. Firstly, com-
bining different types of explainable artificial intelligence for different types of GID data
would break new ground and bring more profound clinical insights. An increasing num-
ber of research endeavors combine image, genetic, and numeric artificial intelligence for
disease diagnosis, prognosis, prevention, and management (wide and deep learning). This
strand of research involves the extensive employment of multi-input multi-out models with
Tensorflow or Keras. For example, one recent study [42] developed a glaucoma prediction
system based on convolutional neural networks extracting key image features from multi-
ple video inputs and recurrent neural networks predicting glaucoma outcomes from the
trajectory of the key image features over time. In the convolutional neural network, feature
detectors slide across input data, and their detections of certain features (their operations
of “convolution”) predict the status of a cell as normal vs. GID. In the recurrent neural
network, the current output is determined, in a “recurrent” pattern, by the current input
and the previous hidden state (here, the previous hidden state is the memory of all the past
inputs) [7,8]. Little literature is available, and more examination is needed regarding the
combination of different types of explainable artificial intelligence for different types of
GID data.

Secondly, little research has been conducted and more examination is needed on
explainable artificial intelligence for reinforcement learning. Reinforcement learning is
a branch of machine learning in which (1) the environment presents a series of rewards,
(2) an agent takes a series of actions to maximize the cumulative reward in response, and
(3) the environment moves to the next period with given transition probabilities [43]. In
fact, it has been reinforcement learning that has brought the notion of artificial intelligence
to worldwide popularity since the publication of a seminal article on Alpha-Go in 2016.
Two revolutionary ideas behind reinforcement learning were that artificial intelligence
(e.g., Alpha-Go) starts like a human player, i.e., takes a series of actions and maximizes the
cumulative reward (chance of victory) from the limited information available in limited
periods only, and that it moves far beyond the best human player ever based on the sheer
power of big data covering all human players to date. In other words, it is reinforcement
learning (or temporal difference learning in a professional language) that epitomizes the
salient characteristics of artificial intelligence as “being similar with but superior to human
intelligence” [43]. Reinforcement learning has gained immense popularity in finance given
that it does not require unrealistic assumptions but does register superb performance
compared to conventional statistical models [44]. This success has been replicated in
healthcare, covering treatment recommendation, diagnosis automation, resource allocation,
and other domains of service in chronic disease and critical care alike from both structured
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data and unstructured information [45]. However, little literature has been available, and
more investigation is needed on explainable reinforcement learning. A recent review reports
that there have been a few studies on this issue, and these studies have relied on simplified
models with easy interpretation but insufficient performance and little consideration of the
psychological and social factors behind optimization processes [46].

In summary, this study reviewed the recent progress of explainable artificial intelli-
gence for the early diagnosis of GID. The ranges of performance measures were 0.70–0.98 for
accuracy, 0.04–0.25 for sensitivity, and 0.54–0.94 for the AUC. The following determinants
were top-10 predictors of gastrointestinal bleeding in the intensive care unit: mean arterial
pressure (max), bicarbonate (min), creatinine (max), PMN, heart rate (mean), Glasgow
Coma Scale, age, respiratory rate (mean), prothrombin time (max), and aminotransferase
aspartate (max). The following factors were top-10 predictors for the intake of almond, avo-
cado, broccoli, walnut, whole-grain barley, and/or whole-grain oat: Roseburia undefined,
Lachnospira spp., Oscillibacter undefined, Subdoligranulum spp., Streptococcus salivarius subsp.
thermophiles, Parabacteroides distasonis, Roseburia spp., Anaerostipes spp., Lachnospiraceae
ND3007 group undefined, and Ruminiclostridium spp. Likewise, most important predic-
tors for the prediction of early intestinal resection with Crohn’s disease were the clinical
variables of age and disease behavior as well as the single nucleotide polymorphisms
of rs28785174, rs60532570, rs13056955, and rs7660164. In conclusion, explainable artifi-
cial intelligence provides an effective, non-invasive decision support system for the early
diagnosis of GID.
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