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Abstract: Background and purpose: Growing evidence suggests that Machine Learning (ML) models
can assist the diagnosis of neurological disorders. However, little is known about the potential
application of ML in diagnosing idiopathic REM sleep behavior disorder (iRBD), a parasomnia
characterized by a high risk of phenoconversion to synucleinopathies. This study aimed to develop
a model using ML algorithms to identify iRBD patients and test its accuracy. Methods: Data were
acquired from 32 participants (20 iRBD patients and 12 controls). All subjects underwent a video-
polysomnography. In all subjects, we measured the components of heart rate variability (HRV)
during 24 h recordings and calculated night-to-day ratios (cardiac autonomic indices). Discriminating
performances of single HRV features were assessed. ML models based on Logistic Regression (LR),
Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) were trained on HRV data. The
utility of HRV features and ML models for detecting iRBD was evaluated by area under the ROC
curve (AUC), sensitivity, specificity and accuracy corresponding to optimal models. Results: Cardiac
autonomic indices had low performances (accuracy 63-69%) in distinguishing iRBD from control
subjects. By contrast, the RF model performed the best, with excellent accuracy (94%), sensitivity
(95%) and specificity (92%), while XGBoost showed accuracy (91%), specificity (83%) and sensitivity
(95%). The mean triangular index during wake (TIw) was the best discriminating feature between
iRBD and HC, with 81% accuracy, reaching 84% accuracy when combined with VLF power during
sleep using an LR model. Conclusions: Our findings demonstrated that ML algorithms can accurately
identify iRBD patients. Our model could be used in clinical practice to facilitate the early detection of
this form of RBD.
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1. Introduction

Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia charac-
terized by the loss of muscle atonia and abnormal behaviors during REM sleep, often as
dream enactments, causing injuries [1]. The diagnosis is based on the clinical history in
combination with video-polysomnography (PSG) confirmation of REM atonia loss during
sleep. The prevalence remains unknown, which is probably caused by the difficulties
related to performing gold-standard PSG diagnosis. RBD may be categorized as idio-
pathic (or isolated iRBD) in the absence of other neurological signs and symptoms or as
symptomatic (secondary) when associated with antidepressant drugs or with neurological
diseases. In the last decades, increasing scientific interest has been focused on the idiopathic
form of RBD. Indeed, although iRBD is formerly a parasomnia, it is now recognized as
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the prodromal stage of an x-synucleinopathy [2]. This is due to the high risk that patients
with iRBD have of developing «-synucleinopathies, such as Parkinson disease (PD), PD
dementia, dementia with Lewy bodies or multiple system atrophy [2,3]. Emphasis is now
placed on the early detection of iRBD, as the prodromal phase of these disorders, for the
opportunity that this creates for timely neuroprotective treatments.

At present, the screening of iRBD patients is performed using the RBD Single-Question
Screen (RBD1Q), a screening question for dream enactment with a simple yes/no response,
validated in relation to gold-standard PSG diagnosis [4]. RBD1Q was able to detect RBD
in a clinic-based cohort of RBD patents and controls with a high sensitivity (94%) and
moderate specificity (87%) [4]. As reported by the same authors, the moderate specificity of
the RBD screening test was related to several criticisms. Firstly, RBD1Q does not screen
for subtle clinical manifestations including sleep talking or sleep yelling, thus excluding
these patients from the RBD screening; secondly, patients with non-REM parasomnias can
respond positively to the screen [4]; finally, there is lack of validation in a large cohort of
iRBD patients and controls.

In the context of emerging tools for RBD screening, heart rate variability (HRV) anal-
ysis, a simple and non-invasive measure of cardiac impulses, has been demonstrated to
be useful in accurately differentiating patients with PD associated with RBD from those
without RBD [5]. Little evidence, however, is present in the literature exploring HRV param-
eters in iRBD. In addition, reports analyzed only short time intervals (5 min R-R) in small
samples of patients [6-8]. An Artificial Intelligence (Al) approach based on deep neural
networks has been introduced for identifying iRBD subjects using electroencephalography
(EEG) data [9], achieving a 0.87 AUC. Machine learning (ML) models have been recently
applied in many healthcare areas, including the neurological field, to support clinicians in
the diagnosis of several neurological disorders. Indeed, ML models can capture complex,
nonlinear relationships in medical data and learn the features in order to correctly identify
different clinical phenotypes [10]. Several studies reported early Multiple Sclerosis (MS)
diagnoses using ML algorithms [11]. Similarly, the excellent prediction performance of
ML algorithms has inspired the development of novel models to identify the ischemic
stroke [10]. Rechichi et al. [12] applied ML models to polysomnography features data
in order to identify REM Sleep Without Atonia (RSWA), which is associated with RBD,
obtaining an 87% accuracy. Another study [13] used Diffusion Tensor Imaging data to
extract features and feed an SVM classifier in order to identify iRBD subjects with an
87.5% accuracy. The main limitation of these studies involves the complexity and cost of
full EEG/EMG polysomnography and Magnetic Resonance Imaging (MRI) examinations,
which make them unpractical for screening purposes.

To the best of our knowledge, there are no previous reports using an ML approach on
HRYV data to identify iRBD patients. Owing to this lack of investigation, here, we tested
the accuracy of HRV features and ML models (Logistic Regression (LR), Extreme Gradient
Boosting (XGBoost) and Random Forest (RF)) to correctly identify patients with iRBD.

2. Participants and Methods
2.1. Participants

Twenty patients with a clinical diagnosis of idiopathic RBD and twelve healthy, sex-
and age-matched subjects (HC) were enrolled in this study (Table 1). All subjects underwent
a complete neurological examination in order to exclude the presence of neurological
disorders. All subjects underwent a video-polysomnography (PSG) to confirm or exclude
the presence of clinical /subclinical RBD. In PSG recordings, a prominent muscle activity
in REM sleep associated with abnormal behaviors was required to confirm the clinical
or subclinical diagnosis of RBD [14] according to the International Classification of Sleep
Disorders—Third Edition (ICSD-3). The current treatment with medications known to
modify REM sleep architecture and muscle tone as serotonin reuptake inhibitors was
considered as the exclusion criterion. Sleep stages were automatically scored on PSG
recordings and manually checked by an expert scorer.
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Table 1. Demographic and HRV data of enrolled subjects.
HC iRBD p Value
N 12 20 -
Sex * (M/F) 7/5 14/6 0.70
Age® 542 +15.1 549 £9.1 0.89
Sympathetic Index # 1.15 £ 0.52 1.86 =1.33 0.04
Parasympathetic Index # 1.05 £ 0.33 1.83 £1.42 0.03

* Fisher’s exact test. # Student’s t-test. Age, Sympathetic Index and Parasympathetic Index are expressed as the
mean = std.dev. HC: Healthy Controls; iRBD: idiopathic REM Sleep Behavior Disorder.

Controls were defined as having no history of neurological disorders and no clinical
and polysomnographic confirmation of RBD. The presence of comorbidities known to affect
the autonomic nervous system and interfere with autonomic evaluation was considered as
the exclusion criterion for all participants.

All subjects gave written informed consent before participation. All the experimental
procedures were conducted according to the policies and ethical principles of the Declara-
tion of Helsinki. The study was approved by the Ethics Committee of the Calabria Region,
“Sezione Area Centro” (no. 333, 22 October 2020).

2.2. Heart Rate Variability (HRV)

ECG traces were extracted from PSG recordings. Electrophysiological signals were
sampled at 256 Hz. Filtered ECG signals were processed using the Hamilton Segmenter
algorithm [15] for the identification of QRS complexes, and RR intervals were derived
from R peaks sequences. RR intervals were then pre-processed for artifact removal and
subdivided into 5 min windows, with a 50% overlap. Using sleep scoring from PSG, each
window was tagged as “wake” (W) or “sleep” (S). The following HRV measures were
extracted from each RR window [16]:

- NN/RRratio: the fraction of total RR intervals that are classified as normal-to-normal
(NN) intervals and included in the calculation of HRV statistics;

- AVNN: average of all NN intervals;

- SDNN: standard deviation of all NN intervals;

- rMSSD: square root of the mean of the squares of the differences between adjacent
NN intervals;

- pNNB50: percentage of differences between adjacent NN intervals that are greater than
50 ms;

- TOT_PWR: total spectral power of all NN intervals up to 0.04 Hz;

- VLF_PWR: total spectral power of all NN intervals between 0.003 and 0.04 Hz;

- LF_PWR: total spectral power of all NN intervals between 0.04 and 0.15 Hz;

- HF_PWR: total spectral power of all NN intervals between 0.15 and 0.4 Hz;

- LF/HF: ratio of low to high frequency power;

- Sample entropy of RR intervals;

- Largest Lyapunov exponent to quantify the amount of chaos in RR series;

- Hurst coefficient, as a measure of long-term memory in RR series;

- Alpha: scaling exponent from Detrended Fluctuation Analysis (DFA), for determining
the statistical self-affinity of RR series;

- Triangular index: a geometric measure of HRV, defined as the integral of the density
distribution (i.e., the number of all RR intervals) divided by the maximum of the
density distribution;

- SD1: the standard deviation of the Poincaré plot perpendicular to the line-of-identity;

- SD2: the standard deviation of the Poincaré plot along the line-of-identity;

- SD2/SD1 ratio.

For each subject, the means of the above measures were computed for all S (sleep)
windows and for the W (wake) windows from the last 15 min before falling asleep, when
the subject is expected to be at rest. Moreover, for each measure, the sleep-to-wake ratio
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was evaluated. The means of the W and S segments and the ratios between the means of
the S and W segments were tagged with “w”, “s” and “sw” suffixes, respectively. Therefore,
a set of 54 features was derived for each subject.

In detail, for each subject, we calculated night-to-day ratios (cardiac autonomic indices)
for both LF (cardiac sympathetic index) and HF (cardiac parasympathetic index) spectral
components on a circadian cycle (24 h), as previously published [5]. According to our HRV
protocol, all subjects stopped taking any anticholinergic, antidepressant, sympathomimetic
or parasympathomimetic medications 72 h before testing and stopped taking levodopa
12 h before testing [5].

2.3. Machine Learning Approaches

A Receiver Operator characteristic (ROC) analysis was performed on single HRV
features. Logistic Regression and ML models based on Random Forest (RF) [17] and eX-
treme Gradient Boosting (XGBoost) [18] were trained on HRV data using Leave-One-Out
Cross-Validation (LOO-CV) in order to evaluate classification performances in distinguish-
ing iRBD from HC subjects. Feature importances were also evaluated, and, for each
algorithm, several models were trained, grouping features according to their decreasing
importance. For each model, training was performed using LOO-CV with the optimal
number of features, ordered according to their decreasing importance, which produced
the best classification accuracy. The hyperparameters of each ML model were tuned for
optimal classification performances. Feature importances were evaluated as ROC AUC
scores of single features, too. Such importances were used to choose the best discriminating
feature and the best combination of features in order to train a logistic regression (LR)
model, whose performances were assessed using LOO-CV.

ECG processing, R peaks extraction and preprocessing of RR intervals were performed
in the Python programming language using SciPy, Nolds, hrv-analysis and BiospPy li-
braries. HRV features were calculated using the PhysioNet HRV Toolkit [19], a software
tool written in the C programming language, after embedding it in Python code. ML anal-
ysis was performed using the caret package [20] in the R programming environment [21]
(version 4.0.4, 2021, The R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Features and HRV Analysis

There were no significant differences in data regarding gender and age between the
two groups, as shown in Table 1. During 24 h registrations, we found a significant increase
in autonomic indices in iRBD patients as compared to the controls (Table 1).

In detail, at the cut-off levels of 2.06 and 1.38, which have been reported to accurately
discriminate PD patients with and without RBD, both cardiac autonomic indices (cardiac
sympathetic index and cardiac parasympathetic index, respectively) did not have a good
classification performance, with the overlap of individual values between iRBD patients
and controls (Figure 1A,B). Indeed, the accuracy of the autonomic indices was 0.63% for
the sympathetic index and 0.69% for the parasympathetic index (Table 2)

Table 2. Classification performances of cardiac autonomic indices.

Autonomic Accuracy AUC Sensitivity Specificity
Indices (95% conf. int.) (95% conf. int.) (95% conf. int.) (95% conf. int.)

Sympathetic 0.63 (0.50-0.81) 0.62 (0.53-0.81) 0.45 (0.20-0.90) 1(0.42-1)

Parasympathetic ~ 0.69 (0.53-0.81) 0.65 (0.46-0.84) 0.55 (0.25-0.85) 1(0.58-1)

AUC: Area Under the (ROC) Curve.

3.2. Feature Importance and Feature Selection

Feature importances were evaluated using ROC AUC, Random Forest and XGBoost
models, as shown in Figure 2a—c.
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Figure 1. Box Plots of cardiac sympathetic (A) and parasympathetic (B) index in iRBD patients
and controls. Each whisker extends to the most extreme data point (excluding outliers); the lower
boundary of each box represents the first quartile, while the upper boundary identifies the third
quartile; the bold horizontal line is the median value. Outliers are represented as small circles above
or below whiskers. HC: Healthy Controls; iRBD: idiopathic REM Sleep Behavior Disorder; LF: power
in the 0.04-0.15 Hz band; HF: power in the 0.15-0.4 Hz band.
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The Mean Triangular Index during wake (TIw) was identified as the best discriminat-
ing HRV feature using ROC AUC, and its classification performances were evaluated. The
second best discriminating HRV variable was VLF power during sleep.

The five most important features evaluated by Random Forest in CARET were: wake
triangular index, sleep VLF power, sleep SDNN, sleep total power and wake pNN50.
XGBoost identified wake triangular index, wake AVNN, wake LF/HF ratio, wake SDNN
and wake HF power as the five most important features using GLMnet. Though most
important feature subsets evaluated by RF and XGBoost were different, both methods
confirmed wake triangular index as the feature with the highest importance. TIw and sleep
VLF power were identified as the two most important features by both ROC AUC and
RE. Sex and age did not influence predictions, as they were ranked as the least important
variables for discrimitating iRBD from HC subjects.

3.3. LOO-CV Results

The ROC and calibration curves of each ML model trained using LOO-CV and the
number of features, ordered according to their importance, which provided the best clas-
sification accuracy, are shown in Figure 3. The tuned hyperparameters of ML models are
listed in Table S1 (Supplementary Materials).
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Figure 3. ROC curves (a) and calibration curves (b) from LOO-CV of TIw ROC (AUC = 0.82), Logistic
Regression (AUC = 0.77) and optimal models with the best hyperparameters tuning: Random Forest
(AUC = 0.87) and XGBoost (AUC = 0.92).

Classification accuracies (with a 95% confidence interval), AUCs, sensitivities, speci-
ficities and the optimal number of variables for each ML model are reported in Table 3.

Table 3. Classification performances of ML models.

Accuracy e e s No. of
Model (95% contf. int.) AUC Sensitivity  Specificity Features
TIw 0.81 (0.64-0.93) 0.82 0.80 0.83 1
LR 0.84 (0.67-0.95) 0.77 0.80 0.92 2
RF 0.94 (0.79-0.99) 0.87 0.95 0.92 5
XGBoost 0.91 (0.75-0.98) 0.92 0.95 0.83 17

TIw: Mean Triangular Index (wake); LR: Logistic Regression; RF: Random Forest; XGBoost: eXtreme Gradient
Boosting; AUC: Area Under the (ROC) Curve.

TIw has been identified as the feature that discriminated best between iRBD and HC,
achieving a 0.81 accuracy and a sensitivity and specificity of 0.80 and 0.83, respectively.
The LR model combining TIw and sleep VLF power slightly improved accuracy (0.84)
by increasing specificity (0.92). The best classification accuracy (0.94) is achieved by the
RF model trained using the five most important features (wake triangular index, sleep
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VLEF power, sleep SDNN, sleep total power and wake pNNb50; Figure 1A). The sensitivity
and specificity were 0.95 and 0.92, respectively. The AUC corresponding to this optimal
model, however, was lower than the classification accuracy. The best AUC (0.92) was
reached by the XGBoost model trained on its 17 most important features (Figure 1B), with
a 0.91 classification accuracy. With XGBoost, the specificity (0.83) was far lower than the
sensitivity (0.95).

4. Discussion

To the best of our knowledge, this is the first study evaluating the potential of ML
models for detecting patients with iRBD. Our study demonstrates that ML models applied
on HRV features, accurately distinguished patients from controls. In particular, the RF
algorithm showed the best classification performance, with an accuracy of 94%, followed
by the XGBoost algorithm, with an accuracy 91%. By contrast, cardiac autonomic indices
had lower classification performances in the differentiation between the two groups. It is
also remarkable that both ML models independently identified iRBD with a high accuracy.

In our study, we built ML models on HRV parameters. HRV analysis has been widely
used in movement disorders, and it represents one of the most promising quantitative
markers of the cardiac autonomic balance. Indeed, HRV analysis has been demonstrated to
be useful in the differentiation between ET patients and those with PD on an individual
basis [22]. Changes in HRV parameters have also been observed during nocturnal sleep
in patients with treated and untreated PD [23,24]. Interestingly, a previous study by our
group has investigated the circadian autonomic change in HRV spectral components in
PD patients associated with RBD compared to those with PD and without RBD during
long-term conditions. We demonstrated that the night-to-day ratio of LF values (cardiac
sympathetic index) accurately distinguished PD patients with RBD from those without
RBD on an individual basis [5]. In the present study, we have also calculated the cardiac
sympathetic and parasympathetic indices in patients and controls. However, we did not
obtain the same classification performance, since the cardiac sympathetic index had an
accuracy of 63% and the parasympathetic index had an accuracy of 69%. We believe that
this discrepancy may be due to the fact that iRBD is really in the middle of a pathogenetic
process in which many neuropathological alterations have already begun and others may
occur. On this basis, the autonomic change in HRV parameters occurring in our iRBD
patients could be less marked than those reported in a manifest phase of PD.

ML algorithms such as RF have been recently used to identify ischemic stroke by
learning the features of the etiologies, and excellent classification performances were
achieved [10]. Similarly, we used an RF model trained using the five most important
features (wake triangular index, sleep VLF power, sleep SDNN, sleep total power and wake
PNND50) to differentiate iRBD patients from controls. According to our results, the RF model
showed a high accuracy (94%), while the AUC corresponding to this optimal model was
lower than the classification accuracy, probably due to the small, imbalanced sample. We
have also tested the accuracy of the Extreme Gradient Boosting (XGBoost) model trained on
its 17 most important features. Indeed, XGBoost is an optimized combination of decision
algorithms and linear regression analyses under a Gradient Boosting framework [11].
An early recognition model for MS based on XGBoost has recently been proposed [11].
According to these findings, in the training set, approximately 61%, 51% and 49% of the MS
patients could be diagnosed with MS 1, 2 and 3 years earlier than their real diagnosis [11].
Of note, in our study, XGBoost showed a higher accuracy (91%), while the AUC was 92%
and the classification accuracy was 91%. With XGBoost, the specificity (83%) was far lower
than the sensitivity (95%), probably due to the imbalanced dataset. Finally, we have trained
our ML models on HRV parameters obtained by electrocardiographic signals. However, we
have previously demonstrated that there were small differences between the RR intervals
evaluated with classic electrocardiography and pulse photoplethysmography [25]. In
future investigations, we aim to also apply ML models on RR intervals obtained with pulse
photoplethysmography.
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There were some limitations to the study. First, the sample size of our cohort is small.
Thus, a sample including more iRBD patients and controls is needed to validate the utility
of ML models in clinical practice. Second, our ML model should be tested in other ethnic
groups and regions, since it has been evaluated only in an Italian population. Finally, our
target cohort included subjects suspected of having iRBD rather than the general population.
Our study, however, has several strengths. First, our proposed ML models allowed for a
correct identification of iRBD. Second, the artificial intelligence models have been trained
on HRYV features, simple and non-invasive measures that make this of particular practical
value since it may be of valid help in the screening of patients suspected of having iRBD in
large populations.

5. Conclusions

Our findings indicate that ML models applied on HRV features may help in distin-
guishing iRBD patients from controls. Our ML model could be easily implemented in a
software application as a rapid screening tool, thus supporting neurologists in the early
detection of this fascinating disorder.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12112689/s1, Table S1: Best tuning parameters for
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