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Abstract: Purpose: To investigate if quantitative contrast enhancement and iodine mapping of com-
mon brain tumor (BT) entities may correctly differentiate between tumor etiologies in standardized
stereotactic CT protocols. Material and Methods: A retrospective monocentric study of 139 consec-
utive standardized dual-layer dual-energy CT (dlDECT) scans conducted prior to the stereotactic
needle biopsy of untreated primary brain tumor lesions. Attenuation of contrast-enhancing BT
was derived from polyenergetic images as well as spectral iodine density maps (IDM) and their
contrast-to-noise-ratios (CNR) were determined using ROI measures in contrast-enhancing BT and
healthy contralateral white matter. The measures were correlated to histopathology regarding tumor
entity, isocitrate dehydrogenase (IDH) and MGMT mutation status. Results: The cohort included
52 female and 76 male patients, mean age of 59.4 (±17.1) years. Brain lymphomas showed the
highest attenuation (IDM CNR 3.28 ± 1,23), significantly higher than glioblastoma (2.37 ± 1.55,
p < 0.005) and metastases (1.95 ± 1.14, p < 0.02), while the differences between glioblastomas and
metastases were not significant. These strongly enhancing lesions differed from oligodendroglioma
and astrocytoma (Grade II and III) that showed IDM CNR in the range of 1.22–1.27 (±0.45–0.82). Con-
ventional attenuation measurements in DLCT data performed equally or slightly superior to iodine
density measurements. Conclusion: Quantitative attenuation and iodine density measurements of
contrast-enhancing brain tumors are feasible imaging biomarkers for the discrimination of cerebral
tumor lesions but not specifically for single tumor entities. CNR based on simple HU measurements
performed equally or slightly superior to iodine quantification.

Keywords: neurooncology; tumor differentiation; iodine quantification; dual-energy computed
tomography

1. Introduction

Brain tumors are classified into a variety of subtypes that have various molecular char-
acteristics. different clinical appearances, treatment possibilities, and patient outcomes [1].
The pathophysiology of brain tumors is associated with many factors and varies between
brain tumor lesions of primary and secondary origin as well as local host factors [2]. Tu-
mor metabolism varies with the function and architecture of tumor blood vessels and
therefore also between the different tumor entities [3,4]. For patients with brain tumors,

Diagnostics 2022, 12, 2494. https://doi.org/10.3390/diagnostics12102494 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12102494
https://doi.org/10.3390/diagnostics12102494
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-2908-7560
https://orcid.org/0000-0002-1275-8164
https://orcid.org/0000-0002-6606-9313
https://orcid.org/0000-0003-1218-7610
https://doi.org/10.3390/diagnostics12102494
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12102494?type=check_update&version=1


Diagnostics 2022, 12, 2494 2 of 10

it is particularly important to determine the treatment scheme and evaluate the survival
prognosis [5,6].

With the goal to provide this guide to treatment and survival estimation, current
research in computed tomography (CT) and magnetic resonance imaging (MRI) aims to
characterize brain tumors noninvasively [6–10]. For this purpose, texture and density
features, radiomics and/or deep learning are used on imaging data in order to provide
standardized in-depth information on tumor characteristics and tumor entity [6,11–14]. In
clinical imaging, magnetic resonance imaging (MRI) with and without gadolinium-based
contrast agents is the imaging method of choice. However, computed tomography has
dedicated strengths in comparison to MRI, providing quantitative measures of tumor-
associated brain blood barrier breakdown and neovascularization [1,6,15].

Conventional computed tomography (CT) relies on the attenuation of different tissues
using a single X-ray spectrum. The introduction of dual-energy CT (DECT) has allowed
for more sophisticated material separation algorithms using acquisitions with different
tube voltage settings. In recent years, detector-based approaches such as photon counting
CT and dual-layer dual-energy CT (dlDECT) (IQon, Philips, Best, The Netherlands) were
introduced that allow for more accurate and distinct quantification of iodine in between
scans and scanners, as they make use of the dedicated distribution of attenuation values
measured in Hounsfield units (HU) as a function of X-ray energy [16,17]. This allows
the scan to be decomposed into clinically relevant materials such as iodine, calcification,
uric acid, and soft tissues. There are different technical source-based approaches such as
dual-source or rapid kilovoltage switching. dlDECT, as the method of choice for DECT
in this work, uses a single polychromatic x-ray source. The separation of different X-ray
energies with dlDECT occurs at the detector level. It detects photons of lower energy in the
upper level and higher energy photons in the layer below [18,19]. Current systems provide
spectral image data with every scan, without the need for additional radiation exposures.

Although there may be distinct advantages of DECT in regard to the evaluation of
blood–brain barrier breakdown in neurooncological cases, literature is extremely sparse in
regard to the value of CT in the differentiation of brain tumors which is likely associated
with the predominance of MRI and a lack of standardization of examination protocols [6].
Examining a unique dataset of patients receiving highly standardized dlDECT for the
purpose of stereotactic biopsies, we aimed to evaluate the value of tumor attenuation
and iodine uptake of brain tumor lesions as a potential quantitative biomarker for the
discrimination of tumor entities. Further, we aimed to test if iodine maps improve tumor
separation in comparison to attenuation measurements on conventional polyenergetic
reconstructions of the same scans.

We hypothesized that quantitative CT attenuation measures in dlDECT allow the
differentiation of brain tumor entities and tested conventional attenuation measurements
as well as iodine mapping for this task. Glioblastomas, brain metastases, and lymphomas,
which are common brain malignancies in adults and which tend to show similar en-
hancement patterns in magnetic resonance imaging (MRI) [20], were of dedicated interest.
Further, we evaluated the association of quantitative contrast enhancement with prognostic
molecular markers such as isocitrate dehydrogenase (IDH) and O6-methylguanine-DNA-
methyltransferase (MGMT) status in gliomas [8,21].

2. Materials and Methods
2.1. Study Population

Institutional review board approval was obtained for this study. The retrospective
study includes CT data of all consecutive 139 patients who were referred to our center for
CT examination before stereotactic needle biopsy between January 2017 and April 2018
and who received dlDECT (IQon Spectral CT, Philips Healthcare, Best, The Netherlands)
receiving a dedicated scanning protocol (Figure 1). Besides imaging parameters, patient age,
weight, gender, and histopathological diagnosis were recorded. If there were less than five
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tumors for a dedicated tumor entity or if the results in histopathology were inconclusive
patients were excluded from further analysis.
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Figure 1. Iodine map of dual layer computed tomography showing a contrast-enhancing glioblastoma
(WHO IV) located in the left-sided temporooccipital gyrus.

2.2. CT Scans

All patients were scanned with the same dlDECT (IQOn, (Philips Healthcare, Best, The
Netherlands). CT scans were conducted with a defined dosage of 60 mL contrast media (Ac-
cupaque 350 mg/mL, GE Healthcare; Little Chalfort, UK) and scan 30 seconds after bolus
application via an antecubital vein, 4 mL/s flow rate, followed by the saline chaser. The fol-
lowing scanning parameters were kept constant in all scans: collimation = 64 × 0.625 mm;
rotation time = 0.4 s; pitch = 0.422; tube potential = 120 kVp, matrix = 512 × 512; 300 mAs
without dose modulation. Patients were positioned supine and scanned in a craniocaudal
direction. All axial images were reconstructed with a slice thickness of 2 mm and a section
increment of 1 mm using a dedicated spectral reconstruction algorithm with a strength
level of 3 and a constant kernel (Spectral B, Philips Healthcare, Best, The Netherlands).
Image analysis was performed offline on a dedicated workstation (IntelliSpace Portal 6.5,
Philips Healthcare, Best, The Netherlands).
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2.3. Objective Image Analysis

Datasets were analyzed by a blinded reader placing circular regions of interest (ROIs)
in the contrast-enhancing part of the lesion and healthy appearing white matter at the
contralateral side. Absolute attenuation values and standard deviations in Hounsfield units
(HU) were recorded. Further, iodine density mapping was provided with the use of the
manufacturers’ post-processing (IntelliSpace Portal V) and extracted via ROI measurements
by a further blinded reader. Measurements were performed twice and averaged. Contrast
to noise ratios (CNR) were calculated using the following formula:

CNR = (HUlesion − HUcontralateral)/
√

(SDlesion
2 + SDcontralateral

2) (1)

2.4. Stereotactic Needle Biopsy

A stereotactic needle biopsy was performed on the day of the CT examination and
conducted by the department of stereotactic neurosurgery at our center. Pathologic work-up
was provided as a reference standard for each lesion.

2.5. Statistical Analysis

Statistical analysis was performed using JMP (V15; SAS Institute, Cary, NC, USA).
Student’s t-test, Wilcoxon test and Pearson correlation coefficient were used to compare
the continuous variables. The association of iodine density and brain tumors as well as
iodine thresholds were evaluated by logistic regression analysis, followed by receiver
operating characteristics (ROC). Statistical significance was set to p ≤ 0.05. Further results
are summarized as mean ± standard deviation.

3. Results

The mean age was 59.4 ± 17.1 years. The cohort included 52 female and 76 male
patients. Histopathological diagnoses were: WHO grade II astrocytoma (n = 6), WHO III
anaplastic astrocytoma (n = 23), glioblastoma multiforme (GBM, n= 62), CNS-Lymphoma
(n = 12), metastasis (n = 15), oligodendroglioma (n = 5) and pilocytic astrocytoma (n = 5).
Following tumors were excluded due to low incidence: germinoma (n = 1), ependymoma
(n = 1), WHO I angiocentric glioma (n = 1), craniopharyngioma (n = 2), myeloid sarcoma
(n = 1). Inconclusive histopathology was present in two cases.

Lymphomas showed the strongest CNR (3.28± 1.23), significantly higher than glioblas-
toma (2.37 ± 1.55, p < 0.005, Figure 1) and metastases (1.95 ± 1.14, p < 0.02), which did not
differ from each other significantly (ns). Pilocytic astrocytomas had a comparable iodine
density to metastases, lymphoma and GBM (Table 1). These four strong enhancing lesion
types differed significantly from the oligodendroglioma, Grad II and Grad III astrocytoma
that showed IDM CNR in the range 1.22–1.27 (±0.45–0.82).

CT attenuation and iodine density differed statistically significantly between different
tumor etiologies (Table 1, Figure 2). In comparison to simple attenuation or iodine density
measures, the calculation of CNR improved tumor differentiation considerably. Neither in
the simple attenuation and iodine density measurements nor in the CNR measurements
did iodine density outperform conventional CT attenuation.

In the subset of 78 gliomas, CNR was significantly higher in IDH 1 wild-type gliomas
than in gliomas with IDH 1 mutation, both in conventional polyenergetic CT (2.19 ± 1.33
vs. 1.39 ± 1.4, p = 0.004) and iodine density mapping (2.22 ± 1.53 vs. 1.60 ± 1.78, p = 0.03)
(Figure 3). Here, conventional polyenergetic CT attenuation measures performed better
than density measures in iodine density maps regarding IDH mutation status as well.
MGMT methylated gliomas showed a lower density in comparison to MGMT unmethylated
gliomas which was however not significant (p = 0.11–0.22).

Tumor density was a significantly higher in women (62.2 ± 22.1 HU) in comparison to
men (54.9 ± 19.9 HU, p = 0.04, Figure 4). In contrast, there were no associations of tumor
enhancement with patient age and weight (both r2 = 0.02, ns, Figure 5a,b).
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hancement in conventional polyenergetic reconstructions of DLCT (Figure 1a) and DLCT iodine 
maps. In contrast to simple density measures, CNR allows for improved differentiation between the 
prevalent tumor entities (compare data listed in Table 1). Lymphoma showed the highest CNR, 
significantly higher than the second strongest enhancing tumor entities glioblastoma and brain me-
tastases which did not show a significant difference in tumor density. The astrocytomas WHO II 
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glioblastomas and metastases. 

Figure 2. (a,b): Differentiation of tumor entity based on density measures and CNR of contrast
enhancement in conventional polyenergetic reconstructions of DLCT (Figure 1a) and DLCT iodine
maps. In contrast to simple density measures, CNR allows for improved differentiation between
the prevalent tumor entities (compare data listed in Table 1). Lymphoma showed the highest CNR,
significantly higher than the second strongest enhancing tumor entities glioblastoma and brain
metastases which did not show a significant difference in tumor density. The astrocytomas WHO II
and WHO III as well as oligodendrogliomas showed a significantly lower CNR than lymphomas,
glioblastomas and metastases.
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Figure 5. There was no significant correlation between tumor density and patient (a) age (r2 = 0.02,
ns); (b) weight (r2 = 0.02, ns).
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Table 1. Comparison of conventional CT and iodine mapping density measures and CNR for the
discrimination of brain tumor entities (BTE) depicted with Wilcoxon z-scores and r-values. There is
no significant difference between the conventional CT and the iodine mapping which provided both
measures for significant differentiation of seven tumor entities. CNR was of dedicated advantage
allowing for significant differentiation of 10 tumor entities, both in conventional CT as well as iodine
mapping. (ns = not significant).

Conventional CT
Density

CNR Conventional CT
Density

SDCT Iodine
Density

CNR Iodine
Density

BTE A BTE B Wilcoxon
Z-Score

Wilcoxon
r-Value

Wilcoxon
Z-Score

Wilcoxon
r-Value

Wilcoxon
Z-Score

Wilcoxon
r-Value

Wilcoxon
Z-Score

Wilcoxon
r-Value

Astrocytoma II Pilozytic
Astroytoma 2.6 <0.01 1.2 ns 2.5 <0.05 2.6 <0.05

Astrocytoma II Lymphoma 3.2 <0.01 2.7 <0.01 2.9 <0.01 3.3 <0.001
Astrocytoma II Glioblastoma 3.1 <0.01 2.2 <0.05 2.1 <0.05 2.0 <0.05
Astrocytoma II Oligodendroglioma 0.8 ns 0.1 ns 0.6 ns 0.1 ns
Astrocytoma II Metastases 2.6 <0.01 1.4 ns 0.7 ns 1.3 ns
Astrocytoma II Astrocytoma III 0.8 ns 0.1 ns 1.0 ns 1.3 ns

Astrocytoma III Pilozytic
Astroytoma 3.0 <0.01 1.7 ns (p = 0.08) 3.2 <0.01 2.6 <0.01

Astrocytoma III Lymphoma 4.2 <0.0001 4.1 <0.0001 4.4 <0.0001 4.3 <0.0001
Astrocytoma III Metastases 2.6 <0.01 2.7 <0.01 2.1 <0.05 1.9 ns (p = 0.06)
Astrocytoma III Glioblastoma 4.7 <0.0001 3.7 <0.001 4.6 <0.0001 3.6 <0.001
Astrocytoma III Oligodendroglioma 1.1 ns 0.4 ns 1.5 ns 0.4 ns

Lymphoma Metastases 0.6 ns 2.0 <0.05 1.1 ns 2.8 <0.01
Lymphoma Oligodendroglioma 1.1 ns 3.1 <0.01 1.3 ns 3.0 <0.01
Lymphoma Glioblastoma 0.8 ns 2.3 <0.05 0.7 ns 2.9 <0.01

Lymphoma Pilozytic
Astroytoma 0.7 ns 2.0 <0.05 0.8 ns 1.3 ns

Glioblastoma Oligodendroglioma 0.8 ns 2.3 <0.05 0.7 ns 1.8 ns (p = 0.06)
Glioblastoma Metastases 0.1 ns 0.2 ns 0.9 ns 0.5 ns

Glioblastoma Pilozytic
Astroytoma 0.2 ns 0.3 ns 1.1 ns 1.1 ns

Pilozytic
Astroytoma Oligodendroglioma 0.8 ns 1.9 ns (p = 0.06) 1.0 ns 2.3 <0.05

Pilozytic
Astroytoma Metastases 0.3 ns 0.2 ns 1.3 ns 1.2 ns

Oligodendroglioma Metastases 0.3 ns 1.7 ns (p = 0.08) 1.0 ns 1.2 ns

4. Discussion

The preoperative determination of histopathology with imaging is a current goal of
cancer research. Different AI algorithms and studies using radiomics investigated, how to
separate tumor entities with imaging but there are no larger studies, protocols or products
that allow for a secure differentiation of brain tumor lesions. This study investigated quan-
titative density measures in dual-layer computed tomography as potential biomarkers for
the differentiation of brain tumors. Further, the study compared conventional polyenergetic
algorithms and dlDECT iodine mapping for this purpose. In addition, CT measures were
tested for differentiation of IDH mutation status and MGMT status in the subset of gliomas.

We found that CNR of brain tumor attenuation and healthy appearing contralateral
white matter was superior for tumor discrimination than attenuation measures within the
tumor only (Figure 2a,b). CNR of standardized iodine mapping allowed for a statistical
separation of brain tumor entities. However, there was no improvement in comparison to
conventional CT measures in iodine maps derived from dlDECT. Thus, we infer that there
is no dedicated advantage to using specific dual energy iodine maps for this purpose and
conventional computed tomography with specific protocols may yield similar results. In
view of the recent results by Yingying et al., our study confirms the differences shown for
lower and higher-grade gliomas [6]. However, looking at a broader range of brain tumors,
we found that CNR did not allow any discrimination of glioblastoma from single brain
metastases, which is a relevant differential diagnosis [22,23]. In contrast, brain lymphomas
differed significantly showing the strongest quantitative enhancement of all brain tumor
entities included.
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Further, CNR of both, iodine density measurements and conventional CT measure-
ments allowed for a separation of gliomas with IDH mutation and IDH wild type as well
as MGMT promoter status. These findings are of particular interest, as these factors are
strongly correlated with patient outcomes [8,21,24,25]. Here, CT density measures as one
biomarker allowed for a relative differentiation of genetic status in this regard, however,
did not yield a strong predictive value as an imaging biomarker. In view of further tumor
characteristics defined in imaging with radiomics or AI, iodine density CNR measures
could potentially play a role in non-invasive tumor differentiation and follow-up [22,26–28].

The cohort that received standardized planning dual-layer CT for stereotaxis of non-
treated lesions with profound matching histological analysis is unique. Still, the study has
limitations. It is a retrospective study with a limited amount of data for single tumor entities.
The data were acquired with one single CT scanner and time point, so that reproducibility
between scanners and time points remains to be tested. Further, there is a need for a
dedicated evaluation of confounding factors such as contrast protocols, cardiac output
function and gender. Patient weight and age did not affect the results of our study.

We conclude that attenuation and quantitative iodine density mapping of brain tumors
allow for the statistical separation of brain tumor subtypes. In combination with advanced
image analysis with deep learning and/or radiomics, the approach could potentially allow
for non-invasive tumor classification. CNR based on simple attenuation measures per-
formed equally or slightly superior to dual-energy iodine quantification so that the specific
dual-energy function was not of added value. CNR of both, iodine density measurements
and conventional CT measurements allowed for a separation of gliomas with IDH mutation
and IDH wild type.
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