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Abstract: The assessment of the knee alignment using standing weight-bearing full-leg radiographs
(FLR) is a standardized method. Determining the load-bearing axis of the leg requires time-consuming
manual measurements. The aim of this study is to develop and validate a novel algorithm based
on artificial intelligence (AI) for the automated assessment of lower limb alignment. In the first
stage, a customized mask-RCNN model was trained to automatically detect and segment anatomical
structures and implants in FLR. In the second stage, four region-specific neural network models
(adaptations of UNet) were trained to automatically place anatomical landmarks. In the final stage,
this information was used to automatically determine five key lower limb alignment angles. For the
validation dataset, weight-bearing, antero-posterior FLR were captured preoperatively and 3 months
postoperatively. Preoperative images were measured by the operating orthopedic surgeon and an
independent physician. Postoperative images were measured by the second rater only. The final
validation dataset consisted of 95 preoperative and 105 postoperative FLR. The detection rate for the
different angles ranged between 92.4% and 98.9%. Human vs. human inter-(ICCs: 0.85–0.99) and
intra-rater (ICCs: 0.95–1.0) reliability analysis achieved significant agreement. The ICC-values of
human vs. AI inter-rater reliability analysis ranged between 0.8 and 1.0 preoperatively and between
0.83 and 0.99 postoperatively (all p < 0.001). An independent and external validation of the proposed
algorithm on pre- and postoperative FLR, with excellent reliability for human measurements, could
be demonstrated. Hence, the algorithm might allow for the objective and time saving analysis of
large datasets and support physicians in daily routine.

Keywords: artificial intelligence; deep learning; lower limb alignment; automatic analysis; X-ray;
full-leg

1. Introduction

Malalignment of the leg axis can be congenital or acquired. Physiological bone mor-
phology of the knee changes over a lifetime, for example, due to physical activity in youth,
sports trauma, or osteoarthritis in old age [1–4]. The assessment of the knee alignment
using standing full-leg radiographs (FLR) is an established and standardized method. This
“vital imaging modality” of weight-bearing radiographs allows for the determination of
the load-bearing axis of the leg [5]. The determination of the load-bearing axis represents
indispensable information for diagnostic and individual therapy planning. Especially
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when performed in full extension and with appropriate rotation, the application of FLR is
optimal and comprehensible [6]. Nevertheless, manual measurements on these radiographs
are time-consuming and laborious. Due to differences in the definition of the joint lines,
experience of different examiners, or even the incentive to adhere to quality requirements,
there is a large risk of bias in measuring knee alignment angles [7–9]. Furthermore, the
objective of many therapeutic approaches is the correction of symptomatic malalignment.
Thus, there is a great need for reliable, independent, and objective measurements for proper
medical decision-making.

Research efforts for an automatic solution to measure knee alignment angles on FLR
are constantly ongoing. In 2007, Goker et al. presented a novel semi-automated digital
method using common image software for the designation of landmarks and determination
of angles [10]. In 2010, Fakhrai et al. developed a software solution for the automatic
assessment of the knee alignment angles, in addition to an observational study including a
small cohort of 15 patients with native knee joints [11]. The interest in finding an automatic
solution increased with the exponentially growing computing power and technological
advances in the field of artificial intelligence (AI). Thus, the number of published scientific
articles about AI has grown significantly in the last three years [12]. However, only a
few research groups have published findings about the automatic assessment of the knee
alignment angles on FLR, and only limited external validation exists in the current litera-
ture [11,13–16]. In particular, the set of evaluated radiographic parameters is small or the
separate evaluation of the performance of the algorithms on preoperative and postoperative
images is missing altogether. The generalizability of the algorithm and precise measure-
ment of lower limb alignment are essential for individual treatment planning in clinical
routine, national quality control activities, the generation of medical guidelines, internal
and external quality management, and the maintenance of register databases [17–20].

The aim of this study is to develop a new AI-based algorithm to automatically de-
termine lower limb alignment angles in weight-bearing FLR. The study also provides an
independent and thorough validation of the algorithm for five radiographic parameters by
comparing its measurements to human expert measurements. By distinguishing between
the preoperative and postoperative performance, the quality of the algorithm is evaluated
in different challenging scenarios.

2. Materials and Methods
2.1. Patient Selection and Sample Description

The study was approved by the ethics committee Tübingen, Germany (ID: 197/2021BO2).
The validation dataset was recruited from a cohort of 119 patients having undergone total
knee arthroplasty (TKA). According to the standardized approach, weight-bearing, antero-
posterior FLR were taken at least 3 months preoperatively and 3 months postoperatively.
All available FLR were anonymized and transferred to a database. In this context, the
term preoperative FLR refers to a native knee, in the absence of a knee implant, and the
term postoperative FLR refers to the presence of a TKA implant. Images with other knee
implants, such as osteosynthesis plate, unicondylar knee arthroplasty, or distal femur
replacement, were excluded. Invalid images caused by inaccurate acquisition techniques
were excluded (e.g., truncated/incomplete images by misalignment or overexposure of
images by severe obesity with hanging bulge of skin and fat tissue from the lower abdomen).
Both the pre- and postoperative datasets contained images with hip implants.

2.2. Validation Images and Measured Parameters

Weight-bearing antero-posterior full-leg X-rays were taken in three parts and stitched
together in a standardized process using software from a digital X-ray system by Philips
Healthcare (Philips GmbH Market DACH, Hamburg, Germany). The storage format was
DICOM (digital imaging and communications in medicine). The following angles were
measured on the anonymized images:
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- mFAmTA: angle between the mechanical axis of the femur and the mechanical axis of
the tibia, also known as the hip-knee-ankle angle.

- FSAmTA: angle between the anatomical femur shaft axis and the mechanical axis of
the tibia.

- mMPTA: angle between the mechanical axis of the tibia and the tibial plateau knee
joint line, measured on the medial side.

- mLDFA: angle between the mechanical axis of the femur and the femoral condyles
knee joint line, measured on the lateral side.

- mLDTA: angle between the mechanical axis of the tibia and the tibial plafond, mea-
sured on the lateral side.

All angles were measured in degrees. The validation dataset contained both bilateral
and single leg X-rays.

2.3. Manual Measurement Procedure

Manual measurements were performed using the software suite MediCAD® 2D classic
(mediCAD Hectec GmbH, Altdorf/Landshut, Germany). The software allows adjustment
for brightness and contrast, as well as magnification. To assess inter-rater reliability, all
preoperative images were measured by the orthopedic surgeon (rater 1), and a second
physician trained and experienced in radiographic measurements (rater 2). Postoperative
images were measured only by rater 2. Rater 2 conducted all pre- and postoperative
measurements twice, at two different time points, to determine intra-rater reliability (rater
2a and 2b).

2.4. Automated AI-Workflow and Training Procedure

A fully automatic AI-based algorithm was developed for the determination of the
lower limb alignment angles. The algorithm works in multiple stages, and the workflow
is illustrated in Figure 1. It consists of five deep convolutional neural networks (CNNs)
and is triggered with the input of a full-leg X-ray. After passing through all stages, the
measured angles are visualized. For bilateral images, all parameters are computed for both
legs separately.
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Figure 1. Fully automatic AI algorithm for the determination of lower limb alignment angles. Based
on the predicted segmentation masks around anatomical structures and implants, crops of the
proximal femur, knee area, and ankle joint were created. Landmark detection models predicted
landmarks on these smaller crops. The landmarks were projected back on the original image, and the
final parameters were computed and visualized.
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The training datasets are described per model below. The images used for training the
models were completely independent of the validation images.

2.5. Preprocessing

Each DICOM image was anonymized and normalized with the use of the window
width and window center information from the DICOM tags.

2.6. Segmentation of Anatomical Structures and Implants

After preprocessing, a segmentation model was used to automatically detect and seg-
ment all anatomical structures and implants in the image. Polygon masks and rectangular
boxes around the bones and implants were predicted (see Figure 1).

Training of the Segmentation Model

To train the segmentation model, a dataset of training images was manually annotated
with bounding polygon masks by trained medical staff. The regions of interest included
femur, fibula, tibia, talus, and implants. The training dataset consisted of 202 unilateral
antero-posterior FLR (192 preoperative, 10 postoperative) from two independent clinical
sites. Horizontal flipping was applied to half of the training set, for the purpose of data
augmentation, resulting in a trained model that is insensitive to the leg side. The instance
segmentation model was based on mask-RCNN architecture, implemented in the Pytorch
framework [21,22]. Pre-trained weights from https://pytorch.org/serve/model_zoo.html
(accessed on 23 June 2021) were used to initialize the model. Training ran for 200 epochs on
a NVIDIA GeForce GTX 1080 GPU, with a learning rate of 0.002.

2.7. Landmark Placement

In the next step, the bounding boxes determined by the segmentation model were used
to generate smaller crops for the landmark detection models. The leg side was determined
based on the relative position of fibula and tibia. The images were flipped accordingly to
train the landmark placement models on the right leg crops.

Training of the Landmark Placement Models

In total, four different landmark detection models were trained: one for the proximal
femur, including the greater and lesser trochanter, as well as the femoral head (9 landmarks),
one for a TKA implant (15 landmarks), one for the preoperative knee joint (20 landmarks),
and one for the talus (2 landmarks). Depending on the detection of a TKA implant, the
appropriate model for the knee area was triggered. Contrast enhancement was applied to
the crops to increase visibility of structures.

To train the proximal femur landmark detection model, a crop was made by taking the
upper quarter of the femur bounding box. Landmarks were placed on the femoral head,
femoral neck, and the greater and lesser trochanter by trained medical staff. The training
set consisted of 326 images (320 preoperative, 6 with hip implants) from two clinical sites.

The TKA landmark detection model was trained on crops based on the bounding box
around the femoral and tibial parts of the TKA implant. Five landmarks were placed on the
femoral part, and ten landmarks were placed on the tibial part of the implant on pre-defined
locations optimal for determination of parameters. Trained medical staff manually placed
these landmarks on a total of 190 images with TKA implants from two clinical sites.

The crops for the knee landmark detection models were generated by merging the
lower eighth of the femur and the upper eighth of the tibia bounding boxes detected
by the segmentation model. In total, 20 landmarks were placed in pre-defined positions
on the femoral condyles and tibial plateau. The training set consisted of 319 images
(288 preoperative, 30 images with unicondylar implants) from two clinical sites.

For the training of the talus landmark detection model, the predicted talus bounding
boxes were directly used to create the crops. Two landmarks were placed on the superior
articular surface of the talus. In total, 320 images from two sites were used for training.

https://pytorch.org/serve/model_zoo.html
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Manual landmark placement by the trained medical staff was conducted in a custom
graphical user interface (GUI) developed in Python. The landmarks were constantly
reviewed for quality and consistency. During training of each model, data augmentation
was applied by rotating and/or scaling the crops by random factors. The crops were then
downscaled to 256 × 256 pixels. The network was adapted from UNet and implemented in
TensorFlow [23,24]. Training of all models ran on a NVIDIA GeForce GTX 1080 GPU, with
a constant learning rate of 0.001 for 100 epochs each.

2.8. Projection and Parameter Computation

In the final two stages, the coordinates of the predicted landmarks on the crops were
projected back to the original image. The segmentation masks and projected landmarks
were then used to compute the five lower limb alignment parameters. In case of prediction
failures (e.g., the talus was not detected by the segmentation model), the affected parameters
were not computed. The remaining parameters, however, were still determined, resulting
in individual detection rates per parameter.

2.9. Statistical Analysis

For preoperative images, intra- (R2a vs. R2b) and inter-rater analyses (R1 vs. R2a,
R1 vs. R2b, and each rater against the algorithm R-AI) were conducted. Only intra-rater
analysis was performed for postoperative images. Agreement within and between raters
was quantified by mean differences (95% confidence interval (CI), standard deviation (SD)),
root mean square error (RMSE), Pearson’s correlation coefficient r, and single-measure
intra-class correlation coefficients (ICC) for absolute agreement. Python 3 programming
language was used for all statistical computations.

3. Results
3.1. Patient Sample

The initial cohort consisted of 119 patients, with age span of 44 to 85 years (mean
66 ± 9.3) and gender distribution of 39% male and 61% female. After application of
exclusion criteria involving the availability of ground truth values for all parameters, the
final dataset consisted of 95 preoperative and 105 postoperative weight-bearing, antero-
posterior FLR. Some of the patients were undergoing a second surgery and had TKA on
one of the knees operated on in a previous timepoint. In such cases, and if bilateral images
were present, parameters were measured on both TKA implants in the postoperative image,
but only the native knee was measured in the preoperative image. Therefore, the number
of postoperative FLR was higher than preoperative FLR.

3.2. Human vs. Human Intra-Rater Reliability Analysis

Table 1 displays the results of the intra-rater reliability analysis, based on the repeated
measurements of all pre- and postoperative images by rater 2. The intra-rater agreement,
as defined by the ICC-value, was highest for mFAmTA (ICCpreop = ICCpostop = 1.0) and
lowest for mLDFA (ICCpreop = 0.95, ICCpostop = 0.97). All comparisons reached significant
agreement (all p < 0.001). The RMSE were smallest for mFAmTA (0.3◦ for preoperative,
0.3◦ for postoperative images) and largest for mLDTA (1.2◦ for preoperative, 1.3◦ for
postoperative images).

3.3. Human vs. Human Inter-Rater Reliability Analysis

The preoperative images were measured by two raters to allow for an inter-rater
reliability analysis. The results are displayed in Table 2. The agreement between raters was
highest for the two parameters mFAmTA and FSAmTA (ICCpreop = 0.99 for both R1 vs. R2a
and R1 vs. R2b). Again, the agreement was significant (p < 0.001) for all comparisons. The
agreement was lowest for mLDTA (ICCpreop = 0.88 for R1 vs. R2a, ICCpreop = 0.85 for R1
vs. R2b). The RMSE were largest for mMPTA (1.6◦ for R1 vs. R2a, 1.7◦ for R1 vs. R2b) and
smallest for FSAmTA (1.0◦ for R1 vs. R2a, 1.1◦ for R1 vs. R2b).
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Table 1. Intra-rater reliability of the manual measurements; rater 2a vs rater 2b; preoperative n = 95,
postoperative n = 105.

Intra-Rater Reliability (Rater 2a vs. Rater 2b)

Statistical Method mMPTA [◦] mLDFA [◦] mFAmTA [◦] mLDTA [◦] FSAmTA [◦]

Preoperative

ICC
(95% CI)

0.97
(0.95–0.98)

0.95
(0.93–0.97)

1.0
(1.0–1.0)

0.97
(0.96–0.98)

1.0
(1.0–1.0)

Mean error
(95% CI)

−0.07
(−0.27–0.13)

−0.02
(−0.22–0.19)

−0.01
(−0.06–0.05)

−0.13
(−0.37–0.12)

−0.05
(−0.14–0.03)

SD 0.97 1.0 0.26 1.19 0.4

RMSE 0.97 1.0 0.26 1.2 0.41

Pearson
correlation r

(p-value)
0.97

(<0.001)
0.95

(<0.001)
1.0

(<0.001)
0.97

(<0.001)
1.0

(<0.001)

Postoperative

ICC
(95% CI)

0.96
(0.94–0.97)

0.97
(0.95–0.98)

1.0
(0.99–1.0)

0.96
(0.94–0.97)

0.99
(0.99–1.0)

Mean error
(95% CI)

0.0
(−0.1–0.09)

−0.05
(−0.2–0.1)

−0.01
(−0.07–0.04)

0.15
(−0.1–0.4)

0.01
(−0.06–0.08)

SD 0.48 0.77 0.28 1.29 0.37

RMSE 0.48 0.77 0.28 1.3 0.37

Pearson
correlation r

(p-value)
0.96

(<0.001)
0.97

(<0.001)
1.0

(<0.001)
0.96

(<0.001)
1.0

(<0.001)

ICC, intraclass correlation coefficient; CI, confidence interval; SD, standard deviation; RMSE, root mean
square error.

Table 2. Inter-rater reliability of the preoperative manual measurements; rater 1 vs rater 2a, rater 1 vs.
rater 2b; n = 95.

Inter-Rater Reliability (Rater 1 vs. Rater 2a)

Statistical Method mMPTA [◦] mLDFA [◦] mFAmTA [◦] mLDTA [◦] FSAmTA [◦]

Preoperative

ICC
(95% CI)

0.91
(0.87–0.94)

0.91
(0.87–0.94)

0.99
(0.99–0.99)

0.88
(0.82–0.92)

0.99
(0.99–0.99)

Mean error
(95% CI)

0.18
(−0.14–0.49)

0.07
(−0.19–0.33)

0.09
(−0.14–0.32)

−0.46
(−0.91–−0.01)

0.1
(−0.11–0.31)

SD 1.53 1.29 1.11 2.0 1.03

RMSE 1.55 1.29 1.11 2.0 1.03

Pearson
correlation r

(p-value)
0.92

(<0.001)
0.91

(<0.001)
0.99

(<0.001)
0.89

(<0.001)
0.99

(<0.001)

Inter-rater Reliability (Rater 1 vs. Rater 2b)

Preoperative

ICC
(95% CI)

0.89
(0.84–0.93)

0.92
(0.88–0.95)

0.99
(0.99–0.99)

0.85
(0.78–0.90)

0.99
(0.99–0.99)

Mean error
(95% CI)

0.11
(−0.24–0.45)

0.05
(−0.2–0.31)

0.08
(−0.14–0.31)

−0.59
(−1.09–−0.09)

0.05
(−0.16–0.26)

SD 1.69 1.26 1.09 2.43 1.05

RMSE 1.7 1.26 1.1 2.5 1.05

Pearson
correlation r

(p-value)
0.89

(<0.001)
0.92

(<0.001)
0.99

(<0.001)
0.87

(<0.001)
0.99

(<0.001)

ICC, intraclass correlation coefficient; CI, confidence interval; SD, standard deviation; RMSE, root mean
square error.

3.4. AI Detection Rates

For preoperative images, mMPTA, mLDFA, and FSAmTA could be computed in 98.9%
of cases. mLDFA and mFAmTA could be determined in 92.6% of cases. For postoperative
images, mMPTA and mLDTA were computed in 97.1% of cases. The detection rates for
postoperative FSAmTA, mLDFA, and mFAmTA were 95.2%, 94.3%, and 92.4%, respectively.
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3.5. Human vs. AI Inter-Rater Reliability Analysis

The agreement between the automatic measurements and human raters was largest for
the two parameters mFAmTA and FSAmTA (exemplarily: ICCpreop = ICCpostop = 0.99 for
R-AI vs. R2b) and smallest for mLDFA (ICCpreop = 0.83, ICCpostop = 0.85 for R-AI vs. R2b).
The correlations between measurements of the AI algorithm and rater 2b are visualized
in Figure 2. When considering all comparisons, the ICC-values ranged between 0.8 and
1.0 preoperatively and between 0.83 and 0.99 postoperatively (all p < 0.001). For preop-
erative images, the RMSE ranged between 1.6◦–1.8◦ for mMPTA, 1.9◦–2.2◦ for mLDFA,
0.7◦–0.9◦ for mFAmTA, 1.5◦–2.2◦ for mLDTA, and 1.1◦–1.2◦ for FSAmTA. For postopera-
tive images, the RMSE for the comparisons of automatic measurements against the two
measurements by rater 2 were 1.0◦ and 1.0◦ for mMPTA, 1.6◦ and 1.7◦ for mLDFA, 0.5◦ and
0.5◦ for mFAmTA, 1.5◦ and 1.5◦ for mLDTA, and 0.5◦ and 0.6◦ for FSAmTA, respectively.
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Figure 2. Correlations between the manual measurements of rater 2b on the x-axes and the automatic
measurements by the AI algorithm on the y-axes, respectively.

4. Discussion
4.1. Critical Comparison with Literature

Previous scientific publications in the field of AI for the automated assessment of lower
limb alignment utilized different software architectures and approaches. The “YOLOv4
And Resnet Landmark regression Algorithm” (YARLA) by Tack et al. represented a first
step toward a fully automated assessment of knee alignment [13]. The accuracy of hip-
knee-ankle angle computations was assessed on 2943 radiographs by comparing the results
of two independent, publicly accessible image analysis studies. The average deviation of
manually placed landmarks and automatically detected ones was less than 2.0 ± 1.5 mm
for all structures. The average mismatch between hip-knee-ankle angle determinations
was 0.09 ± 0.63◦, which is in the same error range as the algorithm presented here (mean
error R2a vs. AI: preoperative: 0.0◦, postoperative: 0.15◦). Compared to our algorithm, the
method proposed by Tack et al. demonstrated a slightly higher detection rate of 99.85% for
the hip-knee-ankle, which may be due to the larger training set of 900 images. Nevertheless,
our approach achieved remarkable detection rates, with approximately one third of the
amount of training data. Due to differences in the validation images, comparing the
performance of the two methods is challenging. Nevertheless, the reported ICCs for the
hip-knee-ankle angle were similar (0.98 by Tack et al. vs. 0.99 presented in this study).
Our proposed method can determine four additional parameters apart from the hip-knee-
ankle angle, which was the only parameter considered by Tack et al. Furthermore, in the
presented study, there was a clear distinction between pre- and postoperative analyses, and
the similarity in their statistical evaluation indicates the robustness and generalizability of
our algorithm.

Notably, the results for FSAmTA and the hip-knee-ankle angle (mFAmTA) were
generally better than for angles between the knee joint lines and the long axes of the
bones. This applies to both the comparisons between two sets of human measurements and
comparisons between human and AI measurements (see Tables 1–3). However, all ICC-
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values are still considered excellent, indicating that an accurate automatic determination is
possible, even for these more challenging parameters.

Table 3. Inter-rater reliability between AI method and manual measurements; preoperative n = 94 for
mMPTA, mLDTA, FSAmTA, n = 88 for mLDFA, mFAmTA; postoperative n = 102 for mMPTA,
mLDTA, n = 100 for FSAmTA, n = 99 for mLDFA, n = 97 for mFAmTA.

Inter-Rater Reliability (AI method vs. Rater 1)

Statistical Method mMPTA [◦] mLDFA [◦] mFAmTA [◦] mLDTA [◦] FSAmTA [◦]

Preoperative

ICC
(95% CI)

0.86
(0.80–0.91)

0.84
(0.76–0.89)

1.0
(0.99–1.0)

0.88
(0.77–0.93)

0.99
(0.98–0.99)

Mean error
(95% CI)

−0.29
(−0.66–0.08)

0.15
(−0.26–0.56)

−0.03
(−0.17–0.11)

0.97
(0.56–1.38)

0.24
(0.0–0.48)

SD 1.8 1.92 0.67 1.98 1.15

RMSE 1.83 1.93 0.67 2.2 1.18

Pearson
correlation r

(p-value)
0.87

(<0.001)
0.84

(<0.001)
1.0

(<0.001)
0.90

(<0.001)
0.99

(<0.001)

Inter-rater Reliability (AI method vs. Rater 2a)

Preoperative

ICC
(95% CI)

0.90
(0.85–0.93)

0.80
(0.71–0.87)

0.99
(0.99–1.0)

0.95
(0.92–0.97)

0.99
(0.98–0.99)

Mean error
(95% CI)

−0.19
(−0.53–0.14)

0.19
(−0.27–0.65)

0.0
(−0.19–0.19)

0.49
(0.21–0.78)

0.26
(0.02–0.49)

SD 1.61 2.16 0.89 1.38 1.14

RMSE 1.62 2.17 0.89 1.46 1.16

Pearson
correlation r

(p-value)
0.91

(<0.001)
0.81

(<0.001)
0.99

(<0.001)
0.96

(<0.001)
0.99

(<0.001)

Postoperative

ICC
(95% CI)

0.83
(0.76–0.88)

0.87
(0.81–0.91)

0.99
(0.98–0.99)

0.94
(0.91–0.96)

0.99
(0.98–0.99)

Mean error
(95% CI)

−0.13
(−0.32–0.07)

−0.31
(−0.63–0.01)

0.15
(0.05–0.24)

0.23
(−0.06–0.52)

−0.07
(−0.17–0.04)

SD 1.0 1.61 0.48 1.47 0.53

RMSE 1.0 1.64 0.51 1.49 0.53

Pearson
correlation r

(p-value)
0.83

(<0.001)
0.88

(<0.001)
0.99

(<0.001)
0.94

(<0.001)
0.99

(<0.001)

Inter-rater Reliability (AI method vs. Rater 2b)

Preoperative

ICC
(95% CI)

0.88
(0.83–0.92)

0.83
(0.75–0.88)

0.99
(0.99–1.0)

0.95
(0.92–0.97)

0.99
(0.98–0.99)

Mean error
(95% CI)

−0.26
(−0.61–0.08)

0.19
(−0.24–0.62)

−0.01
(−0.18–0.17)

0.35
(0.04–0.65)

0.2
(−0.02–0.43)

SD 1.68 2.02 0.82 1.49 1.11

RMSE 1.7 2.03 0.82 1.53 1.13

Pearson
correlation r

(p-value)
0.89

(<0.001)
0.83

(<0.001)
0.99

(<0.001)
0.95

(<0.001)
0.99

(<0.001)

Postoperative

ICC
(95% CI)

0.85
(0.78–0.89)

0.85
(0.79–0.90)

0.99
(0.98–0.99)

0.95
(0.92–0.96)

0.99
(0.98–0.99)

Mean error
(95% CI)

−0.14
(−0.33–0.04)

−0.39
(−0.73–−0.06)

0.16
(0.07–0.25)

0.37
(0.09–0.65)

−0.08
(−0.2–0.03)

SD 0.94 1.65 0.43 1.42 0.57

RMSE 0.95 1.7 0.46 1.46 0.58

Pearson
correlation r

(p-value)
0.85

(<0.001)
0.87

(<0.001)
0.99

(<0.001)
0.95

(<0.001)
0.99

(<0.001)

ICC, intraclass correlation coefficient; CI, confidence interval; SD, standard deviation; RMSE, root mean
square error.
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Simon et al. trained an algorithm on over 15,000 radiographs to measure various
clinical angles and lengths from standing long-leg radiographs [14]. AI and expert mea-
surements were performed independently. A total of 295 long leg radiographs from
284 patients were analyzed. The AI model produced outputs on 98.0% of the images. AI
vs. mean observer revealed mean-absolute-deviation between 0.39◦ and 2.19◦ for angles
and 1.45–5.00 mm for lengths. Similar to the results presented here, their algorithm demon-
strated excellent reliability in all lengths and angles (ICC ≥ 0.87). Again, no differentiation
between preoperative and postoperative measurements were reported, so a scientific com-
parison was not possible within the scope of this study. The authors profess an algorithm
with reproducible, accurate measures and time savings. On average, their algorithm was
130 s faster than the clinicians [14]. Compared to our novel algorithm, they exhibited
similar overall reliability and accuracy. The calculation of the time savings was not part of
our study. In our opinion, a determined calculation was very subjective and depended on
computing power. To provide a preliminary time value, using hospital’s medical informat-
ics infrastructure, our new algorithm can process a fully automated assessment of lower
limb alignment in less than 60 s.

What all above-mentioned solutions have in common is a lack of transparency into the
black-box mechanism of the machine learning algorithm. We are convinced that the serial
combination of five consecutive algorithms and intermediate visualization of predicted
segmentations and landmarks is suitable to disclose the localization and the exact reason
for the potential errors. Our final software solution would include GUI control for the
visualization of the single steps. This is the first step toward a warning mechanism for
borderline cases.

4.2. General Limitations of Method

The basic procedure of measuring lower limb alignment remains unchanged in the
presented method. The use of AI may result in time saving, fatigue-free controls, objectified
examination procedures, and easy investigation in large volumes of images. However,
fundamental procedural deficiencies persist, as a result of the inherent technique of weight-
bearing FLR. Jud et al. measured the hip-knee-ankle angle in simulated antero-posterior
FLR. Deviations caused by rotation up to 30◦, flexion up to 30◦, or varus/valgus up to 9◦

did not vary more than 3◦ from median values. Their findings concluded that deviations
in hip-knee-ankle angle measurements are comparable in patients with different coronal
alignment [6]. However, Brouwer et al. pointed out several pitfalls in determining knee
alignment in a cadaver study, e.g., simultaneous flexion of the knee and rotation of the
leg induced large changes in projected angles. However, flexion of the knee without
rotation of the lower extremity had little effect on angles, as projected on full-length ante-
posterior radiographs. Similarly, the rotation of the lower extremity without flexion of
the knee also had little effect [25]. Zahn et al. showed that the postoperative mechanical
axis correlates with limb loading. They used two digital scales separately to capture the
load of each limb during X-ray imaging. The mechanical axis changed from an initial ten
days after surgery −1◦ ± 2◦ valgus alignment to three months after surgery varus axis
of +1◦ ± 2◦. The alterations were much more pronounced in patients with postoperative
incomplete extension [26]. In alignment with Zahn et al. and the authors mentioned above,
an interval of three month prior to surgery appears to be sufficient. The algorithm itself
does not address the specific structural measurement inaccuracy of the technique, and
future warning mechanisms, regarding malrotation and contractures, may be useful.

4.3. Limitations of the Study

The size of the validation dataset was limited. However, our database increases
automatically with time, allowing for the continuous improvement of the algorithm. Fur-
thermore, the automated assessment of lower limb alignment was only evaluated on native
knees and patients with TKA, even though the field of clinical application was larger,
due to the variety of available implants. Therefore, we plan to include other implant
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types like plates or unicompartmental knee arthroplasty in the validation dataset. The
postoperative images were only measured by rater 2, preventing an inter-rater reliability
analysis between the two human raters. However, based on the excellent inter-rater reli-
ability for pre-operative images, a comparable agreement between the two raters would
be expected for postoperative images, too. Future studies, including multiple raters, may
prove this assumption.

4.4. Outlook and Connecting Factors

There are several possible extensions to our algorithm. The measurements of alignment
angles on different types of protheses, such as unicompartmental knee arthroplasty, could
be the next step. Other parameters, such as the joint line orientation angle, described as
the angle between the knee joint line and the floor, could be assessed; this parameter was
associated with worse postoperative outcomes in unicompartmental knee arthroplasty [27].
Leg length discrepancies are not commonly associated with TKA, but large changes in the
leg length are common after hinged TKA. Labott et al. reported an absolute mean and
median change in leg lengths of 20 mm and 13 mm [28]. Those measurements could be
integrated into the existing algorithm.

In the future, a holistic set of algorithms is conceivable by combining the achievements
of several research teams. For example, a supplementary automated “Sarcopenia Screen-
ing”, as well as an additional algorithm for the identification of specific orthopedic implant
models from imaging, could be combined [29,30]. Another approach could be the integra-
tion of clinical factors, such as lab results or quality of life questionnaires. Bonakdari et al.,
for example, developed a comprehensive machine learning model that bridges major os-
teoarthritis risk factors, serum levels of adipokines, and related inflammatory factors to
predict the risk of disease [31].

Recent studies point out a more differentiated consideration of the knee joints’ physiol-
ogy. Subtypes of different physiological characteristics, such as constitutional varus knees,
have been described [32]. The performance of TKA changed from “bone surgery” to “soft
tissue surgery”. New concepts of kinematic alignment are paving the way for individual
treatment options [33]. In the future, the accurate and fully automated algorithm for assess-
ment of knee alignment can replace arduous routine tasks, leaving more time for careful
diagnosis and the selection of appropriate treatment options. For instance, the algorithm
could be automatically triggered after an X-ray is taken in the hospital. The clinician could
then review and potentially correct or immediately approve the automatic measurements.

5. Conclusions

The overall findings of the study provide a validated, transparent, and reliable AI-
based algorithm for the automated assessment of lower limb alignment on weight-bearing
FLR, with a clear distinction between pre- and postoperative analysis. The AI algorithm
is able to determine five key lower limb alignment angles with excellent reliability and
accuracy. Based on these results, we propose the two main following use cases. First, the
algorithm may be used to independently analyze large datasets for research purposes.
Secondly, it could be used in supervision to support clinicians in time-consuming manual
routine measurements.
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