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Abstract: The COVID-19 pandemic has had a significant impact on many lives and the economies
of many countries since late December 2019. Early detection with high accuracy is essential to help
break the chain of transmission. Several radiological methodologies, such as CT scan and chest X-ray,
have been employed in diagnosing and monitoring COVID-19 disease. Still, these methodologies
are time-consuming and require trial and error. Machine learning techniques are currently being
applied by several studies to deal with COVID-19. This study exploits the latent embeddings of
variational autoencoders combined with ensemble techniques to propose three effective EVAE-Net
models to detect COVID-19 disease. Two encoders are trained on chest X-ray images to generate
two feature maps. The feature maps are concatenated and passed to either a combined or individual
reparameterization phase to generate latent embeddings by sampling from a distribution. The latent
embeddings are concatenated and passed to a classification head for classification. The COVID-19
Radiography Dataset from Kaggle is the source of chest X-ray images. The performances of the three
models are evaluated. The proposed model shows satisfactory performance, with the best model
achieving 99.19% and 98.66% accuracy on four classes and three classes, respectively.

Keywords: autoencoder; variational autoencoder; ensemble learning; deep learning; latent embedding

1. Introduction

In late December 2019, the COVID-19 disease was discovered in Wuhan, a city in east-
ern China, and began spreading worldwide. By March 2020, the World Health Organization
(WHO) classified it as a pandemic. COVID-19 is a pathogen strain caused by SARS-CoV2
that causes severe acute respiratory discomfort and exhibits symptoms of pneumonia in
humans. The infection usually starts in the mucous membrane in the throat and rapidly
spreads to the lungs. Once in the lungs, it impairs function and mutates rapidly before a
patient can be diagnosed correctly. It is transmitted efficiently from human-to-human via
aerosol and is highly infectious. This makes COVID-19 a public health emergency. Early
detection and diagnosis are significant for breaking the transmission chain and controlling
its spread.

To help control the spread of the disease, healthcare professionals and researchers
have adopted several modalities to detect the virus. Some of the modalities include reverse
transcriptase–polymerase chain reaction (RT-PCR) test [1], chest X-ray (CXR) image [2,3],
and computed tomography (CT) scans [4]. RT-PCR has been the go-to diagnostic modality
for detecting COVID-19 pathogens. It requires acquiring a respiratory specimen from the
subject’s body. Though efficient, it has some disadvantages, such as a longer detection time
and a lower detection rate.
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Chest radiography images in the last decade have been used as a primary diagnostic
tool in clinical practice to examine the cardiothoracic region for abnormalities. Pulmonary
fibrosis, pneumonia, emphysema, chronic bronchitis, and lung cancer are a few of the
pulmonary diseases that have been detected using chest radiography images [5,6]. In using
CXR images as a diagnostic tool, lung abnormalities, such as bilateral or interstitial lung
consolidation and/or ground grass opacities [7] can be identified, making CXR images a
remarkable tool for detecting of COVID-19 disease at the early stage [8]. Given the similarity
between COVID-19 and other respiratory disorders, such as pneumonia, the experience
of the specialist is essential to identify and characterize COVID-19 biomarkers from other
related clinical findings. Manually characterizing and identifying these biomarkers is
tedious and does not permit the procedure to be repeated since it is time-consuming.
Therefore, an automatic system is required to identify normal or COVID-19 cases with high
accuracy by analyzing CXR images. Not only will it speed up the detection process, but it
will also help reduce the workloads of health professionals.

Detecting COVID-19 is a typical classification problem in machine learning (ML)
and deep learning (DL). ML and DL have demonstrated their effectiveness in solving
problems in several domains. One advantage that has placed ML and DL as benchmark
techniques in medical imaging is their computational capabilities and the availability of
large labeled datasets [9]. They have been explored to detect pulmonary abnormalities
in CXR imaging [10]. A deep convolutional neural network (CNN) for classifying lung
images was proposed by Anthimopoulos et al. [11]. A CNN-based method to quantify the
percentage of emphysema on simulated CXR images was presented by Campo et al. [12]. A
deep neural network that incorporates both global and local features to identify pneumonia
was proposed by Jaiswal et al. [13]. In the context of COVID-19, several works have been
proposed to detect COVID-19 disease using CXR images [14–17].

DL models may suffer from overfitting, high variance, and/or generalization errors
because of the limited size of the training data and the presence of noise in the training
data. Ensemble learning is a technique used to combine multiple models and is a practical
approach to handling these errors. Not only does it handle these errors, it also yields better
results compared to single models [18].

Researchers have recently found that unsupervised pre-training helps train supervised
deep neural networks [19]. One such fundamental unsupervised method employed to
transform raw input data into a meaningful representation is autoencoders (AEs) [20].
Unlike conventional AEs, which try to learn a distance function, VAEs, proposed by Kingma
and Welling [21], are powerful generative AEs that provide high-quality representations
of the raw input data and generate desirable virtual instances in the controllable smooth
latent space [22].

Compared with conventional AEs, VAEs are highly capable of a more general approxi-
mation of the intractable posterior density and can efficiently carry out the inference [21].
These advantages combined make VAEs extensively utilized and successful for a variety
of machine learning tasks such as audio data recognition [23], text captioning [24], and
natural image processing [25]. Furthermore, the latent representations generated by VAEs
can be controlled more accurately owing to the variational lower bound in the optimization
of VAEs. This accurate modeling could provide superior representations compared to
other AE variants and enhance the results of several downstream tasks, such as image
classification [26].

Additionally, by adjusting the distribution parameters, the generation of new instances
can be easily controlled since VAEs learn the parameters of the specific probabilistic distribu-
tions. Again, due to their closed-form objective function, VAEs are more stable throughout
training stages than other generative paradigms, such as generative adversarial networks
(GANs) [27], and have the potential to generate shaper samples that are comparable to
GANs [28]. Another major benefit of VAEs is their capability to handle larger datasets
compared to variational inference. This is because VAEs can operate quickly using a single
feedforward neural network to represent a stochastic function of the input variables. In
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contrast, variational inference typically becomes increasingly computationally complex as
the number of samples increases.

Motivated by this, we propose EVAE-Net, an ensemble variational autoencoder deep
learning network that combines the high-quality latent representations generated by VAE
and ensemble learning for COVID-19 classification based on chest X-ray images. Three
variants of EVAE-Net are proposed, and their performances are compared. The proposed
model consists of two encoders, one or two reparameterization phases, a classification head,
and one or two decoders. In the case of the single reparameterization phase, the feature
maps from the encoders are merged before sampling the latent embeddings. The latent
embeddings are then passed to the classification head and the decoder for reconstruction.
In the case where each encoder has its reparameterization phase, the feature maps from
each encoder are passed to their respective reparameterization phase to generate the latent
embeddings. The latent embeddings are merged to form a single latent embedding and
passed to the classification head. The individual latent embeddings are passed to their
respective decoders for reconstruction. Our proposed methodology achieves promising
classification performance, with the best model achieving 98.66% accuracy, 98.47% recall,
98.60% F1 score, and 98.75% precision for three classes, and 99.19% accuracy, 98.82% recall
and precision, and 98.94% F1 score for four classes.

Contributions

The main contributions of our work are summarized as follows:

• Propose a deep learning model based on VAE and ensemble learning for COVID-19
classification. Particularly, three models are proposed. Each model consists of an
encoder for feature extraction, a reparameterization phase for sampling latent vectors
from the extracted features, a decoder for reconstructing the input image from the
latent vector, and a classification head for classifying COVID-19.

• Demonstrate the superiority of the proposed model by performing essential experi-
ments. The experiment was conducted on both three classes and four classes using
the standard COVID-19 radiography database. Several classification metrics were
used, including accuracy, recall, precision, F1 score, and ROC-AUC. The experimental
results demonstrate that the proposed EVAE-Net can automatically classify COVID-19
infections from CXR images and achieve better performance.

• Compare the performance of the proposed model to that of several state-of-the-art
models, showing our proposed model outperforms these existing models.

The remaining work is structured as follows: In Section 2, we present related studies
and works. Section 3 describes the research methodology. The datasets used in this work,
evaluation metrics, and experimental setup are described in Section 4, followed by results
and analysis in Section 5. Finally, we present discussion and conclusions of the study in
Sections 6 and 7, respectively.

2. Related Work

Since the outbreak of COVID-19, the scientific community has responded with high
volumes of research dedicated to different levels. ML and DL models have been adopted in
several areas to help deal with COVID-19 disease discovery and spread monitoring [29–32],
prognosis [33], etc. Nevertheless, most of these ML and DL models focus on preprocessing
X-ray or CT scan images to detect and classify COVID-19. Several tools, techniques, and
datasets have been utilized to facilitate the detection and classification of COVID-19.

2.1. Deep Learning Models

Researchers have identified several approaches for identifying COVID-19 from chest
X-ray images. One well-established method is the conventional method. However, this
approach is not acceptable in the medical field due to its limitations, such as wasting time
extracting features and inaccurate results leading to false positive results. In recent years,
researchers have conducted several studies to detect COVID-19 infections. The researchers
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in [34] presented CovXNet, a deep learning model to classify COVID-19 and pneumo-
nia infections by utilizing a public dataset containing 1493 non-COVID pneumonia and
305 COVID-19 pneumonia cases. Their model achieved an accuracy of 96.9%. Using four
pretrained models, VGG16, ResNet50, DenseNet-121, and MobileNet, Umair et al. [35] pro-
posed a technique for binary classification of COVID-19 and compared the performances of
the four models. DenseNet-121 achieved the best performance with an accuracy of 96.49%.

The authors of Li et al. [36] proposed COVNET, a deep learning model for detecting
COVID-19 infections. The proposed model successfully differentiated between COVID-19
pneumonia and community-acquired pneumonia (CAP) with sensitivity and specificity
rates of 90% and 96%, respectively. A novel deep learning model, CovidDetNet, for detect-
ing COVID-19 infections using chest radiograph images was proposed by Ullah et al. [37].
The proposed model comprises nine convolutional layers, one fully-connected layer, two
activation functions (ReLU and Leaky ReLU), and two normalization operations (batch
normalization and cross-channel normalization) and achieved an accuracy of 98.40%. A
17-layered deep learning model, DarkCovidNet, with different filter sizes for detecting
COVID-19 infection, was presented by Ozturk et al. [38]. The authors used DarkNet [39] as
the backbone for their model. The proposed model provided accurate diagnostics for binary
classification (COVID vs. no findings) with 98.08% accuracy and multi-class classification
(COVID vs. no findings vs. pneumonia) with 87.02% accuracy.

The authors of Khan et al. [40] proposed CoroNet, a CNN for the classification of
COVID-19 by modifying an Xception pre-trained model. The model achieved an accuracy of
89.6%. In Agrawal and Choudhary [41], researchers presented FocusCovid, an automated
deep learning model for detecting COVID-19 using chest radiograph images. The authors
used FocusNet [42], a UNet-based encoder–decoder architecture proposed for medical
image segmentation, as their backbone network. The model achieved 99.2% and 95.2%
accuracy for binary classification and multi-classification, respectively. In [43], a convolution
support estimation network (CSEN) that combines the advantages of a representation-
based technique and deep learning was presented to detect COVID-19 infections from
X-ray images. The proposed method uses training samples and a dictionary to map the
sparse support coefficients to the query samples.

Other works have also exploited automated feature extraction and filtering tech-
niques [44–47]. For example, the authors of [44] segregated COVID-19 positive cases and
healthy cases by exploring several image filter techniques, such as a conservative smoothing
filter and a Gaussian filter, and feature extraction techniques, such as linear discriminant
analysis (LDA) and principal component analysis (PCA). The extracted features were then
passed to various classification models, including CNN, SVM, and logistic regression
(LR). The proposed model achieved impressive results by attaining an overall accuracy
of 99.93%.

2.2. Transfer Learning Methods

In the COVID-19 detection and classification literature, most of the ML and DL models
employed use pre-trained models as the baseline of their models. The pre-trained models
were trained using the Imagenet dataset [48], and their weights are available for down-
load. Although the baseline models used were the same, the architecture of the individual
models is different [49]. VGGNet [50], ResNet [51], EfficientNet [52], DenseNet [53], and
SqueezeNet [54] are few examples of state-of-the-art pre-trained models. In the literature, a
large number of works have been proposed using transfer learning [49,55–63]. The authors
of [62] implemented a deep learning model by fine-tuning three pre-trained models—
VGG16, VGG19, and ResNet201—using chest X-ray images for binary classification of
COVID-19. Using Bi-LSTM and CNN, Aslan et al. [60] designed a hybrid model to detect
COVID-19 from CT scans. The authors used AlexNet as their pre-trained models. Simi-
larly, Apostolopoulos and Mpesiana [49] proposed a CNN architecture based on transfer
learning using ReLU [64] as the activation function and dropout to deal with overfitting.
A binary and multi-class classification model using NASNet-large, DenseNet169, Incep-
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tionV3, ResNet18, and Inception ResNetV2 was proposed by Punn and Agarwal [59]. To
overcome class imbalance, the authors used a weighted class-loss function (giving higher
weight to COVID labels) and a random sampling technique (upsampled minority class).
Using transfer learning and fine-tuning, El Asnaoui et al. [65] conducted a comparative
study on several pre-trained models. They applied intensity normalization [66] during the
preprocessing stage to enhance image quality, and they applied contrast-limited adaptive
histogram equalization (CLAHE) [67]. Similarly, using five pre-trained models, the authors
of [63] presented a deep learning model to detect COVID-19 from CT scan images. The au-
thors assessed the performance of histogram equalization (HE) and CLAHE enhancement
on CT scan images. The best pre-trained model attained an accuracy of 95.75%.

2.3. Autoencoders and Variational Autoencoders

In recent years, autoencoders (AEs) and variational autoencoders (VAEs) have been
exploited for different medical tasks [68–74]. Given input data, AEs and VAEs transform
the input from a high dimension to a low dimension known as a latent vector. Due to
this capability, they have also been adopted for dimensionality reduction tasks [75–77].
VAEs are probabilistic variations of AEs. Unlike AEs, which attempt only to learn the
latent representation of the input data, VAEs attempt to learn the latent distribution of the
input data [78]. AE and VAE approaches have been adopted in several works. The authors
of Rashid et al. [79] proposed a two-stage deep CNN scheme dubbed “AutoCovNet” to
detect COVID-19. They used an encoder–decoder at the first stage and an encoder-merging
network for the second stage. The weights learned from the first stage are used to initialize
the encoder in the second stage. The outputs from the different layers in the encoder
model are connected to the encoder-merging network, which finally performs feature
extraction. The extracted features are then used to perform classification. An integrated
model consisting of a pre-trained model, sparse autoencoder, and a feedforward neural
network was proposed by J.L. et al. [80]. Similarly, Abdulkareem et al. [81] proposed a
model that used stacked autoencoders instead of sparse autoencoders. Other works have
also explored stacked autoencoders [82–84]. To deal with anomaly localization and lack of
pixel annotation in CT images, Zhou et al. [78] proposed a “Weak Variational Autoencoder
for Localisation and Enhancement (WAVLE)” framework with two parts: the localization
part, which generates attention maps by combining a context-encoding variational au-
toencoder with a gradient-based technique; and an enhancement part that localizes the
infected regions in the CT images, combining the attention maps generated in the first
part. An unsupervised deep learning variational autoencoder model was proposed by
Mansour et al. [85]. InceptionV4 with Adagrad was used as the feature extractor, and an
unsupervised VAE performed classification. The quality of the image was enhanced using
adaptive Wiener filtering during preprocessing. So far, this is the only work similar to our
work. In our work, we explore the latent representations generated by VAE and leverage
the capabilities of ensemble learning to design three ensembled variational autoencoder
models to classify COVID-19. Several other methods and techniques to detect and classify
COVID-19 have been proposed in the literature [15,17,86–92]. Table 1 summarizes the
related works.
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Table 1. Summary of related works.

Ref./Year Technique Advantages Limitations

[34]/2020 Depthwise convolution
with varying dilation rates •

Efficiently extracts chest X-ray features by varying
depthwise convolution and changing the dilation rate

• No sensitivity analysis was performed

[35]/2021 Transfer learning
• Classification task is made easier using pre-trained networks.
• Highlights the features extracted in the X-ray images using Grad-CAM.
• Dropout is used to avoid overfitting

•
Did not test the robustness of the model
on multi-class classification

[36]/2020 CNN • Extracts both 2D local and 3D global representative features
• Vanishing gradient problem is solved by use of residual network

• Model was trained on a smaller dataset

[37]/2022 CovidDetNet classifier

• Computationally efficient due to fewer layers
• Successfully extracts more distinguishing features

•
Normalization technique is used, which improves the convergence
during training from the chest radiograph images

•
Did not test the robustness of the model
on other classes, such as four-classes

[38]/2020 DarkCovidNet classifier • Classification performance is improved using 5-fold cross-validation • Could use dropout to avoid overfitting

[40]/2020 CoroNet classifier • Transfer learning is used to improve the quality of the deep features • Dropout can be used to avoid overfitting
• Model was trained on a small dataset

[41]/2021 FocusCovid classifier

• Data augmentation and normalization are used to avoid overfitting
• Classification performance is improved using attention mechanisms
• Classification task is made easier using pre-trained networks.

•
Cross-validation is used to estimate the general effectiveness
of the models

• Model was trained on a smaller dataset

[43]/2021
Convolution support
estimation network

(CSEN)
• Efficient in terms of speed and memory usage •

Performance degrades rapidly due to the
scarcity of data

[59]/2021 Transfer learning

• Class imbalance problem is dealt with using the weighted loss function

•
Visualizes the prediction of the model using activation maps
and LIME technique

• Cross-validation method is used to estimate the general effectiveness of the models

•
Focused only on posterior–anterior
(PA) view of the X-rays, so unable to
differentiate other views of X-ray images

[60]/2021 CNN-based transfer
learning–BiLSTM •

CNN combined with LSTM provides better classification accuracy
Data augmentation used to avoid overfitting

• Dropout can be used to avoid overfitting

[62]/2021 Transfer learning •
A pre-trained network trained on a larger dataset
is used to work efficiently on small datasets .

• Model was trained on a small dataset.
• Only binary classification was performed.
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Table 1. Cont.

Ref./Year Technique Advantages Limitations

[63]/2021 Transfer learning
•

HE and CLAHE were used to eliminate noise and improve the quality
of the CT scan images.

• Data augmentation was applied to avoid overfitting.
• Pre-trained models are used to stabilize training

• Model was trained on a small dataset.
• Only binary classification was performed.

[65]/2021 Transfer learning

• Handles chest CT images and chest X-ray images.

•
Intensity normalization CLAHE were used to eliminate noise and improve
the quality of the X-ray images.

• Data augmentation, weight-decay, and L2 regularizer are applied over-fitting.

• Only binary classification was done
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The abovementioned studies use convolutional operations to extract relevant features
from the given input. The feature map is then passed to the classification head to detect or
classify COVID-19. These feature maps may contain the relevant features extracted from the
input image. However, a convolution neural network sees the input image as a cluster of
pixels arranged in distinct patterns. It does not understand them as components present in
the image nor the probability distribution of these components. With VAE, given a feature
map, it describes the probability distribution of the feature map in a latent space. Thus,
each attribute in the feature map is represented as a probability distribution for which we
can randomly sample latent vectors for classification instead of using the entire feature map.
This statistical distribution enforces a continuous, smooth latent space representation of the
latent vector with its values near one another in a latent space, thereby acting as further
filtering of the feature map to a reduced dimension but still holding relevant features with
a probability distribution for classification.

3. Materials and Methods

This section discusses the theoretical aspect of VAEs and our proposed model. We
describe the theory of variational autoencoders and the loss functions used in this work.
We then describe the architectural design of the three proposed approaches.

3.1. Variational Autoencoders

AEs are neural network architectures with two main parts: an encoder fe and a decoder
fd. Given input datum xi, the encoder transforms xi into a latent representation zi, which is
of lower dimension than xi. The decoder takes zi as input and attempts to reconstruct x̃i.
Reconstruction loss, L, is computed to measure the model’s performance. L is computed
by comparing the difference between xi and x̃i. The weights of the model are updated
through backpropagation. VAEs are probabilistic variations of AEs that combine Bayesian
variational inference and deep learning. Similar to AEs, VAEs also have encoders and
decoders and perform the same function. Figure 1 shows the basic architecture of VAEs.
Instead of just learning the latent representation, VAEs learn the probability distribution
of the training data through an amortized inference procedure that provides the means
for computing the latent representation of the input data via the encoder. The encoder
acts as the variational posterior qφ(z|x), while the decoder acts as a generative model
representing the likelihood pθ(x|z). Given the posterior and the likelihood, we can define a
joint inference distribution as

qφ(z, x) ≡ pθ(x)qφ(z|x) (1)

Any probability distribution function (PDF) can be used as the posterior distribution,
but it is mainly assumed to be a multivariate Gaussian with diagonal covariance matrix
pz(z) = N (z; 0, I). The likelihood function pθ(x|z) can be a Gaussian distribution or a
Bernoulli distribution. In the encoder, the weights and biases are parameterized by the
variational parameter φ, while in the decoder, the weights and biases are parameterized by
the model parameter θ. Unlike in autoencoders, where the encoder outputs z (a probability
distribution representing the latent embeddings), encoders in VAEs output µ and log

(
σ2)

and generate ε fromN (0, I), out of which z is sampled using a reparameterization trick. The
variable z is then fed as input to the decoder, which tries to reconstruct x; z is defined as:

z = g(ε, φ, x) = µ + σ� ε (2)

where � is an elementwise multiplication operation, and z is a probability distribution
representing the relevant features from the input x. Assuming z ∼ N

(
µ, σ2), then z can be

reparameterized by
z = µ + σε, ε ∼ p(ε) = N (0, 1) (3)
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Since pθ(z) and qφ(z|x) are both Gaussian distributions, the difference between the
two distributions can be computed directly. Given a data point x(i), the resulting likelihood
is calculated as:

L(θ, φ; x) = −Eqφ(z|xi)
[log pθ(x|z)]+

DKL
(
qφ(z|xi) ‖ pθ(z)

) (4)

Equation (4) is known as evidence lower bound (ELBO). The objective of the model is to
maximize ELBO L(θ, φ, x) with respect to θ, the model parameters, and φ, the variational
parameters. The first part of ELBO represents the reconstruction loss, which ensures the
decoder is able to reconstruct x̃i from the latent representation z. The second part of ELBO
acts as a regularizer called a divergence. It measures the divergence between qφ(z|x) and
pθ(z) as well as penalizes the entanglement between the components in the latent space.

Encoder 
z

µ

σ

Decoder µ
x

Sampled
Latent
Vector

Figure 1. Basic architecture of a variational autoencoder.

3.2. Kullback–Leiber (KL) Divergence

KL divergence measures how similar two probability distributions are. Given two
probability distributions p(x) and q(x) defined over x, the KL divergence denoted by
DKL(p(x)||q(x)) from q(x) to p(x) is defined as:

DKL(q(x)||p(x)) = ∑
i

(
p(xi) log

(
p(xi)

q(xi)

))
(5)

3.3. Maximum Mean Divergence (MMD)

Similar to KL divergence, MMD measures how close two distributions are to each
other. Given two probability distributions, p(x) and q(x), MMD, denoted as
MMD(p(x) ‖ q(x)), is defined as:

MMD(q(x) ‖ p(x)) = Eq(x),q(x)[k(x, x
′
)]+

Ep(x),p(x)[k(x, x
′
)]−

2Eq(x),p(x)[k(x, x
′
)]

(6)

where k(x, x
′
) is any universal kernel, for which we use the Gaussian kernel in this work.

3.4. Loss Function Establishment

In this study, we adopted two objective functions. The first objective function ensures
the VAE reconstructs x̃i as closer to the actual input datum xi such that the latent representa-
tion z that is created is in some particular distribution. First, we compute the reconstruction
loss by measuring the difference between x̃i and xi. The reconstruction loss, denoted as
L(θ, φ; x), is defined as:

L(θ, φ; x) = Eq(φ)(z|x)[log pθ(x|z)− log qθ(z|x)] (7)
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where q(φ)(z|x) represents the latent distribution created by the encoder from the input
data, and pθ(x|z) represents the reconstructed distribution from the latent representation
by the decoder. Afterwards, the divergence among the latent representation distribution is
measured. In this study, we adopt the MMD. The final VAE loss is defined as:

LVAE = L(θ, φ; x) + MMD(qφ(z|x)||p(z)) (8)

The cross-entropy (CE) loss was adopted as the second objective function to handle
the classification task. The CE loss function is computed as:

Lcls(O, y) = − 1
N

N

∑
i=1

yi log(S(O)) (9)

where N represents the number of classes, O ∈ RN×1 represents the output from the fully
connected layer, y and yi represent the true label in the batch and predicted label of image i
in the batch, respectively, and S is the softmax applied to the output of O to normalize it.

3.5. Ensemble Variational Autoencoder

This section details the architecture of our proposed model. Using VAE and ensemble
learning, we propose three different architectures for the classification of COVID-19. Each
architecture consists of two encoders (ResNet50 and VGG16), reparameterization, a classi-
fication head, and either one or two decoders. The classification layers of ResNet50 and
VGG16 were removed.

3.5.1. ResNet50 Encoder

The ResNet50 encoder follows the ResNet50 architecture [51]. The first layer is a
convolutional layer with a kernel size of 7× 7 and 64 different kernels with a 2× 2 stride.
The layer is immediately followed by a 2× 2 max-pooling layer. Four sequential blocks
follow Layer 1. Each block performs a convolution operation with different kernel sizes. In
Block 1, there is a 1× 1, 64 kernel convolutional operation followed by a 3× 3, 64 kernel
convolutional and finally a 1× 1, 256 kernel operation. Block 1 is repeated 3 times, giving a
total of 9 layers. Similarly, in Blocks 2, 3, and 4, the kernel sizes used are (128, 128, 512),
(256, 256, 1024), and (512, 512, 1024), respectively. Blocks 2, 3, and 4 are repeated 4, 6, and
3 times, respectively, giving a total of 50 layers. Finally, an adaptive average pooling and
flattening layer is applied to the output of Block 4.

3.5.2. VGG16 Encoder

We adopted the VGG16 [50] architecture for the VGG16 encoder. There are two 3× 3
convolutional filter layers and a 2× 2 max-pooling layer. Each of these two layers are
repeated 3 times. Next, there are three 3× 3 convolutional filter layers and a 2× 2 max-
pooling layer, each of which is repeated two times. Finally, adaptive average pooling and
flattening is applied.

3.5.3. Reparameterization

The outputs from the encoders are transformed using a linear layer to the dimension
of the latent space, RB×128, where B is the batch size. We then perform random sampling
from a standard normal Gaussian distribution having a mean and variance. Two linear
layers are used to implement the mean and variance, which has the same dimension as
the latent space. Standard deviation is computed from the variance, and Equation (2) was
applied to sample z.
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3.5.4. Classification Head

The classification head takes z as input and performs a linear transformation on it.
The output dimension of the classification head is RB×C, where B is the batch size, and
C = {3, 4} is the number of classes.

3.5.5. Decoders

The decoder performs the reverse operation of the encoder. It takes z as input and
performs a ConvTranspose2d on it to upsample it to produce an output X̃ ∼ X.

3.5.6. Model One

In this model, as depicted in Figure 2, the feature maps of the last layers in both
encoders are concatenated before performing the reparameterization trick to sample the
latent embedding z. This model allows us to merge at a high level the individual features
from both encoders, giving us a richer feature map before sampling z. The sampled latent
vector is then passed as input to the decoder to reconstruct the input and the classification
head to classify the various types of pneumonia. In this model, only one decoder is used.
There are two objective functions: LVAE, which ensures the output of the decoder is closer
to that of the input; and Lcls(O, y), which provides the classification head the ability to
accurately classify the various types of pneumonia. The advantage of this model is its
simplicity. It takes advantage of concatenating the feature maps of each encoder before
sampling the latent vector. Though this is the simplest of the three models, its performance
depends on the sensitivity of how well each encoder can extract relevant features from the
input since they share a single decoder and a single LVAE objective function.
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Figure 2. Model One: This architecture has two encoders and a single decoder. The feature maps of the
last layers of both encoders are concatenated to give a richer feature map before reparameterization
is done to sample the latent embedding z.

3.5.7. Model Two

This model combines separate low-level VAEs to form a high-level VAE. Each low-level
VAE learns the representation of the input data to create its latent vector. These independent
latent vectors are merged to create an integrated low-level representation. Like Model One,
Model Two also employs a single decoder and two objective functions. The computational
cost of this model is higher than that of Model One. There is a three-stage learning process
involved: first, learning the low-level VAEs of individual encoders; second, reconstruction
of the low-level representation to high-representation by the decoder; third, classification
of the various types of pneumonia by the classification head. Despite its computational
cost, it presents some advantages. The decoder and classification head input is composed
of low-level representations from the individual encoders, which already have distribution
regularization terms. Thus, the merged representations already consist of approximated
multivariate standard normal distributions representing the input of each encoder. Similar
to Model One, performance also depends on the sensitivity of how well each encoder can
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extract relevant features from the input, since they share a single decoder and a single LVAE
objective function. Figure 3 depicts the architecture of Model Two.
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Figure 3. Model Two: Each encoder performs its own reparameterization to generate its own latent
embedding z. The latent embeddings are then merged and passed as input to the decoder and
classification head for reconstruction and classification of pneumonia, respectively.

3.5.8. Model Three

This model is similar to Model Two. The difference is that for Model Three, each
encoder implements its decoders. After reparameterization, the latent vectors of the indi-
vidual encoder are merged to form one latent vector and then passed to the classification
head. The individual latent vectors are then passed to their respective decoders to recon-
struct the input. Three objective functions are used: two LVAE function—one for each
encoder–decoder—and Lcls(O, y) for the classification task. This model inherits all the
advantages presented by architecture two. In addition, it solves the performance problem
of Models One and Two since each encoder now implements its own decoder and LVAE.
Figure 4 depicts the architecture of Model Three.
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Figure 4. Model Three: Each encoder performs its own reparameterization to generate its own latent
embedding z. The latent embeddings are passed to their respective decoders for reconstruction of
the input image and then merged and passed as input to the classification head for classification
of pneumonia.
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4. Experiments
4.1. Dataset

In this study, we used the COVID-19 Radiography Database curated by [93,94], which
is publicly available in the Kaggle repository. The dataset comprises 21,165 X-ray images:
3616 COVID-19-positive, 10,192 normal (non-COVID), 6012 lung opacity (non-COVID
lung infection), and 1345 viral pneumonia. We experimented with both three and four
classes. For four classes, we split the dataset into training (12,696 samples, representing
60% of the entire dataset), validation (6351 samples, representing 30% of the entire dataset),
and testing (2118 samples, representing 10% of the entire dataset) sets. For the three
classes, we combined lung opacity and viral pneumonia to form one set called viral
pneumonia. To increase the number of COVID samples, we performed data augmentation
using Augmentor to generate 6000 samples. We then sampled 5000 COVID images, 5000
normal images, and 5000 pneumonia images. We then split the dataset into training (10,499
samples, representing 70% of the dataset), validation (3750 samples, representing 25% of
the dataset), and testing (750 samples, representing 5% of the dataset). Table 2 shows the
composition of the dataset for four classes and three classes. Figure 5 shows samples of
images from the dataset.

(a) (b) (c) (d)

Figure 5. Sample datasets used in this work: (a) sample with COVID-19, (b) sample with lung opacity,
(c) sample with normal, and (d) sample viral pneumonia

Table 2. Dataset composition for both three and four classes.

Set COVID Normal Lung Opacity Viral Pneumonia

Four classes

Training 2167 6115 3607 807
Validation 1085 3058 1804 404
Testing 364 1019 601 134

Total 3616 10,192 6012 1345

Three classes

Training 3500 3500 - 3500
Validation 1250 1250 - 1250
Testing 250 250 - 250

Total 5000 5000 - 5000

4.2. Selection Of Backbone Networks

To select the backbone networks for our work, we experimented with four pre-trained
models: ResNet50, DenseNet201, VGG16, and Xception, out of which we chose the top
two models with the highest performance. We ran each model on the four-class dataset
for 20 epochs using a learning rate of 0.00003 and the Adam optimizer. The ResNet50 pre-
trained model obtained the best results, followed by VGG16. DenseNet201 and Xception
showed similar results. Hence, we selected ResNet50 and VGG16 as the backbone networks
for our model. Table 3 shows the results of the backbone network selection experiment.
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Table 3. Experimental results for the selection of the backbone network.

Pre-Trained Model Accuracy (%) Recall (%) Precision (%) F1 Score (%)

ResNet50 96.43 96.45 96.45 96.42

VGG16 96.21 96.19 96.21 96.24

DenseNet121 95.73 95.73 95.77 95.76

Xception 95.71 95.7 95.74 95.74

4.3. Evaluation Metrics

In this study, five quantitative measures were adopted to measure the performance
and effectiveness of our proposed model: accuracy, precision, recall, area under the curve
(AUC), and F1 score.

TP (True Positive); TN (True Negative); FP (False Positive); FN (False Negative).

Accuracy: Measures how close a predicted label is to the true label.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Precision: Measures actual positives from all predicted positive labels:

Precision =
TP

TP + FP
(11)

Recall: Known also as sensitivity, measures the ratio between all positive samples
correctly classified to all positive samples (both correct and incorrect). Recall shows a
model’s ability to actually classify positive samples as positive.

Recall =
TP

TP + FN
(12)

ROC AUC Score: Shows the relationship that exists between the true positive rate
(recall) and the false positive rate. It also shows how good a model is at differentiating
positive and negative target classes. ROC AUC is calculated using area under the
curve (AUC).
F1 Score: Measures the harmonic mean of recall and precision.

F1Score = 2× Precision× Recall
Precision + Recall

(13)

Confusion Metric: Provides an intuitive and descriptive way to summarize the perfor-
mance and correctness of a model.

4.4. Experimental Setup

In all the experiments, the input image was resized to a fixed size of 224× 224 before
feeding it to the network, there was a mini-batch size of 4 for both training and validation
sets. The dimensions of the input image were 4× 3× 224× 224. All models were trained
for 20 epochs. For the validation set, the weight with the best accuracy was saved. We
adopted two loss functions: maximum mean divergence (MMD) for variational autoencoder
(refer to Equation (8)) and cross-entropy function for the classification task. The Adam
optimizer was chosen as the primary optimizer and had a learning rate of 0.00003. We also
experimented with three additional learning rates: 0.00001, 0.00002, and 0.00004. Table 4
shows the hyperparameters used in this study.
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Table 4. Selected hyperparameters for EVAE-Net.

Hyperparameter Value

Learning rate 0.00003
Optimizer algorithm Adam
Number of epochs 20
Batch size 4
Latent dimension 128
Input image dimensions 3× 224× 224

Choosing an optimal objective function for the experiment was also considered. Since
the architectures involve multiple tasks—reconstruction and classification—the chosen
objective functions should improve the disentanglement between the latent embeddings
and the classification of the different types of pneumonia. For the encoder–decoder, the
objective function should consider both the reconstruction loss and a regularization term.
Mean square error (MSE) loss was chosen for the reconstruction task, with MMD as the
regularization term and cross-entropy as the loss for classification.

The network weights were initialized randomly since we did not use pre-trained
models as the backbone for our network. All experiments were conducted on a single GPU
(GEFORCE RTX 3060) with an 8-core AMD Ryzen 7 3700X processor.

5. Results and Analysis

This section reports the various experimental results of the proposed models using the
COVID-19 Radiography dataset. For each of the models, we conducted several experiments
by changing some of the hyperparameters. For the initial experiment, the Adam optimizer
with a learning rate of 0.00003 was used and was trained for 20 epochs with a batch size
of 4. This was done for both three and four classes. In the subsequent experiments, the
optimizer was kept constant while we varied the learning rate.

5.1. Model Complexity

Table 5 shows the computational complexity of our proposed model in terms of
the number of parameters and multiply-and-accumulate operations (MACs). From the
table, Models One and Two have almost the same complexity since both models share
a single decoder unit. The slight difference between their complexities is a result of
Model Two performing a reparameterization operation for both encoders compared to
a single reparameterization operation in Model One. For Model Three, each encoder
has its own decoder, resulting in a higher number of parameters. Additionally, there
are two reconstruction loss functions for the reconstruction of the input image, and one
cross-entropy loss for the classification task, resulting in higher MACs.

Table 5. Computational complexity of the three models in terms of parameters (in millions) and
multiply-and-accumulate operations (MACs).

Model Parameters (M) MACS (G)

Model One 56.176 92.291
Model Two 56.963 92.294
Model Three 87.745 123.120

5.2. Validation and Testing Performance Evaluation

Table 6 shows the best performance metrics for each model on the validation set. From
the table, it can be observed that a learning rate of 0.00003 produced better results for the
four classes, while for the three classes, different learning rates produced different results
for every model.

For three classes, Model One achieves 98.14% accuracy, 98% recall, 98.2% precision,
and 98.15% F1 score; Model Two achieves 98% accuracy and 97.99% recall, precision, and
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F1 score; Model Three achieves 98.24% accuracy and recall, 98.32% precision, and 98.27%
F1 score. For four classes, Model One achieves 96.44% accuracy, 95.18% recall, 96.48%
precision, and 95.49% F1 score; Model Two achieves 97.12% accuracy, 96.18% recall, 96.23%
precision, and 97.14% F1 score; Model Three achieves 98.72% accuracy, 98.52% recall, 98.55%
precision, and 98.77% F1 score.

Table 6. Best performance for the three models on the validation dataset. For each model, the perfor-
mance metrics for both three classes and four classes are shown, along with the best learning rate.

Model Predicted Classes Learning Rate Accuracy (%) Recall (%) Precision (%) F1 Score (%)

Model One
three classes 0.00003 98.14 98.00 98.20 98.15
four classes 0.00003 96.44 95.18 96.48 95.49

Model Two
three classes 0.00001 98.00 97.99 97.99 97.99
four classes 0.00003 97.12 96.18 96.23 97.14

Model Three
three classes 0.00004 98.24 98.24 98.32 98.27
four classes 0.00003 98.72 98.52 98.55 98.77

Table 7 shows the performance metrics of the best model (Model Three). For the three
classes, it achieved 98.24% accuracy, recall, and F1 score, and 98.25% precision. For the
four classes, an accuracy of 98.72%, recall of 98.52%, precision of 98.55%, and F1 score of
98.77% was achieved. Figure 6 shows the accuracy, loss, and ROC AUC graph comparing
the performance of the three models for both three classes and four classes. These results
indicates the proposed model’s capability in classifying COVID-19. For all the performances
measured, the best results are obtained with 20 training epochs, which is an indication that
the performance of the model increases gradually as the number of epochs increases.
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Figure 6. Performance comparison of the three models in terms of validation accuracy and loss. The
(a–c) presents the performance of the three models on three classes, while the (d–f) presents the
performance on four classes.

We performed cross-validation using the testing set, as depicted in Table 8, which the
model was not exposed to during training and validation. Cross-validations was performed
to verify that our model does not suffer from overfitting and to test the model’s robustness.
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For three classes, Model One achieves 98.57% accuracy, 98.42% recall, and 98.47% precision
and F1 score; Model Two achieves 98.43% accuracy, 98.37% recall, and 98.35% precision
and F1 score; Model Three achieves 98.66% accuracy, 98.47% recall, 98.69% precision, and
98.60% F1 score. For four classes, Model One achieves 97.04% accuracy, 96.55% recall and
F1 score, and 96.89% precision; Model Two achieves 97.99% accuracy, 97.90% recall, 97.70%
precision, and 97.91% F1 score; Model Three achieves 99.19% accuracy, 98.82% recall and
precision, and 98.94% F1 score. Tables 9 and 10 show the confusion matrix for the cross-
validation on the testing dataset. For three classes, out of a total of 487 radiographs, the
model misclassified 130 radiographs; of those, 47 were COVID-19 images, 43 were normal
images, and 40 were viral pneumonia images. For four classes, out of 2118 radiographs,
the proposed model misclassified 17; of those, 4 were COVID-19 images, 3 were normal
images, 6 were lung opacity images, and 4 were viral pneumonia images. This indicates
the proposed model has higher true negative and true positive values and lower false
negative and false positive values, suggesting the proposed model can accurately classify
COVID-19 infections.

Table 7. Performance metrics of the best model among the three models for both three and four
classes on the validation dataset.

Predicted Classes Model Accuracy (%) Recall (%) Precision (%) F1 Score (%)

Three classes Model Three 98.24 98.24 98.25 98.24
Four classes Model Three 98.72 98.52 98.55 98.77

Table 8. Cross-validation results on the testing dataset for both three classes and four classes.

Model Predicted classes Accuracy (%) Recall (%) Precision (%) F1 Score (%)

Model One Three classes 98.57 98.42 98.47 98.47
Four classes 97.04 96.55 96.89 96.55

Model Two Three classes 98.43 98.37 98.35 98.35
Four classes 97.99 97.90 97.70 97.91

Model Three Three classes 98.66 98.47 98.75 98.60
Four classes 99.19 98.82 98.82 98.94

Table 9. Confusion matrix for three classes on the testing dataset for the best model.

Predicted Class

COVID-19 Normal Viral Pneumonia

Actual Class
COVID-19 203 7 40
Normal 10 207 33
Viral Pneumonia 25 15 210

Table 10. Confusion matrix for four classes on the test dataset for the best model.

Predicted Classes

COVID-19 Normal Lung Opacity Viral Pneumonia

Actual Class

COVID-19 361 1 0 3
Normal 1 1016 0 2
Lung Opacity 2 1 595 3
Viral Pneumonia 3 0 1 130

5.3. Ablation Studies

An ablation study was conducted to observe the contribution of the latent vector’s
dimension to the model’s performance. The default dimension of the latent vector through-
out the experiment was 128. Using a learning rate of 0.00003 and the Adam optimizer, we
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experimented with two lower dimensions for the ablation study: 32 and 64. The ablation
study was conducted for both three classes and four classes on the validation dataset.
Table 11 shows the ablation study for various latent sizes. The table shows that the model’s
performance increases with an increase in the latent vector’s dimension. A latent dimension
of 128 achieves higher performance in all the models.

Table 11. Ablation study of different latent vector sizes on the performance of the model. La-
tent size of 128 achieved the best performance among all the models. (Optimizer = Adam;
Learning rate = 0.00003; Epochs = 20; set = validation dataset).

Model Latent Size Accuracy (%) Loss Recall (%) Precision (%) F1 Score (%)

4 Classes

Model One
32 93.12 0.2113 93.00 92.76 93.05
64 94.52 0.1736 94.27 94.20 94.23
128 96.44 0.1105 95.18 96.48 95.49

Model Two
32 94.79 0.1765 94.72 94.75 94.74
64 95.27 0.1365 95.30 95.29 95.35
128 97.12 0.0998 96.18 96.23 97.14

Model Three
32 95.88 0.1532 95.82 95.85 95.82
64 96.27 0.1112 96.25 96.29 96.29
128 98.72 0.0875 98.52 98.55 98.77

3 Classes

Model One
32 95.46 0.1632 95.40 95.48 95.50
64 96.32 0.1245 96.30 96.29 96.30
128 98.14 0.0966 98.00 98.20 98.15

Model Two
32 95.19 0.1542 95.10 95.11 95.13
64 96.35 0.1254 96.33 96.38 96.35
128 98.00 0.08061 97.99 97.99 97.99

Model Three
32 95.46 0.1463 95.44 95.42 95.45
64 96.65 0.1052 96.70 96.69 96.70
128 98.24 0.0506 98.24 98.32 98.27

5.4. Comparison with State-of-the-Art Methods

We compared our proposed model to various methods, as shown in Table 12. The com-
parison shows the proposed model, EVAE-Net, outperformed the methods in [37,40,41,95,96]
using the same dataset (COVID-19 Radiography Database) for COVID-19 classification
and methods that used other modalities [17,38,49,97]. It was worth noting that most of
these methods only focused on either three classes or four classes. In our proposed model,
we tested both three classes and four classes, making our model generalize better for
COVID-19 classification.

Table 12. Performance comparison of proposed model with existing studies. Methods with * used
the COVID-19 Radiography Dataset.

Class Method Accuracy (%) Recall (%) Precision (%) F1 Score (%)

4

Gopatoti and Vijayalakshmi [97] 94.00 95.31 95.31 93.74
Ozturk et al. [38] 90.13 90.39 88.38 88.28
* Khan et al. [40] 92.93 92.58 90.29 92.26
Apostolopoulos and Mpesiana [49] 91.92 91.49 89.18 90.40
Mostafiz et al. [17] 98.48 97.89 98.72 98.29
EVAE-Net 99.19 98.82 98.82 98.94

3

Gopatoti and Vijayalakshmi [97] 97.05 96.96 94.44 95.38
* Agrawal and Choudhary [41] 95.20 95.20 95.60 95.20
* Wu et al. [95] 97.67 96.54 96.65 96.59
* Aslan et al. [96] 96.29 96.42 96.42 94.53
* Ullah et al. [37] 98.40 96.66 97.00 96.82
EVAE-Net 98.66 98.47 98.75 98.60
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6. Discussion and Future Work

In this study, we adopted VAE combined with an ensemble technique for the classifi-
cation of COVID-19 with high accuracy. Tables 4 and 7 show the best model’s validation
and testing performance metrics. Of the three models, Model Three achieved the best
performance. This reveals that the best result is obtained when each encoder implements
its own decoder. With a single decoder, as with Model One and Model Two, the model’s
performance highly depends on how each encoder can extract relevant features from the
input, since they share a single LVAE. With a decoder for each encoder, each encoder
implements its LVAE with the advantage of learning to improve its performance from the
loss by extracting more relevant features from the input. This further improves the latent
embeddings sampled during the reparameterization stage since they are sampled from
feature maps with more relevant features. A merger of the two latent vectors produces
a richer latent vector, producing a higher classification result. The proposed EVAE-Net
is more accurate than PCR since PCR results rely on the sample collection time and how
they are stored and processed. Again, PCR results have high false negative rates when the
patient is tested too early or too late after exposure to the virus. Further, the proposed model
has higher true negative and true positive values and lower false negative and false positive
values, suggesting the proposed model can accurately classify COVID-19 infections.

Although the proposed EVAE-Net produced interesting results, it still has some
limitations, which we will address in future work. The proposed model cannot indicate
the exact region of pneumonia in the chest X-ray image, which is vital for a radiologist.
Future work will consider an attention mechanism focusing on the precise pneumonia
region in the chest X-ray image. Since we only concentrated on using chest X-ray images
for this study, the proposed model is biased toward chest X-ray images. This study did not
consider other data modalities, such as CT scans. In future research, we will extensively
examine other imaging modalities, which will help the model to generalize better.

Furthermore, we will combine several imaging modalities into a single dataset to
investigate the robustness of the proposed model in future studies. We will also examine
how image enhancement techniques such as discrete wavelet transform (DWT), CLAHE,
etc., will enhance the feature maps from the encoders to improve the model’s performance.
We believe images that the model incorrectly classified can be improved when enhanced.

Other limitations are associated with the nature of VAE architecture. VAE architecture
requires rich domain-specific knowledge, and this barrier prevents end users without
design expertise from utilizing VAEs. Even researchers with expert knowledge must go
through an arduous trial-and-error process to tune the architecture manually. For example,
finding the optimal depth of the VAE is unknown from the beginning. Thus, it is unknown
how to choose the appropriate number of convolutional, pooling, and dense layers for
the VAE architecture and what the optimal hyperparameters for each convolutional and
deconvolutional layer are. In future studies, we will explore neural architecture search
(NAS) to find solutions to this limitation.

In recent years, many Internet of Things (IoT) devices, particularly Medical Internet
of Things (MIoT), have been adopted in the health sector to combat various medical
issues. Several applications have been deployed in these smart devices for remote patient
monitoring (RPM) and other related medical tasks. In fighting against COVID-19, one
important aspect of containing the virus is an effective and fast diagnosis method. With the
rate at which the virus spreads, diagnosing and screening it quickly is key to containing it.
Therefore, there is a need to develop effective and efficient deep learning models leveraging
the advantages of IoT and MIoT to diagnose and screen COVID-19 with speed.

7. Conclusions

This study proposed an ensemble variational autoencoder network for the classifica-
tion of COVID-19 with high accuracy. We exploited variational autoencoders to produce
feature-rich latent vectors for classification. Three different ensemble variational autoen-
coders were designed. Models One and Two have two encoders and a single decoder;
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Model Three has two decoders. In the case of Model One, the feature maps from the two
encoders are concatenated before reparameterization to sample the latent vector. The latent
vector is then passed to the classification head for classification and to the decoder for
reconstruction of the input image. Models Two and Three each implement reparameteriza-
tion. The latent vectors from reparameterization are merged and passed to the classification
head and the decoder. Our model was trained on the COVID-19 Radiography Dataset. In
the case of three classes, the best model achieved 98.66% accuracy, 98.47% recall, 98.60% F1
score, and 98.75% precision. For four-class classification, 99.19% accuracy, 98.82% recall
and precision, and 98.94% F1 score were accomplished. We demonstrated that our model
can automatically predict and classify COVID-19 by extracting relevant features from chest
radiograph images. This will go a long way to help reduce radiologists’ workload and
to avoid misdiagnosing COVID-19 patients. In future studies, we will adopt different
DL strategies, such as attention mechanisms and NAS, to improve the computational
complexity and performance of EVAE-Net.
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