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Abstract: Invasive pulmonary aspergillosis (IPA) is a serious condition resulting in significant
mortality and morbidity among patients in intensive care units (ICUs). There is a growing number
of at-risk patients for this condition with the increasing use of immunosuppressive therapies. The
diagnosis of IPA can be difficult in ICUs, and relies on integration of clinical, radiological, and
microbiological features. In this review, we discuss patient populations at risk for IPA, as well as
the diagnostic criteria employed. We review the fungal biomarkers used, as well as the challenges
in distinguishing colonization with Aspergillus from invasive disease. We also address the growing
concern of multidrug-resistant Aspergillosis and review the new and novel therapeutics which are in
development to combat this.
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1. Introduction

Aspergillus spp. are a family of ubiquitous fungi. However, they have the potential
to cause a wide spectrum of diseases in susceptible hosts. This disease spectrum ranges
from reactive allergic symptoms to invasive pulmonary disease. Host immunity typically
prevents Aspergillus from causing disease. However, alterations in host immune interactions
with Aspergillus leads to the development of pathologies. On one end of the spectrum,
atopic patients can develop an allergic-type response with an over-exuberant immune
response, leading to the development of conditions such as allergic bronchopulmonary
aspergillosis. Patients with preexisting lung structural lung disease, in particular chronic
obstructive pulmonary disease (COPD) and cystic fibrosis, can be colonized by Aspergillus
and develop chronic bronchitis as a result. This is not a risk factor unique to aspergillosis,
as patients with structural lung disease are at increased risk of infection from a variety of
pathogens [1]. At the opposite end of the spectrum, immunocompromised hosts are at
risk of developing invasive disease, with invasive pulmonary aspergillosis (IPA) being the
commonest mold infection in immunocompromised hosts [2]. Invasive fungal infections,
in particular IPA, are a significant contributor to morbidity and mortality among intensive
care unit (ICU) patients [3], as well as a significant economic burden [4]. Given the difficulty
in diagnosis of IPA, it is difficult to accurately assess the number of deaths attributed to
it. However, the incidence of serious fungal infections in critically unwell patients has
increased in recent years and carries a high mortality rates [5,6]. There are approximately
0.2 million cases of IPA each year, although this is likely an underestimate [3]. The 90-day
mortality in patients with hematological malignancy who develop IPA reaches 80%, while
IPA in non-immunosuppressed ICU patients has been reported to occur in up to 15% of
cases. Despite the clinical impact of IPA, early diagnosis and prompt initiation of therapy is
often delayed [7]. The identification of at-risk patients, use of appropriate diagnostics, and
early initiation of treatment for IPA are essential in the care of ICU patients. Intensive care
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physicians should be aware of the risk factors for the development of IPA and the clinical
features suggestive of the condition, as well as the diagnostic investigations and criteria
and emergent therapies.

2. Risk Factors

Inhaled Aspergillus conidia are usually cleared by host innate immune defenses
at the respiratory epithelium prior to hyphae formation, typically by resident alveolar
macrophages, and do not cause disease [8]. However, significant invasive disease can occur
in susceptible hosts, with conidia germinating and transforming into hyphae. Recognizing
at-risk patients for IPA prior to the development of invasive disease is essential for early
detection. Prolonged neutropenia and post-transplant immunosuppression are the most
widely recognized risk factors for the development of IPA. Both the duration and severity
of neutropenia are associated with increased risk of IPA [9]. Allogeneic hematopoietic
stem cell transplant recipients have several risk factors for the development of IPA. They
are profoundly neutropenic following their transplant conditioning regime, they may
develop acute graft-versus-host disease post-transplant, and may also develop chronic
graft-versus-host disease [10]. Recent evolution in methods used in hematopoietic stem cell
transplantation, with less toxic chemotherapy and reduction in the duration of neutropenia,
have been accompanied by a reduction in IPA mortality [11]. The epidemiology and disease
pattern of IPA in the setting of hematologic and oncologic conditions have been described
well previously [12–15].

However, there is growing recognition of other risk factors associated with IPA in
critical care. Factors associated with IPA mortality include degree of neutropenia and
concomitant end-organ failure, indicating that a more severely ill and morbid patient
is at increased risk of death [16]. Preexisting end-organ diseases, in particular chronic
obstructive pulmonary disease (COPD) and cirrhotic liver disease, are associated with
increased IPA risk [17–19]. The use of high-dose corticosteroids is also associated with the
development of IPA [20]. Importantly, use of corticosteroids prior to hospital admission
has been demonstrated to increase IPA risk; IPA risk has also been increased among those
who receive corticosteroids during their admission. This latter at-risk population is likely
to grow, given the use of corticosteroids in patients with septic shock requiring vasopressor
therapy in ICU settings [21,22]. Other iatrogenic risk factors include the use of T-lymphocyte
immunosuppressants such as calcineurin inhibitors and TNFα inhibitors, as well as B-cell
immunosuppressants such as ibrutinib. The combination of immunosuppression and
altered respiratory anatomy is seen in lung transplant recipients, who as a result have a
higher incidence of IPA than other solid-organ transplant patients [23]. This may in part be
due to single-lung transplant recipients already being colonized by Aspergillus [24].

A small but important at-risk group are patients with inherited immunodeficiencies
resulting in quantitative or qualitative lymphocyte deficits. IPA is a significant cause of
death among patients with chronic granulomatous disease, whose phagocytic cells are
unable to complete the oxidative burst due to NADPH oxidase dysfunction. This leads to
an over-active inflammatory response and disruption of homeostatic and anti-inflammatory
mechanisms, resulting in chronic wound formation and endothelial disruption. The mor-
tality rate associated with IPA may reflect underlying disease severity in this cohort. Other
less common primary immunodeficiencies that are associated with IPA include hyper
IgE syndrome with recurrent infections, primary T-cell deficiencies, and mitochondrial
disorders [25].

3. Pathogenesis

The presence of Aspergillus spp. in respiratory samples may represent colonization
rather than IPA [26–28]. The host immune response is responsible for preventing clinical
disease in this context. The innate immune response at the respiratory epithelium prevents
the development of severe invasive disease. Aspergillus-specific Toll-like receptors coordi-
nate the local immune response, ensuring homeostasis between pro- and anti-inflammatory
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activities and the continuity of the endothelium [29]. This immune homeostasis is further
regulated by adaptive immune responses, with specific Th1 and Th2 cell responses to
Aspergillus [30]. However, in a susceptible host with Aspergillus colonization, this may
progress to invasive disease [31]. In addition to hosts with the chronic conditions and
comorbidities already described, severe intercurrent illness is associated with the develop-
ment of IPA. Indeed, admission to ICUs is an independent IPA risk factor [17], with patients
admitted to ICUs with respiratory tract infections having a significantly increased risk [32].

The increased incidence of IPA in previously well, critically ill patients is most likely
as a result of a combination of respiratory epithelium disruption and aberrant host immune
responses [33]. The inflammatory homeostasis at the alveolus is disrupted during viral
infection, with a large amount of proinflammatory cytokines produced, leading to local
tissue disruption. This results in the development of acute respiratory distress syndrome
(ARDS), with associated architectural disruption and immune disturbance at the alveolus.
These changes are demonstrated in Figure 1.
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Figure 1. Healthy alveolus and injured alveolus in acute respiratory distress syndrome. Healthy
alveolus with resident immune cells on the left, with injured alveolus in ARDS on the right, showing
alterations in immune cell populations and endothelial dysfunction. Image created at Biorender.com
(accessed on 1 October 2022).

The progression of Aspergillus from respiratory colonization to invasive infection is
characterized by angioinvasion of the vascular endothelium [34]. This epithelial disruption
allows for the translocation of Aspergillus into the surrounding tissues and bloodstream,
resulting in local thrombosis and infarction [35]. This can cause sequestration of Aspergillus-
infected tissue. These pockets of infected tissue have impaired vascular supply, and it is
challenging to deliver adequate levels of antifungal therapy to them, often resulting in
treatment failure [36]. Aspergillus propagates the effect of local ischemia and thrombosis by
directly inhibiting angiogenesis [37]. Angioinvasion is most commonly seen in neutropenic
patients, whereas it may develop later in non-neutropenic hosts, leading to delays in
diagnoses. This diagnostic challenge is reflected by IPA being the most commonly missed
diagnosis of infection among post-mortem findings for ICU patients [38].

Given that IPA occurs at higher frequencies in patients with structural lung disease, it
is not surprising that it is well recognized as a complication of severe influenza A infection,
resulting in influenza-associated pulmonary aspergillosis (IAPA) [39–41]. IAPA can be seen
in patients who do not have traditional risk factors for IPA. It is thought that influenza
has the ability to induce immune paralysis in these patients [42]. Influenza also disrupts
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alveolar epithelial cell junctions, impairing their structural integrity in a manner similar to
that shown in Figure 1 [43]. The development of IAPA is associated with significantly higher
mortality [44]. The SARS-CoV-2 pandemic raised concerns that similar rates of IPA would
be seen in critical-care COVID-19 patients, with the development of so-called COVID-
associated pulmonary aspergillosis (CAPA). These concerns were based on evidence that
showed that SARS-CoV-2 is associated with endothelial dysfunction [45,46], while severe
COVID-19 is associated with severe lymphopenia, potentially impairing the adaptive
response to Aspergillus [47,48]. CAPA, similarly to IAPA, has been found among patients
who do not have traditional risk factors for IPA [49]. However, there have been significant
variations in the reported incidence of IPA in these patients, with levels not approaching
those seen in influenza [49–54]. Nevertheless, the high mortality of CAPA has necessitated
the development of specific criteria for its diagnosis.

4. Clinical Presentation

Invasive aspergillosis typically begins in the lungs and sinuses, given that acquisition
occurs via inhalation. Aspergillus spp. within the bronchioles and alveoli has the ability to
bind surfactant proteins and transit across the alveolar epithelium and into the bloodstream,
resulting in IPA. The clinical presentation of IPA is protean, and there is a wide spectrum of
illnesses within it [55]. The development of pulmonary infarction is associated with a classic
triad of pleuritic chest pain, fever, and hemoptysis, but this is nonspecific and is not seen in
all cases. Invasive rhinosinusitis is associated with facial/ocular pain and nasal congestion,
while disseminated disease can present with features of meningism, endophthalmitis,
or endocarditis [56]. Involvement of the large airways can result in tracheobronchitis.
These patients typically have profound shortness of breath and productive cough. They
may expectorate mucus plugs. There is a spectrum of Aspergillus tracheobronchitis, from
including ulcerative, obstructive, and pseudomembranous. Sinus involvement can mimic
disease caused by mucormycosis, with facial and peri-ocular pain as well as fever and nasal
congestion. Severe invasive sinus disease can result in CNS involvement, with venous
sinus thrombosis. The lack of specificity of these symptoms is compounded in the ICU
setting, where patients may be intubated and are often unable to describe their symptoms,
as well as limiting the scope for physical examination. The clinical presentation can be
further distorted in patients who have a preexisting respiratory infection, as is the case with
CAPA and IAPA. This places a large emphasis on radiological and mycological findings
in the diagnosis of IPA. This is exacerbated by the low rate of Aspergillus-positive blood
cultures, even in the context of angioinvasion.

5. Diagnosis

The diagnosis of IPA can be challenging. Tissue diagnosis remains the gold stan-
dard, with culture (either of tissue sampling or blood) or polymerase chain reaction (PCR)
of molds from tissue samples. Histological features are nonspecific, with PCR having
increased sensitivity in comparison with histology or fungal culture [57]. There is often pyo-
granulomatous inflammation and inflammatory necrosis with histology, while neutropenic
hosts may develop angioinvasion with hemorrhagic necrosis [58]. These findings are not
specific to IPA, and require the identification of fungal hyphae to confirm the diagnosis.
PCR techniques are becoming more widely available with improved reproducibility [59].
However, the European Aspergillus PCR Initiative recommends two positive specimens to
conclusively make a diagnosis [60].

Measurement of galactomannan, an Aspergillus-specific antigen, can be used to sup-
port a diagnosis of IPA [61]. Galactomannan (GM), a β-D glucan, is a major component
of the Aspergillus cell wall. It is preferred to measuring total β-D glucan for IPA, given its
increased specificity. Angioinvasion by Aspergillus leads to galactomannan release into the
circulation. It can be measured in serum, plasma, BAL samples, or CSF. Respiratory samples
are considered superior to blood tests, particularly in non-neutropenic patients [62]. Galac-
tomannan results are reported as optical densities, providing a galactomannan index (GMI).
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Assessment of galactomannan can support or rule out IPA, with a GMI > 0.8 associated
with invasive disease and a GMI < 0.5 being associated with a very low likelihood of IPA in
neutropenic patients [63,64]. A serum GMI between 0.5 and 0.8 is equivocal and must be
interpreted in the context of other clinical and radiological features. GMI value cutoffs from
other sites remain controversial and must be interpreted within the clinical context, with a
higher GMI required for patients known to be colonized with Aspergillus, such as those with
COPD [65]. The performance and reliability of galactomannan assays can vary based on
clinical situations [66]. GM is cleared by neutrophils; therefore, its utility in IPA diagnoses
among non-neutropenic patients is limited [67]. BAL GM levels and sequential serum GM
levels can increase the sensitivity and specificity of testing among non-neutropenic pa-
tients [62,65,68] and are also superior to serum levels in patients admitted with concomitant
respiratory tract infections [69]. False-positive results have been well-described when pa-
tients are receiving concurrent beta-lactam antibiotics such as piperacillin-tazobactam, and
are seen in both serum and BAL measurements of galactomannan [70–72]. False-positive
GM may also be seen in infection with other fungi with cell walls similar to Aspergillus
galactomannan, such as Histoplasma capsulatum [73]. This is mainly of clinical relevance
in areas in which Histoplasma is endemic. Interestingly, GMI can be prognostic as well as
diagnostic, with a GMI >2 associated with poor prognosis [74].

The radiological features seen in IPA are varied and nonspecific. The plain film of the
chest lacks the sensitivity to detect IPA, and as such all patients with suspected IPA should
undergo computed tomography (CT) imaging [75]. The characteristic CT features of IPA
include peri-bronchial consolidation, ground-glass opacities, and the halo sign, which is a
nodule with surrounding ground-glass opacities, representing local hemorrhage at the site
of fungal infection [76,77]. Other angio-invasive pathogens such as Pseudomonas are also
capable of producing halo signs. An air-crescent sign may be seen and is a consequence
of pulmonary necrosis [78]. The frequency of these findings varies depending on the
underlying condition of the patient, with neutropenic patients more likely to show halo
signs [79], while patients with solid-organ transplants are more likely to have consolidation
or solid masses visible on CT [80].

Due to the complexity of recognizing and diagnosing IPA, several diagnostic algo-
rithms for have been developed based on expert-consensus-based discussions. These
include the European Organization for Research and Treatment of Cancer and the My-
coses Study Group (EORTC/MSG) [81], and the biomarkers for Aspergillus in the ICU
(BM-AspICU) [82], with additional modifications for the diagnosis of IAPA and CAPA [83].
These algorithms describe the criteria needed for proven IPA, as well as allowing for prob-
able and possible cases. Proven IPA requires the presence of positive culture or PCR of
Aspergillus. Probable IPA requires a susceptible host with characteristic radiological features
in addition to supporting mycological evidence. As previously described, susceptible hosts
include patients with neutropenia, hematologic or oncologic malignancies, and those re-
ceiving high-dose corticosteroids. The mycological evidence is provided by the isolation of
Aspergillus species and the measurement of galactomannan. These criteria are summarized
in Table 1.

The emergence of IAPA and CAPA lead to concerns that not all cases of IPA were
being captured using the EORTC/MSG definition [81]. In particular, CAPA patients may
not have any traditional host risk factors. They also may not develop characteristic CT
changes, and any CT changes that do occur may overlap with those seen in severe SARS-
CoV-2 infection. In order to address this, separate criteria have been developed for the
diagnosis of CAPA. The European Confederation of Medical Mycology (ECMM) and the
International Society for Human and Animal Mycology (ISHAM) have developed CAPA
diagnostic criteria. They suggest that CAPA should be considered in any patient who
has recrudescence of fever after being fever-free for more than 72 h, or any patient with
worsening respiratory status or new respiratory symptoms. Investigations are similar to
those used in non-COVID-19 IPA, with CT imaging and respiratory tract sampling for
fungal culture, PCR, and galactomannan assay. CT imaging in severe COVID-19 may
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be difficult to distinguish from IPA. However, patients with cavitating lung lesions or
multiple pulmonary nodules should undergo extensive IPA investigation, as these are
atypical for COVID-19 pneumonitis [49]. A single positive BAL sample in the context
of characteristic imaging is highly suggestive of IPA. Performing BAL in patients with
COVID-19 pneumonitis is not routinely recommended due to risks to the healthcare worker
performing the procedure [84]. Therefore, circulating biomarkers are often used to aid
diagnosis. Serum galactomannan assay is highly specific in patients with CAPA, as these
are non-neutropenic, although the sensitivity is low. As such, serum galactomannan has
limited utility in excluding CAPA. ECMM/ISHAM recommend that screening with serum
galactomannan should be performed three times per week in all patients that have a
positive SARS-CoV-2 PCR [85]. Proven CAPA is considered if there is definitive histological
or microscopic evidence of Aspergillus invasion of tissue, or positive Aspergillus PCR from a
sterile site. A diagnosis of probable CAPA is made if characteristic CT finding are present
in addition to mycological evidence, with either positive PCR from BAL aspirate or positive
galactomannan. Possible CAPA is diagnosed based on characteristic CT findings as well as
supporting mycological evidence from a site other than BAL.

Table 1. European Organization for Research and Treatment of Cancer and the Mycoses Study Group
Diagnostic Criteria for IPA.

# Proven invasive pulmonary aspergillosis

• Histopathological evidence of Aspergillus hyphae with tissue damage;
• Blood culture positive for Aspergillus.

# Probable invasive pulmonary aspergillosis (at least one from each category is needed)

1. Host factors

• Prolonged neutropenia; stem cell transplant recipient; T-cell immunosuppressant;
inherited immunodeficiency.

2. Clinical features on imaging

• Well-circumscribed dense lesion; cavity; air-crescent sign.

3. Mycological criteria

• Cytology, microscopy, or culture on sputum, BAL, or bronchial brushing
indicating Aspergillus elements or positive Aspergillus culture; positive
galactomannan in blood or BAL samples.

# Possible invasive pulmonary aspergillosis

• Presence of both host factors and clinical features of probable invasive pulmonary
aspergillosis, but not meeting mycological criteria.

6. Treatment

While an exhaustive description of treatment options for IPA is beyond the scope of
this review, it is important to address emerging treatment options, particularly in light of
growing antifungal resistance. Host-directed therapies, such as those targeting the pul-
monary endothelial disruption associated with IPA, have yet to demonstrate clinical utility.
Nevertheless, as stem cell therapies are developed, their application in the restoration of
endothelial dysfunction and homeostasis may become important additions to antifungal
therapies [86,87]. Antifungal therapies have generally been drawn from four classes of
drugs (azoles, echinocandins, polyenes, and 5-flucytosine). First-line empiric therapy for
IPA is with azoles, with voriconazole the preferred agent [88]. Voriconazole therapy can
be challenging, as it requires therapeutic drug monitoring. Isuvaconazole has become an
attractive alternative to voriconazole. Its performance is noninferior in clinical trials, and it
has a favorable side-effect profile [89]. Resistance to all antifungal classes has been identi-
fied [90], and there is growing levels of Aspergillus resistance to voriconazole [91]. Fungi
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demonstrate an ability to develop resistance via multiple mechanisms, including drug
efflux pumps and genetic alteration of drug targets [92]. Furthermore, fungal infections
have been shown to persist even in the presence of antifungal agents that are shown to
be sensitive in culture. This is due to selective survival pressure driving fungal resistance
in vivo, a concept known as drug tolerance [93]. The widespread use of antifungal therapies
in agriculture and industry has been directly linked with human infection of drug-resistant
Aspergillus [94]. Triazole-resistant Aspergillus infection has been seen with increasing fre-
quency in patients without prior antifungal therapy, as a result of azole use outside the
clinical setting [95,96]. The emergence of resistance, coupled with the inability of infected
hosts to clear Aspergillus infection due to underlying immune defects or comorbidities, is
a significant clinical problem [97]. The utility of PCR as a diagnostic tool, in preference
to biomarkers or direct tissue microscopy, allows the identification of specific Aspergillus
species, as well as potentially identifying genes associated with resistance [98]. In order to
prevent the onward propagation of antifungal resistance, the antimicrobial stewardship
principles of short-duration, high-concentration therapies at need to be applied. Alternative
methods of drug delivery such as nebulization have been trialed, as well as the use of
therapeutic drug monitoring [99]. Antifungal susceptibility testing is often not routinely
performed. Susceptibility testing should be carried out if the patient has received extensive
antifungal treatments in the past, is in an area with known high levels of azole resistance, or
is failing to respond to appropriate empiric therapy. It is recommended that a minimum of
five colonies should be tested for resistance, given that azole-sensitive and azole-resistant
species may occur simultaneously [100].

Novel drug classes have been developed: fosmanogepix, a Gwt1 inhibitor; ibrexa-
fungerp, a triterpenoid; and olorofim, a dihydroorotate dehydrogenase inhibitor. There
are also innovations in the delivery of preexisting drug classes, with the emergence of the
nebulized triazole opelconazole. These new agents are summarized in Table 2.

Table 2. Novel antifungal therapies for invasive pulmonary aspergillosis.

Drug Class Mechanism of Action Route of Administration

Foxmanogepix Gwt1 inhibitor Inhibit mannoprotein maturation and impair
fungal cell wall integrity Oral

Ibrexafungerp Triterpenoid Inhibit β-D glucan synthesis and impair
fungal cell wall integrity Oral

Olorofim Dihydroorotate
dehydrogenase inhibitor Inhibit pyrimidine synthesis Oral

Opelconazole Triazole Lanosterol 14α-demethylase inhibition Nebulized

Fosmanogepix is a pro-drug of manogepix and acts by preventing the maturation
of mannoproteins [101]. These mannoproteins are essential components of the cell wall.
Interfering with their function has multiple downstream effects, with reduction in biofilm
formation, endoplasmic reticulum stress, and impaired cell wall integrity [102]. Fosman-
ogepix has activity against a broad array of resistant fungi due to its novel mechanism of
action, and it has been shown to be effective in vitro against triazole-resistant Aspergillus,
with clinical trials in process [103,104]. It has high oral bioavailability, making it an at-
tractive option for IPA cases where intravenous liposomal amphotericin B is the only
therapeutic option [105]. It has also been shown to have a favorable safety profile, with
no evidence of nephrotoxicity [106]. Fosmanogepix is already under consideration by the
United States Food and Drug Administration.

Ibrexafungerp inhibits 1, 3-beta-D-glucan in fungal cell walls of Aspergillus and other
fungi, preventing its synthesis in a manner similar to echinocandins. However, the site of
action is distinct to echinocandins, resulting in minimal cross-resistance [107]. Similar to
fosmanogepix, ibrexafungerp is also available as an oral formulation, and shows in vitro
ability to inhibit the growth of Aspergillus. It is metabolized via the cytochrome P450
pathway, but modulators of this pathway have a less marked effect on ibrexafungerp
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levels than on preexisting azoles. As such, it has been shown to be tolerated well with
minimal side effects [108]. It has already been approved for treatment of Candidiasis, and is
undergoing review for Aspergillosis [109]. The final novel drug in development, olorofim,
inhibits pyrimidine synthesis by fungi, inhibiting their growth. It shows activity against
triazole-resistant Aspergillus [110]. A potential pitfall to its use is that it is metabolized
via the cytochrome p450 system, and as such has several clinically significant drug–drug
interactions [111]. Olorofim remains under clinical investigation and has not yet been
licensed for use, although there are several Phase IIb clinical trials underway.

Perhaps the most exciting of the new therapeutic agents in development comes from
a preexisting drug class. Opelconazole is a novel triazole, acting in a similar manner
to preexisting triazoles. It inhibits lanosterol 14α-demethylase, leading to fungal mem-
brane dysfunction [112]. Importantly, it has been developed with nebulization as the
preferred route of administration. Early pharmacokinetic data show that it reaches excel-
lent concentrations within the lungs, and has minimal systemic absorption which reduces
toxicity [113]. It has been shown to be highly effective against multiple fungal species,
including Aspergillus, and shows superior activity to other azoles [112]. Opelconazole is
an attractive option in patients who are at risk of IPA, including the growing cohort of
patients being treated with immunosuppressive agents, as well as those with pulmonary
disease, and patients with COPD, post-lobectomy, and post-transplant conditions [114].
Furthermore, its reassuring safety profile with low systemic absorption makes it a good
candidate for combination therapy with the other novel agents being developed [115].

7. Conclusions

Aspergillosis and IPA remain significant clinical challenges. There is a growing cohort
of patients with risk factors for IPA development, including non-neutropenic patients.
Furthermore, advances in critical care mean that patients may develop IPA in the absence
of traditional risk factors, as a consequence of their acute severe illness. The diagnosis of
IPA requires the treating clinician to evaluate host factors, clinical features, radiological
characteristics, and appropriate biomarkers from relevant clinical sites. They also must be
conscious of the diagnostic criteria, and the variations that exist between criteria across
different underlying conditions. IPA treatment can be challenging, exacerbated by the
development of antifungal resistance. The advent of new therapeutic agents, coupled
with increased awareness of IPA risks and improved access to diagnostics, should allow
intensivists to promptly recognize, diagnose, and treat this condition.
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