
Citation: Song, J.; Im, S.; Lee, S.H.;

Jang, H.-J. Deep Learning-Based

Classification of Uterine Cervical and

Endometrial Cancer Subtypes from

Whole-Slide Histopathology Images.

Diagnostics 2022, 12, 2623. https://

doi.org/10.3390/diagnostics12112623

Academic Editors: Hamid Khayyam,

Ali Madani, Rahele Kafieh and Ali

Hekmatnia

Received: 4 September 2022

Accepted: 26 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Deep Learning-Based Classification of Uterine Cervical
and Endometrial Cancer Subtypes from Whole-Slide
Histopathology Images
JaeYen Song 1, Soyoung Im 2, Sung Hak Lee 3,* and Hyun-Jong Jang 4,*

1 Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine,
The Catholic University of Korea, Seoul 06591, Korea

2 Department of Hospital Pathology, St. Vincent’s Hospital, College of Medicine, The Catholic University of
Korea, Seoul 16247, Korea

3 Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of
Korea, Seoul 06591, Korea

4 Catholic Big Data Integration Center, Department of Physiology, College of Medicine, The Catholic University
of Korea, Seoul 06591, Korea

* Correspondence: hakjjang@catholic.ac.kr (S.H.L.); hjjang@catholic.ac.kr (H.-J.J.);
Tel.: +82-2-2258-1617 (S.H.L.); +82-2-2258-7274 (H.-J.J.)

Abstract: Uterine cervical and endometrial cancers have different subtypes with different clinical
outcomes. Therefore, cancer subtyping is essential for proper treatment decisions. Furthermore, an
endometrial and endocervical origin for an adenocarcinoma should also be distinguished. Although
the discrimination can be helped with various immunohistochemical markers, there is no definitive
marker. Therefore, we tested the feasibility of deep learning (DL)-based classification for the subtypes
of cervical and endometrial cancers and the site of origin of adenocarcinomas from whole slide images
(WSIs) of tissue slides. WSIs were split into 360 × 360-pixel image patches at 20× magnification for
classification. Then, the average of patch classification results was used for the final classification. The
area under the receiver operating characteristic curves (AUROCs) for the cervical and endometrial
cancer classifiers were 0.977 and 0.944, respectively. The classifier for the origin of an adenocarcinoma
yielded an AUROC of 0.939. These results clearly demonstrated the feasibility of DL-based classifiers
for the discrimination of cancers from the cervix and uterus. We expect that the performance of
the classifiers will be much enhanced with an accumulation of WSI data. Then, the information
from the classifiers can be integrated with other data for more precise discrimination of cervical and
endometrial cancers.

Keywords: computational pathology; computer-aided diagnosis; convolutional neural network;
digital pathology

1. Introduction

Uterine cervical and endometrial cancers are two major cancer types threatening
women’s health worldwide [1]. Although they originate from the same organ, i.e., uterus, cer-
vical and endometrial cancers have different subtypes with different clinical outcomes [2–6].
The main histologic subtypes of cervical cancers are squamous cell carcinoma and en-
docervical adenocarcinoma. The two major histologic subtypes of endometrial cancers
are endometrioid adenocarcinoma and serous adenocarcinoma. Because management
and prognosis are different between the subtypes, differential diagnosis is crucial for
proper treatment decisions. Furthermore, an endometrial and endocervical origin for
an adenocarcinoma should be distinguished considering the marked differences in their
management [7]. The first step for the discrimination of the subtypes of these cancers is to in-
vestigate hematoxylin and eosin (H&E)-stained tissue slides by pathologists. However, the
visual discrimination of subtypes is not always clear because some morphologic features are
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overlapping [7,8]. Furthermore, there is considerable inter- and intra-observer variations
in the histological subtyping by pathologists [8]. Although various immunohistochemical
markers can help distinguish the subtypes, there is no definitive marker [7,8]. Therefore, an-
cillary methods for the discrimination of the subtypes of cervical and endometrial cancers,
and also the origin of the cancers are necessary to improve treatment decisions.

Because whole-slide images (WSIs) were approved for primary diagnostic purposes,
many pathologic laboratories have been adopting digitized diagnosis processes [9]. The
digitization enabled computer-aided analysis of pathologic tissues. Computer-aided analy-
sis of H&E-stained WSIs could provide valuable information in a cost- and time-effective
manner, considering the wide availability of H&E-stained pathologic tissue slides for most
cancer patients. Recently, deep learning (DL) has been widely applied for various analysis
tasks on H&E-stained WSIs [10]. DL usually performs better than many previous ma-
chine learning methods because it can automatically learn the most discriminative features
directly from large datasets [11]. Many studies showed that DL can correctly diagnose
various cancers from WSIs [12]. Furthermore, DL can even detect molecular alterations of
cancer tissues from H&E-stained WSIs [13]. Therefore, DL has tremendous potential to
improve the precision of pathologic diagnosis with minimal additional cost.

In the present study, we applied sequential DL models for the subtyping of cervical
and endometrial cancers. First, cervical and endometrial cancer regions were automatically
selected with DL models. Then, two separate DL models were trained to discriminate
cervical and endometrial cancers into cervical squamous cell carcinoma and endocer-
vical adenocarcinoma, and into endometrioid endometrial adenocarcinoma and serous
endometrial adenocarcinoma, respectively. Furthermore, we trained an additional DL
model to discriminate whether an adenocarcinoma has an endocervical or endometrial
origin. The three models showed excellent performance proving the potential of DL for the
discrimination of subtypes in gynecologic tumors.

2. Materials and Methods
2.1. Datasets

Classifiers for the subtypes of cervical and endometrial cancers and the origin of
adenocarcinomas were trained with the WSIs provided by The Cancer Genome Atlas
(TCGA) program. From the TCGA cervical (TCGA-CESC) and endometrial (TCGA-UCEC)
datasets, we collected formalin-fixed paraffin-embedded (FFPE) slides after the basic slide
quality reviews. The TCGA-CESC dataset provided slides from 255 patients for cervical
squamous cell carcinoma and from 47 patients for endocervical adenocarcinoma. From the
TCGA-UCEC dataset, tissue slides of 399 and 109 patients were obtained for endometri-
oid endometrial adenocarcinoma and serous endometrial adenocarcinoma, respectively.
When there are huge differences in the numbers of data between the classes, performance
evaluation can be skewed by the majority class. Therefore, we randomly selected 70 and
160 patients for cervical squamous cell carcinoma and endometrioid endometrial adeno-
carcinoma, respectively, to make the differences between the major and minor classes
under 1.5-fold.

The performance of the classifier for the subtypes of endometrial carcinoma was also
evaluated on The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium
(CPTAC) endometrial cancer dataset (CPTAC-UCEC). There were 83 patients for endometrioid
endometrial adenocarcinoma and 12 patients for serous endometrial adenocarcinoma.

2.2. Deep Learning Model

To fully automate the classification tasks, we sequentially applied different DL-
based classifiers to the WSIs (Figure 1). The WSIs were divided into non-overlapping,
360 × 360-pixel image patches at 20× magnification because a WSI is too big to be ana-
lyzed by a current DL-system as a whole. In a WSI, various artifacts can exist including
air bubbles, blurring, compression artifacts, pen markings, and tissue folding. Patches
with these artifacts should be discarded because they can interfere with proper learning
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of relevant features. In our previous study for gastric cancer subtyping, we trained a
simple DL classifier that can discriminate various artifacts and white backgrounds all at
once [14]. The DL network consisted of three convolution layers with 12 [5 × 5] filters,
24 [5 × 5] filters and 24 [5 × 5] filters, each followed by a [2 × 2] max-pooling layer. We
reused the classifier and only proper tissue image patches were selected for the next steps
(Figure 1a).
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Figure 1. Classification procedure. (a) Sequential application of tissue/non-tissue and normal/tumor
classifiers can discriminate proper tumor tissues. (b) Three separate classifiers for subtypes of cervical
cancers, subtypes of endometrial cancers, and site of origin for adenocarcinomas were trained from
tumor tissue image patches.

Cancer subtype classifiers should be trained on the cancer tissues. Therefore, nor-
mal and tumor tissue classifiers are prerequisites for cancer subtyping. To train the nor-
mal/tumor classifiers, two pathologists (S.I. and S.H.L.) annotated normal and tumor
regions for cervical and endometrial cancer tissue slides (Figure 2 left panels). Then, normal
and tumor tissue image patches were collected based on the annotation. From these patches,
classifiers to discriminate normal and tumor tissues for cervical and endometrial cancers
were trained separately for each cancer type.

Next, we trained classifiers for the subtypes of cervical and endometrial cancers,
and the origin of adenocarcinomas on prominent tumor tissue patches selected by the
normal/tumor classifiers. To evaluate the general performance of the classifiers for the
TCGA-CESC and -UCEC datasets, 5-fold cross validation was adopted. Therefore, the WSIs
were split into 5 non-overlapping patient-level subsets and classifiers were trained and
evaluated for each subset. As we noted, 70 and 160 patients for cervical squamous cell
carcinoma and endometrioid endometrial adenocarcinoma were selected for evaluation.
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However, performance can be enhanced when the classifiers were exposed to more various
tissue images during training. Therefore, we randomly sampled tumor image patches from
all cervical squamous cell carcinoma and endometrioid endometrial adenocarcinoma WSIs
other than the test sets to match the 1.5-fold data ratio of major/minor class tissue patches
for training, as this strategy could include a greater variety of tissue images. Therefore,
we included sampled data from all patients other than the test sets during training and
selected patients for the testing to avoid skewed test results. For the selection of the
samples, we made a random selection to avoid selection biases from human selectors. The
numbers of image patches used for the training of the classifiers were summarized in
Supplementary Table S1.

Diagnostics 2022, 12, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. Normal/tumor classification results for (a) cervical and (b) endometrial cancers. Left pan-
els: annotation made by pathologists. Middle panels: classification results of the normal/tumor clas-
sifiers. Right panels: Receiver operating characteristic curves for normal/tumor classification results. 
AUC: area under the curve. 

Next, we trained classifiers for the subtypes of cervical and endometrial cancers, and 
the origin of adenocarcinomas on prominent tumor tissue patches selected by the nor-
mal/tumor classifiers. To evaluate the general performance of the classifiers for the TCGA-
CESC and -UCEC datasets, 5-fold cross validation was adopted. Therefore, the WSIs were 
split into 5 non-overlapping patient-level subsets and classifiers were trained and evalu-
ated for each subset. As we noted, 70 and 160 patients for cervical squamous cell carci-
noma and endometrioid endometrial adenocarcinoma were selected for evaluation. How-
ever, performance can be enhanced when the classifiers were exposed to more various 
tissue images during training. Therefore, we randomly sampled tumor image patches 
from all cervical squamous cell carcinoma and endometrioid endometrial adenocarci-
noma WSIs other than the test sets to match the 1.5-fold data ratio of major/minor class 
tissue patches for training, as this strategy could include a greater variety of tissue images. 
Therefore, we included sampled data from all patients other than the test sets during train-
ing and selected patients for the testing to avoid skewed test results. For the selection of 
the samples, we made a random selection to avoid selection biases from human selectors. 
The numbers of image patches used for the training of the classifiers were summarized in 
Supplementary Table S1. 

Inception-v3 model was adopted for the normal/tumor, cancer subtypes, and origin 
classifiers because the Inception-v3 model yielded good results for normal/tumor classifi-
cation or tissue subtype classification in our previous studies [14,15]. The models were 
implemented using the Tensorflow deep learning library version 1.15 (http://tensor-
flow.org(accessed on 22 January 2022)). The overall structure of the model is presented in 
Supplementary Figure S1. RMSPropOptimizer was adopted to optimize the model and 
the hyperparameters were as follows: initial learning rate 0.1, number of epochs per decay 
10.0, learning rate decay factor 0.16, RMSPROP decay 0.9, RMSPROP_MOMENTUM 0.9, 
RMSPROP_EPSILON 1.0. Tissue images were color normalized before the training and 
testing. During training, data augmentation techniques such as random rotation by 90° 
and random horizontal/vertical flipping were applied to the tissue patches. Four com-
puter systems equipped with an Intel Core i9-12900K Processor (Intel Corporation, Santa 
Clara, California, United States) and dual NVIDIA RTX 3090 GPUs (NVIDIA corporation, 

Figure 2. Normal/tumor classification results for (a) cervical and (b) endometrial cancers. Left
panels: annotation made by pathologists. Middle panels: classification results of the normal/tumor
classifiers. Right panels: Receiver operating characteristic curves for normal/tumor classification
results. AUC: area under the curve.

Inception-v3 model was adopted for the normal/tumor, cancer subtypes, and origin
classifiers because the Inception-v3 model yielded good results for normal/tumor classification
or tissue subtype classification in our previous studies [14,15]. The models were implemented
using the Tensorflow deep learning library version 1.15 (http://tensorflow.org (accessed on
22 January 2022)). The overall structure of the model is presented in Supplementary Figure S1.
RMSPropOptimizer was adopted to optimize the model and the hyperparameters were
as follows: initial learning rate 0.1, number of epochs per decay 10.0, learning rate decay
factor 0.16, RMSPROP decay 0.9, RMSPROP_MOMENTUM 0.9, RMSPROP_EPSILON 1.0.
Tissue images were color normalized before the training and testing. During training, data
augmentation techniques such as random rotation by 90◦ and random horizontal/vertical
flipping were applied to the tissue patches. Four computer systems equipped with an Intel
Core i9-12900K Processor (Intel Corporation, Santa Clara, CA, USA) and dual NVIDIA RTX
3090 GPUs (NVIDIA corporation, Santa Clara, CA, USA) were used for the training and
testing of the models.

http://tensorflow.org


Diagnostics 2022, 12, 2623 5 of 13

2.3. Visualization and Statistics

To visualize the distribution of different tissue types, heatmaps of classification results
of tissue patches were overlaid on the WSIs with specific colors demonstrated in Figure 1. To
obtain the overall classification result of a WSI, patch classification results were averaged to
obtain the result for the WSI. Receiver operating characteristic (ROC) curves and area under
the curves for the ROC curves (AUROCs) were presented to demonstrate the performance
of each classifier. For 5-fold cross validated datasets, ROC curves for the folds with the
lowest and highest AUROCs and for the concatenated results of all 5 folds were provided for
more precise evaluation of the performance of the classifiers. For the concatenated results
of all 5 folds, 95% confidence intervals (CIs) were presented. To obtain accuracy, sensitivity,
specificity and F1 score of the classification results, cutoff values yielding maximal Youden
index (sensitivity + specificity − 1) were adopted.

When a comparison between the ROC curves is necessary, Venkatraman’s permutation
test with 1000 iterations was applied [16]. A p-value < 0.05 was considered significant.

2.4. Ethical Statement

Informed consent of patients in the TCGA cohorts was acquired by the TCGA con-
sortium [17]. The Institutional Review Board of the College of Medicine at The Catholic
University of Korea approved this study (XC21ENDI0031K).

3. Results
3.1. Normal/Tumor Classification

To classify the subtypes of cancer tissues, proper cancer tissue image patches should
be selected (Figure 1). First, we removed image patches containing various artifacts and
white background with a tissue/non-tissue classifier from our previous study [14]. Then,
normal/tumor classifiers for cervical and endometrial cancers were trained based on
pathologists’ annotation (Figure 2). Pathologists annotated 100 slides for each cervical
and endometrial cancer. The normal/tumor classifiers were trained with 80 slides and
tested on the remaining 20 slides. The representative WSIs in Figure 2 are the cervical and
endometrial cancer WSIs from the test sets. The classification results of the normal/tumor
classifiers matched well with the pathologists’ annotation. The AUROCs for the patch-level
classification results of the normal/tumor classifiers are 0.982 and 0.999 for cervical and
endometrial cancers, respectively.

3.2. Cervical Cancer Subtypes Classification

With the tissue/non-tissue and normal/tumor classifiers, we can collect proper tumor
patches for the training of the cancer subtype classifiers. First, we trained classifiers for the
cervical cancer subtypes. The patches from a WSI are labeled as either cervical squamous
cell carcinoma or endocervical adenocarcinoma based on the information obtained from
cBioPortal for Cancer Genomics (https://www.cbioportal.org/ (accessed on 12 March
2022)). Then, separate classifiers were trained to distinguish the subtypes for each 5-fold.
For each fold, four classifiers were trained repeatedly and a classifier yielding the best
AUROC was used to present the results. The classification results of cervical squamous cell
carcinoma and endocervical adenocarcinoma are presented in Figure 3. The upper panels
show the representative WSIs of clear cervical squamous cell carcinoma, clear endocervical
adenocarcinoma, and confusing case with mixed classification results. The ROC curves
of slide-level classification results for folds with the lowest and highest AUROCs and
concatenated results of all 5-folds are presented in the lower panels. The AUROCs were
0.979 and 1.000 for the folds with the lowest and highest AUROCs, respectively. The
AUROC for the concatenated results was 0.977 (95% CI, 0.957–0.998).

https://www.cbioportal.org/
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Figure 3. Classification results for cervical cancer subtypes. Upper panels: the representative whole
slide images of clear cervical squamous cell carcinoma, clear endocervical adenocarcinoma, and
confusing case with mixed classification results. Lower panels: the receiver operating characteristic
curves of slide-level classification results for folds with the lowest and highest area under the curve
(AUC) and concatenated results of all 5-folds.

3.3. Endometrial Cancer Subtypes Classification

Next, we trained other classifiers for the endometrial cancer subtypes. The patches
from a WSI are labeled as either endometrioid endometrial adenocarcinoma or serous
endometrial adenocarcinoma based on the information obtained also from the cBioPortal.
The classification results are presented in Figure 4a. The representative WSIs of clear
endometrioid endometrial adenocarcinoma, clear serous endometrial adenocarcinoma,
and confusing case with mixed classification results are presented in the upper panels.
The AUROCs were 0.923 and 0.982 for the folds with the lowest and highest AUROCs,
respectively. The AUROC for the concatenated results was 0.944 (95% CI, 0.916–0.969).

It is of interest whether the classifiers trained on the TCGA datasets work well or not
on other datasets. Therefore, we tested the classifier on the CPTAC-UCEC dataset. CPTAC-
UCEC provides multiple WSIs for a patient with pure normal tissue WSIs (Figure 5a). We
discarded normal WSIs and selected all WSIs with more than 30% of tumor tissue regions
for the testing. The classification results are presented in Figure 4b. The AUROC was
0.826 (95% CI, 0.727–0.925), much poorer compared to the AUROC for the TCGA dataset
(p < 0.05 between CPTAC and TCGA by Venkatraman’s permutation test).
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Figure 4. Classification results for endometrial cancer subtypes. (a) Results for the TCGA-UCEC
dataset. Upper panels: the representative whole slide images (WSIs) of clear endometrioid endome-
trial adenocarcinoma, clear serous endometrial adenocarcinoma, and confusing case with mixed
classification results. Lower panels: the receiver operating characteristic (ROC) curves of slide-level
classification results for folds with the lowest and highest area under the curve (AUC) and con-
catenated results of all 5-folds. (b) The classification results of the CPTAC-UCEC dataset by the
classifier trained with the TCGA-UCEC dataset. Left two representative WSIs demonstrate clear
endometrioid endometrial adenocarcinoma and clear serous endometrial adenocarcinoma. The ROC
curve is obtained from all CPTAC-UCEC tissues with more than 30% of tumor tissue regions.
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3.4. Tumor Origin Classification

Lastly, we trained classifiers to distinguish the origin of adenocarcinomas: endocer-
vical adenocarcinoma vs. endometrioid endometrial adenocarcinoma. The classification
results are presented in Figure 6. The upper panels show the representative WSIs of clear
endocervical adenocarcinoma, clear endometrioid endometrial adenocarcinoma, and con-
fusing case with mixed classification results. The AUROCs were 0.904 and 0.987 for the
folds with the lowest and highest AUROCs, respectively. The AUROC for the concatenated
results was 0.939 (95% CI, 0.896–0.982).
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In Table 1, accuracy, sensitivity, specificity, and F1 score of the classification results
for these classifiers were presented with cutoff values yielding maximal Youden index
(sensitivity + specificity − 1).

Table 1. Accuracy, sensitivity, specificity, and F1 score of the classification results. The measures were
obtained with cutoff values yielding maximal Youden index (sensitivity + specificity − 1).

Accuracy Sensitivity Specificity F1 Score

TCGA-CESC
cervical squamous cell carcinoma/

endocervical adenocarcinoma
0.917 0.912 0.927 0.932

TCGA-UCEC
endometrioid endometrial adenocarcinoma/

serous endometrial adenocarcinoma
0.899 0.846 0.939 0.876

CPTAC-UCEC endometrioid endometrial
adenocarcinoma/

serous endometrial adenocarcinoma
0.757 0.8 0.733 0.702

TCGA-CESC/UCEC
endocervical adenocarcinoma/

endometrioid endometrial adenocarcinoma
0.888 0.933 0.805 0.915

4. Discussion

In the present study, we investigated the feasibility of DL-based classification for the
subtypes of cervical and endometrial cancers and the site of origin of adenocarcinomas.
Although the performance of the classifiers was not perfect, high AUROCs of all the
classifiers revealed the potential of DL-based classification of H&E-stained tissue slides of



Diagnostics 2022, 12, 2623 10 of 13

cervical and uterine cancers. The performance can be much enhanced when more WSI data
can be collected for the training of the classifiers.

The DL-based classifiers for cervical cancer showed the best performance among the
classifiers in the study. Pure adenocarcinoma and squamous cell carcinoma of the cervix
can be relatively clearly separable because their morphologies have many differences [5].
However, there are also confusing cases including adenosquamous carcinoma which is
defined as a tumor with both glandular and squamous components. This explains why
the classifier could not accomplish perfection. In clinical practice, tissue slides with mixed
classification results need more careful attention by pathologists when a DL-based assistant
system for tissue slides is adopted.

Serous endometrial adenocarcinoma represents only about 10% of endometrial carci-
nomas. However, it is responsible for almost 40% of cancer deaths [8,18]. The distinction
between endometrioid and serous endometrial adenocarcinoma is not very clear. Although
serous carcinoma typically shows a predominant papillary growth pattern, which is also
found in some endometrioid carcinomas. Antibodies for p53, p16, IMP2, and IMP3 can help
to distinguish serous endometrial adenocarcinoma, but the markers are not definitive [19].
Therefore, there is an opportunity for DL-based classifiers to improve the diagnostic accu-
racy of subtypes of endometrial cancers.

One of the important issues of DL application is the generalizability of trained clas-
sifiers for external datasets. The TCGA-trained classifiers did not perform well on the
CPTAC dataset in the present study. There can be various reasons for the decreased per-
formance. First, the quality of H&E-stained tissue slides can vary between TCGA and
CPTAC datasets because of the differences in tissue processing including tissue cutting,
fixation, dye concentration, and staining time [20]. Furthermore, the differences in the
settings of the slide scanners can also affect the color features of the WSIs. Although we
normalized color, it may not be able to overcome the innate differences in the datasets. In
addition, there are many other differences between TCGA and CPTAC datasets. CPTAC
dataset contains not only FFPE tissues but also frozen tissue sections (Figure 5b). In our
previous study, we clearly demonstrated that the classifiers trained on either frozen or FFPE
tissue did not perform well on another tissue type [21]. Therefore, the classifiers trained
on the TCGA-UCEC FFPE tissues cannot perform properly on the CPTAC frozen tissues.
Furthermore, the CPTAC dataset also contains small tissue samples such as biopsy or
small curettage specimens (Figure 5c). The dilatation and curettage may be able to deform
tissue morphology. In addition, because biopsy samples have fundamental limitations in
reflecting the overall contour of tumor histomorphology, the classifiers trained on resection
specimens may not perform well on biopsy or small curettage tissues. Whatever the reason,
the limited generalizability suggests that the TCGA dataset is not enough to train a classi-
fier performing generally well on real-world problems. More data from various institutes
should be collected to establish high generalizability. Recently, many countries started to
construct large datasets of pathologic tissue slides [22,23]. Therefore, the performance and
generalizability of DL-based tissue classifiers will be much enhanced with the accumulation
of more training data in the near future.

The distinction of the site of origin between cervical adenocarcinomas and endometrial
adenocarcinomas is important for clinical decisions especially for tumors involving both
the endometrium and the endocervix or for tumors with multiple lesions [7]. The decision
can be supported by immunohistochemistry for ER, p16, CEA, and vimentin or HPV in
situ hybridization [5]. However, there is no decisive marker and additional methods are
necessary to support the distinction. It is strongly recommended that various information
including clinicopathologic, immunohistochemical, and molecular data should be inte-
grated for proper differentiation of these cancers. We suggest that information from the
DL-based classifier can also be integrated into these data for more accurate decisions.

In the present study, we applied DL to classify H&E-stained tissues of cervical and
endometrial cancers. There have been other studies applying DL to assist the analysis of
gynecologic tumors. Many studies tried to improve cervical cancer screening results based
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on cervical cytology tests [24–26]. In these studies, DL can discriminate normal/cancer cells
from conventional Pap smear or liquid-based cytology. Grades of cervical intraepithelial
neoplasia can be determined by DL from either colposcopy images [27,28] or histology
images [29]. DL can also analyze hysteroscopy images to discriminate different types
of endometrial legions [30,31]. Normal endometrium, endometrial polyp, endometrial
hyperplasia, and endometrial adenocarcinoma can be discriminated by DL from H&E-
stained histopathologic slides [32]. Molecular profiles such as molecular subtypes or
microsatellite instability status of endometrial cancers can be predicted by DL directly
from H&E-stained WSIs [33]. These studies indicate that DL has tremendous potential to
support the assessment of patients with gynecologic tumors.

However, there are also limitations of DL. First, it is almost impossible for human
interpreters to understand how DL reaches to the classification results. This “black-box”
nature is one of the most important hurdles for the adoption of DL in clinical practice [34].
The effort to enhance the interpretability of DL is actively ongoing [35]. Second, DL cannot
perform well in inexperienced settings although the difference is not tremendous. For
example, a classifier trained on FFPE tissues has limited performance on frozen tissues
although the difference is not limiting to human. Therefore, separate DL models should be
trained for slightly different settings. Otherwise, a huge dataset covering every variation
should be used to train a widely available model.

In the present study, we demonstrated the feasibility of DL-based classifiers for the
subtypes of cervical and endometrial cancers and the site of origin of adenocarcinomas.
Although there is still room for improvement, our results showed that DL can capture
selective features for the discrimination of cancer tissues. We believe the performance
will be much enhanced with an accumulation of training data in the near future. The
classification results of DL can be integrated with other clinical information for a more
precise analysis of cervical and endometrial cancers.
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